hud-python 0.4.17__py3-none-any.whl → 0.4.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hud-python might be problematic. Click here for more details.

hud/agents/base.py CHANGED
@@ -30,9 +30,19 @@ class MCPAgent(ABC):
30
30
  """
31
31
  Base class for MCP-enabled agents.
32
32
 
33
- This class provides the foundation for agents that interact with MCP servers,
34
- handling tool discovery and filtering while leaving provider-specific
35
- implementation details to subclasses.
33
+ Provides common behavior for agents that interact with MCP servers, including:
34
+ - Client management: accepts an `AgentMCPClient` or auto-creates one at
35
+ runtime when `run()` is called with a `Task` that includes `mcp_config`.
36
+ - Tool lifecycle: discovery, filtering (`allowed_tools`, `disallowed_tools`),
37
+ and automatic marking of lifecycle tools (setup/evaluate) from a `Task`.
38
+ - Messaging: system prompt handling, optional inclusion of setup output on
39
+ the first turn, and control over initial screenshots.
40
+ - Telemetry & UX: standardized logging/printing via `HUDDesign` and optional
41
+ automatic tracing (`auto_trace`).
42
+
43
+ Subclasses implement provider-specific formatting and response fetching
44
+ by overriding these abstract methods: `get_system_messages`, `get_response`,
45
+ `format_blocks`, and `format_tool_results`.
36
46
  """
37
47
 
38
48
  metadata: dict[str, Any]
@@ -59,14 +69,23 @@ class MCPAgent(ABC):
59
69
  Initialize the base MCP agent.
60
70
 
61
71
  Args:
62
- mcp_client: AgentMCPClient instance for server connections
63
- allowed_tools: List of tool names to allow (None = all tools)
64
- disallowed_tools: List of tool names to disallow
65
- lifecycle_tools: List of tool names to use for lifecycle tools
66
- initial_screenshot: Whether to capture screenshot before first prompt
67
- system_prompt: System prompt to use
68
- append_setup_output: Whether to append setup tool output to initial messages
69
- verbose: If True, sets logging level to INFO. If False, only WARNING and above.
72
+ mcp_client: Client for connecting to MCP servers. If None, a client
73
+ is auto-created at runtime when `run()` is called with a `Task`
74
+ that provides `mcp_config`.
75
+ allowed_tools: Names of tools to allow (None means allow all).
76
+ disallowed_tools: Names of tools to always exclude.
77
+ lifecycle_tools: Tools reserved for lifecycle phases (e.g., setup,
78
+ evaluate). These are hidden from normal tool calling.
79
+ system_prompt: System prompt to seed the conversation.
80
+ append_setup_output: Whether to append setup tool output to the
81
+ first turn's messages.
82
+ initial_screenshot: Whether to include an initial screenshot before
83
+ the first prompt (when supported by the environment).
84
+ model_name: Label used in telemetry/logging to identify the model.
85
+ response_agent: Optional automation that can respond to the model's
86
+ outputs to keep the loop going (e.g., auto-continue/stop).
87
+ auto_trace: If True, automatically creates a trace/span for runs.
88
+ verbose: If True, increases logging verbosity for developer UX.
70
89
  """
71
90
 
72
91
  self.mcp_client = mcp_client
@@ -54,7 +54,7 @@ class ResponseAgent:
54
54
  """
55
55
  try:
56
56
  response = await self.client.chat.completions.create(
57
- model="gpt-4o",
57
+ model="gpt-5-nano",
58
58
  messages=[
59
59
  {"role": "system", "content": self.system_prompt},
60
60
  {
@@ -7,7 +7,7 @@ through the existing :class:`hud.agent.MCPAgent` scaffolding.
7
7
  Key points:
8
8
  - Stateless, no special server-side conversation state is assumed.
9
9
  - Accepts an :class:`openai.AsyncOpenAI` client, caller can supply their own
10
- base_url / api_key (e.g. ART, llama.cpp, together.ai, …)
10
+ base_url / api_key (e.g. llama.cpp, together.ai, …)
11
11
  - All HUD features (step_count, OTel spans, tool filtering, screenshots, …)
12
12
  come from the ``MCPAgent`` base class, we only implement the three abstract
13
13
  methods
@@ -21,6 +21,7 @@ from typing import TYPE_CHECKING, Any, cast
21
21
 
22
22
  import mcp.types as types
23
23
 
24
+ from hud import instrument
24
25
  from hud.types import AgentResponse, MCPToolCall, MCPToolResult
25
26
 
26
27
  from .base import MCPAgent
@@ -29,8 +30,6 @@ if TYPE_CHECKING:
29
30
  from openai import AsyncOpenAI
30
31
  from openai.types.chat import ChatCompletionToolParam
31
32
 
32
- from hud.clients import AgentMCPClient
33
-
34
33
  logger = logging.getLogger(__name__)
35
34
 
36
35
 
@@ -39,19 +38,20 @@ class GenericOpenAIChatAgent(MCPAgent):
39
38
 
40
39
  def __init__(
41
40
  self,
42
- mcp_client: AgentMCPClient,
43
41
  *,
44
42
  openai_client: AsyncOpenAI,
45
43
  model_name: str = "gpt-4o-mini",
46
44
  parallel_tool_calls: bool = False,
47
- logprobs: bool = False,
45
+ completion_kwargs: dict[str, Any] | None = None,
48
46
  **agent_kwargs: Any,
49
47
  ) -> None:
50
- super().__init__(mcp_client=mcp_client, **agent_kwargs)
48
+ # Accept base-agent settings via **agent_kwargs (e.g., mcp_client, system_prompt, etc.)
49
+ super().__init__(**agent_kwargs)
51
50
  self.oai = openai_client
52
51
  self.model_name = model_name
53
52
  self.parallel_tool_calls = parallel_tool_calls
54
- self.logprobs = logprobs
53
+ self.completion_kwargs: dict[str, Any] = completion_kwargs or {}
54
+ self.conversation_history = []
55
55
 
56
56
  @staticmethod
57
57
  def _oai_to_mcp(tool_call: Any) -> MCPToolCall: # type: ignore[valid-type]
@@ -64,54 +64,144 @@ class GenericOpenAIChatAgent(MCPAgent):
64
64
 
65
65
  async def get_system_messages(self) -> list[Any]:
66
66
  """Get system messages for OpenAI."""
67
- return [
68
- {"role": "system", "content": self.system_prompt},
69
- ]
67
+ return [{"role": "system", "content": self.system_prompt}]
70
68
 
71
69
  async def format_blocks(self, blocks: list[types.ContentBlock]) -> list[Any]:
72
70
  """Format blocks for OpenAI."""
73
- return [
74
- {
75
- "role": "user",
76
- "content": [
77
- {"type": "text", "text": block.text}
78
- for block in blocks
79
- if isinstance(block, types.TextContent)
80
- ],
81
- },
82
- ]
71
+ content = []
72
+ for block in blocks:
73
+ if isinstance(block, types.TextContent):
74
+ content.append({"type": "text", "text": block.text})
75
+ elif isinstance(block, types.ImageContent):
76
+ content.append(
77
+ {
78
+ "type": "image_url",
79
+ "image_url": {"url": f"data:{block.mimeType};base64,{block.data}"},
80
+ }
81
+ )
82
+
83
+ return [{"role": "user", "content": content}]
84
+
85
+ def _sanitize_schema_for_openai(self, schema: dict) -> dict:
86
+ """Convert MCP JSON Schema to OpenAI-compatible format.
87
+
88
+ Handles unsupported features like anyOf and prefixItems.
89
+ """
90
+ if not isinstance(schema, dict):
91
+ return schema
92
+
93
+ sanitized = {}
94
+
95
+ for key, value in schema.items():
96
+ if key == "anyOf" and isinstance(value, list):
97
+ # Handle anyOf patterns (usually for nullable fields)
98
+ non_null_types = [
99
+ v for v in value if not (isinstance(v, dict) and v.get("type") == "null")
100
+ ]
101
+ if non_null_types:
102
+ # Use the first non-null type
103
+ sanitized.update(self._sanitize_schema_for_openai(non_null_types[0]))
104
+ else:
105
+ sanitized["type"] = "string" # Fallback
106
+
107
+ elif key == "prefixItems":
108
+ # Convert prefixItems to simple items
109
+ sanitized["type"] = "array"
110
+ if isinstance(value, list) and value:
111
+ # Use the type from the first item as the items schema
112
+ first_item = value[0]
113
+ if isinstance(first_item, dict):
114
+ sanitized["items"] = {"type": first_item.get("type", "string")}
115
+ else:
116
+ sanitized["items"] = {"type": "string"}
117
+
118
+ elif key == "properties" and isinstance(value, dict):
119
+ # Recursively sanitize property schemas
120
+ sanitized[key] = {
121
+ prop_name: self._sanitize_schema_for_openai(prop_schema)
122
+ for prop_name, prop_schema in value.items()
123
+ }
124
+
125
+ elif key == "items" and isinstance(value, dict):
126
+ # Recursively sanitize items schema
127
+ sanitized[key] = self._sanitize_schema_for_openai(value)
128
+
129
+ elif key in (
130
+ "type",
131
+ "description",
132
+ "enum",
133
+ "required",
134
+ "default",
135
+ "minimum",
136
+ "maximum",
137
+ "minItems",
138
+ "maxItems",
139
+ ):
140
+ # These are supported by OpenAI
141
+ sanitized[key] = value
142
+
143
+ return sanitized or {"type": "object"}
83
144
 
84
145
  def get_tool_schemas(self) -> list[dict]:
85
146
  tool_schemas = super().get_tool_schemas()
86
147
  openai_tools = []
87
148
  for schema in tool_schemas:
149
+ parameters = schema.get("parameters", {})
150
+
151
+ if parameters:
152
+ sanitized_params = self._sanitize_schema_for_openai(parameters)
153
+ else:
154
+ sanitized_params = {"type": "object", "properties": {}}
155
+
88
156
  openai_tool = {
89
157
  "type": "function",
90
158
  "function": {
91
159
  "name": schema["name"],
92
160
  "description": schema.get("description", ""),
93
- "parameters": schema.get("parameters", {"type": "object", "properties": {}}),
161
+ "parameters": sanitized_params,
94
162
  },
95
163
  }
96
164
  openai_tools.append(openai_tool)
97
165
  return openai_tools
98
166
 
167
+ @instrument(
168
+ span_type="agent",
169
+ record_args=False,
170
+ record_result=True,
171
+ )
99
172
  async def get_response(self, messages: list[Any]) -> AgentResponse:
100
173
  """Send chat request to OpenAI and convert the response."""
174
+
101
175
  # Convert MCP tool schemas to OpenAI format
102
176
  mcp_schemas = self.get_tool_schemas()
103
177
 
178
+ protected_keys = {"model", "messages", "tools", "parallel_tool_calls"}
179
+ extra = {k: v for k, v in (self.completion_kwargs or {}).items() if k not in protected_keys}
180
+
104
181
  response = await self.oai.chat.completions.create(
105
182
  model=self.model_name,
106
183
  messages=messages,
107
184
  tools=cast("list[ChatCompletionToolParam]", mcp_schemas),
108
185
  parallel_tool_calls=self.parallel_tool_calls,
109
- logprobs=self.logprobs,
186
+ **extra,
110
187
  )
111
188
 
112
189
  choice = response.choices[0]
113
190
  msg = choice.message
114
191
 
192
+ assistant_msg: dict[str, Any] = {"role": "assistant"}
193
+
194
+ if msg.content:
195
+ assistant_msg["content"] = msg.content
196
+
197
+ if msg.tool_calls:
198
+ assistant_msg["tool_calls"] = msg.tool_calls
199
+
200
+ messages.append(assistant_msg)
201
+
202
+ # Store the complete conversation history
203
+ self.conversation_history = messages.copy()
204
+
115
205
  tool_calls = []
116
206
  if msg.tool_calls:
117
207
  for tc in msg.tool_calls:
@@ -123,7 +213,7 @@ class GenericOpenAIChatAgent(MCPAgent):
123
213
  return AgentResponse(
124
214
  content=msg.content or "",
125
215
  tool_calls=tool_calls,
126
- done=choice.finish_reason == "stop",
216
+ done=choice.finish_reason in ("stop", "length"),
127
217
  raw=response, # Include raw response for access to Choice objects
128
218
  )
129
219
 
@@ -132,23 +222,66 @@ class GenericOpenAIChatAgent(MCPAgent):
132
222
  tool_calls: list[MCPToolCall],
133
223
  tool_results: list[MCPToolResult],
134
224
  ) -> list[Any]:
135
- """Render MCP tool results as OpenAI ``role=tool`` messages."""
225
+ """Render MCP tool results as OpenAI messages.
226
+
227
+ Note: OpenAI tool messages only support string content.
228
+ When images are present, we return both a tool message and a user message.
229
+ """
136
230
  rendered: list[dict[str, Any]] = []
137
231
  for call, res in zip(tool_calls, tool_results, strict=False):
138
- if res.structuredContent:
139
- content = json.dumps(res.structuredContent)
140
- else:
141
- # Concatenate any TextContent blocks
142
- content = "".join(
143
- c.text # type: ignore[attr-defined]
144
- for c in res.content
145
- if hasattr(c, "text")
146
- )
232
+ # Use structuredContent.result if available, otherwise use content
233
+ items = res.content
234
+ if res.structuredContent and isinstance(res.structuredContent, dict):
235
+ items = res.structuredContent.get("result", res.content)
236
+
237
+ # Separate text and image content
238
+ text_parts = []
239
+ image_parts = []
240
+
241
+ for item in items:
242
+ if isinstance(item, dict):
243
+ if item.get("type") == "text":
244
+ text_parts.append(item.get("text", ""))
245
+ elif item.get("type") == "image":
246
+ mime_type = item.get("mimeType", "image/png")
247
+ data = item.get("data", "")
248
+ image_parts.append(
249
+ {
250
+ "type": "image_url",
251
+ "image_url": {"url": f"data:{mime_type};base64,{data}"},
252
+ }
253
+ )
254
+ elif isinstance(item, types.TextContent):
255
+ text_parts.append(item.text)
256
+ elif isinstance(item, types.ImageContent):
257
+ image_parts.append(
258
+ {
259
+ "type": "image_url",
260
+ "image_url": {"url": f"data:{item.mimeType};base64,{item.data}"},
261
+ }
262
+ )
263
+
264
+ text_content = "".join(text_parts) if text_parts else "Tool executed successfully"
147
265
  rendered.append(
148
266
  {
149
267
  "role": "tool",
150
268
  "tool_call_id": call.id,
151
- "content": content or "", # Ensure content is never None
269
+ "content": text_content,
152
270
  }
153
271
  )
272
+
273
+ # If there are images, add them as a separate user message
274
+ if image_parts:
275
+ # Add a user message with the images
276
+ content_with_images = [
277
+ {"type": "text", "text": "Tool returned the following:"},
278
+ *image_parts,
279
+ ]
280
+ rendered.append(
281
+ {
282
+ "role": "user",
283
+ "content": content_with_images,
284
+ }
285
+ )
286
+
154
287
  return rendered
@@ -40,6 +40,7 @@ def _process_worker(
40
40
  2. Creates its own event loop
41
41
  3. Processes a batch of tasks asynchronously
42
42
  4. Returns results with their original indices
43
+ 5. Handles interruption signals gracefully
43
44
 
44
45
  Args:
45
46
  task_batch: List of (index, task_dict) tuples
@@ -58,6 +59,7 @@ def _process_worker(
58
59
  List of (index, result) tuples
59
60
  """
60
61
  # Import inside worker to avoid pickling issues
62
+ import signal
61
63
  import sys
62
64
 
63
65
  import hud
@@ -72,6 +74,14 @@ def _process_worker(
72
74
  except AttributeError:
73
75
  pass
74
76
 
77
+ # Set up signal handler for clean interruption
78
+ def signal_handler(signum: int, frame: Any) -> None:
79
+ logger.warning("Worker %s: Received interrupt signal", worker_id)
80
+ # Raise KeyboardInterrupt to actually interrupt the worker
81
+ raise KeyboardInterrupt(f"Worker {worker_id} interrupted by user")
82
+
83
+ signal.signal(signal.SIGINT, signal_handler)
84
+
75
85
  # Reinitialize telemetry in this process
76
86
  configure_telemetry()
77
87
 
@@ -157,8 +167,25 @@ def _process_worker(
157
167
  # Process all tasks in parallel within this process
158
168
  tasks = [process_single_task(idx, task_dict) for idx, task_dict in task_batch]
159
169
 
160
- results = await asyncio.gather(*tasks, return_exceptions=False)
161
- return results
170
+ try:
171
+ results = await asyncio.gather(*tasks, return_exceptions=False)
172
+ return results
173
+ except asyncio.CancelledError:
174
+ logger.info("Worker %s: Tasks cancelled due to interruption", worker_id)
175
+ # Return error results for all tasks
176
+ return [
177
+ (
178
+ idx,
179
+ {
180
+ "error": "Task cancelled (Ctrl+C)",
181
+ "isError": True,
182
+ "reward": 0.0,
183
+ "done": False,
184
+ "content": "Task cancelled",
185
+ },
186
+ )
187
+ for idx, _ in task_batch
188
+ ]
162
189
 
163
190
  try:
164
191
  # Run the async batch processing
@@ -180,6 +207,24 @@ def _process_worker(
180
207
  logger.warning("Worker %s: Telemetry flush timed out", worker_id)
181
208
 
182
209
  return results
210
+ except KeyboardInterrupt:
211
+ logger.info("Worker %s: Interrupted by user, stopping gracefully", worker_id)
212
+ # Return partial results for tasks that completed
213
+ partial_results = []
214
+ for idx, _ in task_batch:
215
+ partial_results.append(
216
+ (
217
+ idx,
218
+ {
219
+ "error": "Worker interrupted by user (Ctrl+C)",
220
+ "isError": True,
221
+ "reward": 0.0,
222
+ "done": False,
223
+ "content": "Task interrupted",
224
+ },
225
+ )
226
+ )
227
+ return partial_results
183
228
  except Exception as e:
184
229
  logger.error("[Worker %s] Batch processing failed: %s", worker_id, e)
185
230
  logger.error("Worker %s batch processing failed: %s", worker_id, e)
@@ -365,7 +410,8 @@ async def run_dataset_parallel_manual(
365
410
  )
366
411
 
367
412
  # Process batches in parallel using ProcessPoolExecutor
368
- with ProcessPoolExecutor(max_workers=max_workers) as executor:
413
+ executor = ProcessPoolExecutor(max_workers=max_workers)
414
+ try:
369
415
  # Submit all batches to workers
370
416
  future_to_batch = {
371
417
  executor.submit(worker_func, batch, worker_id=i): batch
@@ -377,48 +423,78 @@ async def run_dataset_parallel_manual(
377
423
  total = len(task_dicts)
378
424
 
379
425
  # Process results as they complete
380
- for future in as_completed(future_to_batch):
381
- batch = future_to_batch[future]
382
-
383
- try:
384
- # Get results from this worker
385
- batch_results = future.result()
386
-
387
- # Place results in correct positions
388
- for index, result in batch_results:
389
- results[index] = result
390
- completed += 1
391
-
392
- # Calculate success rate so far
393
- successful_so_far = sum(
394
- 1
395
- for r in results[:completed]
396
- if r is not None and getattr(r, "reward", 0) > 0
397
- )
426
+ try:
427
+ for future in as_completed(future_to_batch):
428
+ batch = future_to_batch[future]
429
+
430
+ try:
431
+ # Get results from this worker
432
+ batch_results = future.result()
433
+
434
+ # Place results in correct positions
435
+ for index, result in batch_results:
436
+ results[index] = result
437
+ completed += 1
438
+
439
+ # Calculate success rate so far
440
+ successful_so_far = sum(
441
+ 1
442
+ for r in results[:completed]
443
+ if r is not None and getattr(r, "reward", 0) > 0
444
+ )
398
445
 
399
- progress_msg = (
400
- f"Progress: {completed}/{total} tasks completed "
401
- f"({100 * completed / total:.1f}%) | "
402
- f"Success rate: {successful_so_far}/{completed} "
403
- f"({100 * successful_so_far / completed:.1f}%)"
404
- )
446
+ progress_msg = (
447
+ f"Progress: {completed}/{total} tasks completed "
448
+ f"({100 * completed / total:.1f}%) | "
449
+ f"Success rate: {successful_so_far}/{completed} "
450
+ f"({100 * successful_so_far / completed:.1f}%)"
451
+ )
405
452
 
406
- logger.info(progress_msg)
453
+ logger.info(progress_msg)
407
454
 
408
- except Exception as e:
409
- # Handle worker failure
410
- logger.error("Worker failed with exception: %s\n%s", e, traceback.format_exc())
455
+ except Exception as e:
456
+ # Handle worker failure
457
+ logger.error(
458
+ "Worker failed with exception: %s\n%s", e, traceback.format_exc()
459
+ )
411
460
 
412
- # Mark all tasks in this batch as failed
413
- for index, _ in batch:
414
- results[index] = {
415
- "error": f"Worker process failed: {e}",
461
+ # Mark all tasks in this batch as failed
462
+ for index, _ in batch:
463
+ results[index] = {
464
+ "error": f"Worker process failed: {e}",
465
+ "isError": True,
466
+ "reward": 0.0,
467
+ "done": False,
468
+ "content": f"Worker process failed: {e}",
469
+ }
470
+ completed += 1
471
+
472
+ except KeyboardInterrupt:
473
+ logger.warning("\n⚠️ Parallel evaluation interrupted by user (Ctrl+C)")
474
+ logger.info("Cancelling pending tasks...")
475
+
476
+ # Cancel all pending futures
477
+ for future in future_to_batch:
478
+ if not future.done():
479
+ future.cancel()
480
+
481
+ # Mark uncompleted tasks as interrupted
482
+ for i, r in enumerate(results):
483
+ if r is None:
484
+ results[i] = {
485
+ "error": "Evaluation interrupted by user",
416
486
  "isError": True,
417
487
  "reward": 0.0,
418
488
  "done": False,
419
- "content": f"Worker process failed: {e}",
489
+ "content": "Task interrupted (Ctrl+C)",
420
490
  }
421
- completed += 1
491
+
492
+ logger.info("Interrupted after %s/%s tasks", completed, total)
493
+ raise # Re-raise to propagate the interrupt
494
+
495
+ finally:
496
+ # Always shutdown the executor properly
497
+ executor.shutdown(wait=False, cancel_futures=True)
422
498
 
423
499
  # Verify all results are populated
424
500
  missing = [i for i, r in enumerate(results) if r is None]
hud/otel/exporters.py CHANGED
@@ -14,6 +14,7 @@ from __future__ import annotations
14
14
  import contextlib
15
15
  import json
16
16
  import logging
17
+ import time
17
18
  from collections import defaultdict
18
19
  from datetime import UTC, datetime
19
20
  from typing import TYPE_CHECKING, Any
@@ -362,5 +363,7 @@ class HudSpanExporter(SpanExporter):
362
363
  pass
363
364
 
364
365
  def force_flush(self, timeout_millis: int | None = None) -> bool: # type: ignore[override]
366
+ if timeout_millis:
367
+ time.sleep(timeout_millis / 1000)
365
368
  # Synchronous export, nothing buffered here
366
369
  return True
hud/otel/processors.py CHANGED
@@ -1,6 +1,7 @@
1
1
  from __future__ import annotations
2
2
 
3
3
  import logging
4
+ import time
4
5
  from typing import Any
5
6
 
6
7
  from opentelemetry import baggage
@@ -115,4 +116,6 @@ class HudEnrichmentProcessor(SpanProcessor):
115
116
  pass
116
117
 
117
118
  def force_flush(self, timeout_millis: int | None = None) -> bool: # type: ignore[override]
119
+ if timeout_millis:
120
+ time.sleep(timeout_millis / 1000)
118
121
  return True
@@ -5,4 +5,4 @@ def test_import():
5
5
  """Test that the package can be imported."""
6
6
  import hud
7
7
 
8
- assert hud.__version__ == "0.4.17"
8
+ assert hud.__version__ == "0.4.19"
hud/version.py CHANGED
@@ -4,4 +4,4 @@ Version information for the HUD SDK.
4
4
 
5
5
  from __future__ import annotations
6
6
 
7
- __version__ = "0.4.17"
7
+ __version__ = "0.4.19"
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hud-python
3
- Version: 0.4.17
3
+ Version: 0.4.19
4
4
  Summary: SDK for the HUD platform.
5
5
  Project-URL: Homepage, https://github.com/hud-evals/hud-python
6
6
  Project-URL: Bug Tracker, https://github.com/hud-evals/hud-python/issues
@@ -2,15 +2,15 @@ hud/__init__.py,sha256=BjAhZtsHbGN371Q8t3o4v4jltedkmDE85xW0yOILU9g,397
2
2
  hud/__main__.py,sha256=YR8Dq8OhINOsVfQ55PmRXXg4fEK84Rt_-rMtJ5rvhWo,145
3
3
  hud/settings.py,sha256=q9aZiHjvbL4oLE-N8AttTW4rmzS8zPMnsca-iMGyEGc,2362
4
4
  hud/types.py,sha256=gNnyS1G7aYHIR5sT3k3bOfSTFnPylUO6lNGLWbjbeYk,5149
5
- hud/version.py,sha256=EkdQIoYM_NJvpzVexCJEPP60FkfL3uxxcA80nz-GVIE,105
5
+ hud/version.py,sha256=TspylpJFduiccfFe6aqVOAungquP27FSDJSivDPvJ5E,105
6
6
  hud/agents/__init__.py,sha256=UoIkljWdbq4bM0LD-mSaw6w826EqdEjOk7r6glNYwYQ,286
7
- hud/agents/base.py,sha256=rbwYP_a6XTwhY_5CaBlE7SWflnTq1EOuDiNY2XeUWdM,28275
7
+ hud/agents/base.py,sha256=t3bPRTKzGuejhSeo1jLNprlUv6zNU9ezQfP16tX_pXw,29562
8
8
  hud/agents/claude.py,sha256=_eD_XKZhVJ6grkHQfbS6JskztueomQcmJeGJMbfNdmE,14534
9
9
  hud/agents/langchain.py,sha256=1EgCy8jfjunsWxlPC5XfvfLS6_XZVrIF1ZjtHcrvhYw,9584
10
10
  hud/agents/openai.py,sha256=tvFYsZ5yaoLkfjMnHe-COxRttMsLRXBLPdSqgeipQRk,14257
11
- hud/agents/openai_chat_generic.py,sha256=jTJ-KY6HkglPK0iwZH5v3PVnaUjDsWc9IbRo3AbXlyE,5322
11
+ hud/agents/openai_chat_generic.py,sha256=PQAD4GGE6sHs8R95qpgDBHEbSOJ7WXCYGYFmd3Nic1g,10628
12
12
  hud/agents/misc/__init__.py,sha256=BYi4Ytp9b_vycpZFXnr5Oyw6ncKLNNGml8Jrb7bWUb4,136
13
- hud/agents/misc/response_agent.py,sha256=MsnIVElXM4ABrSJfEc_MMYp1Y_Rxmkq4kEGJ9vDX7hw,3098
13
+ hud/agents/misc/response_agent.py,sha256=pnaomb4H-QJm1YKU3tC1YnZXxOlDbTHIXaIH-6Nkb6I,3102
14
14
  hud/agents/tests/__init__.py,sha256=W-O-_4i34d9TTyEHV-O_q1Ai1gLhzwDaaPo02_TWQIY,34
15
15
  hud/agents/tests/test_base.py,sha256=F39ajSqASGUbPyPoWSY9KARFav62qNTK74W11Tr1Tg4,28970
16
16
  hud/agents/tests/test_claude.py,sha256=wqEKlzEvx8obz1sSm4NY0j-Zyt1qWNfDOmRqYIuAEd0,13069
@@ -79,7 +79,7 @@ hud/datasets/__init__.py,sha256=74T4mrjELKtE04XkZKwU8QAJcg2wjqXLqRO9s4GlPr4,678
79
79
  hud/datasets/task.py,sha256=V82HzRb2_c2MO9EG5ZcY-PMsLt3234Uks7WlkMta5HY,3615
80
80
  hud/datasets/utils.py,sha256=3hKvZTkZuCRkTeITB86nNdA1dtHZAqFfAdSPMtcTUhs,4275
81
81
  hud/datasets/execution/__init__.py,sha256=4m1AEpMQaUSJFVN_iAXvY6zFttVgZKwE6oQtC0Rrk7U,330
82
- hud/datasets/execution/parallel.py,sha256=AxtbEgX1v9UFO3nHN91vQyhtfeU6oe65rV50ubDWBkg,22182
82
+ hud/datasets/execution/parallel.py,sha256=4aL1XpS3vOBqZjgs0vrMZJ4eAoi86Td8C-m5SUtVxMs,25231
83
83
  hud/datasets/execution/runner.py,sha256=EEvb90vvAqFXXx8NyVKLfK5p-gtsfJqiFJAoqSjyfXg,4695
84
84
  hud/misc/__init__.py,sha256=m_pprQQ-G-Y0Sd0NEiR8MtAMbElnuFZ2OWT8TXrw7c4,43
85
85
  hud/misc/claude_plays_pokemon.py,sha256=IthAkjDVr2Q-GNvX-QLJyMzN7-0pHqqJbagGNv2m7yo,10453
@@ -87,9 +87,9 @@ hud/otel/__init__.py,sha256=ii17ayoWiS5vAhA7UAmZ8TkmP52gs2pWyHsD46-uYbE,1003
87
87
  hud/otel/collector.py,sha256=jLZymZ8r7xt2VDuWexfbnT7PY1-0aiyLMgjBy8KDY1M,4497
88
88
  hud/otel/config.py,sha256=6np_C2UXhtKHHjY41HQxZElua2Eh_EUCBiRB_YuiSuc,6249
89
89
  hud/otel/context.py,sha256=C9MvO99cRSNNDEDC7ehO3eoTPnb6J7AemUYvEp57yEU,17774
90
- hud/otel/exporters.py,sha256=TP7SF6ySCP-gFV1i-u5-HbpYsK3n9GP3OjW_ZBfsj-w,14246
90
+ hud/otel/exporters.py,sha256=RLAjWa8b2DJEU21740Idq4fmeIuabLEqGGUspcFDcH4,14331
91
91
  hud/otel/instrumentation.py,sha256=xTjrkn2p490lJ8UlSD1SfzkPZsD8XKDocQqYQfwMMKo,3775
92
- hud/otel/processors.py,sha256=yI5BWsDBMEPfwMzD-iWbJd4KWH3qUDSe-5-C1yT6fjU,4615
92
+ hud/otel/processors.py,sha256=-gGRbwifplcExDQBLfx_9tqWreDImULJNcENgO9q7VU,4700
93
93
  hud/otel/tests/__init__.py,sha256=VNJKBMaxTtbn7trW-1Ph50zCvCok_wTSGcI1HD6GOLA,43
94
94
  hud/otel/tests/test_processors.py,sha256=np0R4ssd9j6LJSJykJ5bNjl0POwNYNhgb7BqOZHwcMY,6778
95
95
  hud/server/__init__.py,sha256=8LUwgsXO8xiViWP7uImDwcOsWLu01r5F4r8U8qH3rSY,91
@@ -157,10 +157,10 @@ hud/utils/tests/test_init.py,sha256=2QLQSGgyP9wJhOvPCusm_zjJad0qApOZi1BXpxcdHXQ,
157
157
  hud/utils/tests/test_mcp.py,sha256=0pUa16mL-bqbZDXp5NHBnt1gO5o10BOg7zTMHZ1DNPM,4023
158
158
  hud/utils/tests/test_progress.py,sha256=QSF7Kpi03Ff_l3mAeqW9qs1nhK50j9vBiSobZq7T4f4,7394
159
159
  hud/utils/tests/test_telemetry.py,sha256=5jl7bEx8C8b-FfFUko5pf4UY-mPOR-9HaeL98dGtVHM,2781
160
- hud/utils/tests/test_version.py,sha256=-u0egMJ2Q8IPrenCiVP8k2f_n7BSBRB2tYFGdbUwWrM,160
160
+ hud/utils/tests/test_version.py,sha256=bB6kVxiVIBfXJAEJpmnhn0ml3FG8Gk5ByfSd2fgoARc,160
161
161
  hud/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
- hud_python-0.4.17.dist-info/METADATA,sha256=z3k06ixt6r41EDxaHYtbwILpjU1Z5QVxiQ6Jwfu-BWs,20287
163
- hud_python-0.4.17.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
164
- hud_python-0.4.17.dist-info/entry_points.txt,sha256=jJbodNFg1m0-CDofe5AHvB4zKBq7sSdP97-ohaQ3ae4,63
165
- hud_python-0.4.17.dist-info/licenses/LICENSE,sha256=yIzBheVUf86FC1bztAcr7RYWWNxyd3B-UJQ3uddg1HA,1078
166
- hud_python-0.4.17.dist-info/RECORD,,
162
+ hud_python-0.4.19.dist-info/METADATA,sha256=T-D9DILS-I5e6xdOmJOIU6wOPpXn3yY_zxk0bKFfPts,20287
163
+ hud_python-0.4.19.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
164
+ hud_python-0.4.19.dist-info/entry_points.txt,sha256=jJbodNFg1m0-CDofe5AHvB4zKBq7sSdP97-ohaQ3ae4,63
165
+ hud_python-0.4.19.dist-info/licenses/LICENSE,sha256=yIzBheVUf86FC1bztAcr7RYWWNxyd3B-UJQ3uddg1HA,1078
166
+ hud_python-0.4.19.dist-info/RECORD,,