httomolibgpu 5.0__py3-none-any.whl → 5.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- httomolibgpu/memory_estimator_helpers.py +24 -0
- httomolibgpu/prep/phase.py +110 -22
- httomolibgpu/recon/_phase_cross_correlation.py +9 -25
- {httomolibgpu-5.0.dist-info → httomolibgpu-5.1.dist-info}/METADATA +1 -1
- {httomolibgpu-5.0.dist-info → httomolibgpu-5.1.dist-info}/RECORD +8 -7
- {httomolibgpu-5.0.dist-info → httomolibgpu-5.1.dist-info}/WHEEL +0 -0
- {httomolibgpu-5.0.dist-info → httomolibgpu-5.1.dist-info}/licenses/LICENSE +0 -0
- {httomolibgpu-5.0.dist-info → httomolibgpu-5.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,24 @@
|
|
|
1
|
+
ALLOCATION_UNIT_SIZE = 512
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
class _DeviceMemStack:
|
|
5
|
+
def __init__(self) -> None:
|
|
6
|
+
self.allocations = []
|
|
7
|
+
self.current = 0
|
|
8
|
+
self.highwater = 0
|
|
9
|
+
|
|
10
|
+
def malloc(self, bytes):
|
|
11
|
+
self.allocations.append(bytes)
|
|
12
|
+
allocated = self._round_up(bytes)
|
|
13
|
+
self.current += allocated
|
|
14
|
+
self.highwater = max(self.current, self.highwater)
|
|
15
|
+
|
|
16
|
+
def free(self, bytes):
|
|
17
|
+
assert bytes in self.allocations
|
|
18
|
+
self.allocations.remove(bytes)
|
|
19
|
+
self.current -= self._round_up(bytes)
|
|
20
|
+
assert self.current >= 0
|
|
21
|
+
|
|
22
|
+
def _round_up(self, size):
|
|
23
|
+
size = (size + ALLOCATION_UNIT_SIZE - 1) // ALLOCATION_UNIT_SIZE
|
|
24
|
+
return size * ALLOCATION_UNIT_SIZE
|
httomolibgpu/prep/phase.py
CHANGED
|
@@ -22,6 +22,7 @@
|
|
|
22
22
|
|
|
23
23
|
import numpy as np
|
|
24
24
|
from httomolibgpu import cupywrapper
|
|
25
|
+
from httomolibgpu.memory_estimator_helpers import _DeviceMemStack
|
|
25
26
|
|
|
26
27
|
cp = cupywrapper.cp
|
|
27
28
|
cupy_run = cupywrapper.cupy_run
|
|
@@ -30,13 +31,14 @@ from unittest.mock import Mock
|
|
|
30
31
|
|
|
31
32
|
if cupy_run:
|
|
32
33
|
from cupyx.scipy.fft import fft2, ifft2, fftshift
|
|
34
|
+
from cupyx.scipy.fftpack import get_fft_plan
|
|
33
35
|
else:
|
|
34
36
|
fft2 = Mock()
|
|
35
37
|
ifft2 = Mock()
|
|
36
38
|
fftshift = Mock()
|
|
37
39
|
|
|
38
40
|
from numpy import float32
|
|
39
|
-
from typing import Tuple
|
|
41
|
+
from typing import Optional, Tuple
|
|
40
42
|
import math
|
|
41
43
|
|
|
42
44
|
__all__ = [
|
|
@@ -54,6 +56,7 @@ def paganin_filter(
|
|
|
54
56
|
distance: float = 1.0,
|
|
55
57
|
energy: float = 53.0,
|
|
56
58
|
ratio_delta_beta: float = 250,
|
|
59
|
+
calc_peak_gpu_mem: bool = False,
|
|
57
60
|
) -> cp.ndarray:
|
|
58
61
|
"""
|
|
59
62
|
Perform single-material phase retrieval from flats/darks corrected tomographic measurements. For more detailed information, see :ref:`phase_contrast_module`.
|
|
@@ -71,30 +74,50 @@ def paganin_filter(
|
|
|
71
74
|
Beam energy in keV.
|
|
72
75
|
ratio_delta_beta : float
|
|
73
76
|
The ratio of delta/beta, where delta is the phase shift and real part of the complex material refractive index and beta is the absorption.
|
|
77
|
+
calc_peak_gpu_mem: bool
|
|
78
|
+
Parameter to support memory estimation in HTTomo. Irrelevant to the method itself and can be ignored by user.
|
|
74
79
|
|
|
75
80
|
Returns
|
|
76
81
|
-------
|
|
77
82
|
cp.ndarray
|
|
78
83
|
The 3D array of Paganin phase-filtered projection images.
|
|
79
84
|
"""
|
|
85
|
+
mem_stack = _DeviceMemStack() if calc_peak_gpu_mem else None
|
|
80
86
|
# Check the input data is valid
|
|
81
|
-
if tomo.ndim != 3:
|
|
87
|
+
if not mem_stack and tomo.ndim != 3:
|
|
82
88
|
raise ValueError(
|
|
83
89
|
f"Invalid number of dimensions in data: {tomo.ndim},"
|
|
84
90
|
" please provide a stack of 2D projections."
|
|
85
91
|
)
|
|
86
|
-
|
|
87
|
-
|
|
92
|
+
if mem_stack:
|
|
93
|
+
mem_stack.malloc(np.prod(tomo) * np.float32().itemsize)
|
|
94
|
+
dz_orig, dy_orig, dx_orig = tomo.shape if not mem_stack else tomo
|
|
88
95
|
|
|
89
96
|
# Perform padding to the power of 2 as FFT is O(n*log(n)) complexity
|
|
90
97
|
# TODO: adding other options of padding?
|
|
91
|
-
padded_tomo, pad_tup = _pad_projections_to_second_power(tomo)
|
|
98
|
+
padded_tomo, pad_tup = _pad_projections_to_second_power(tomo, mem_stack)
|
|
92
99
|
|
|
93
|
-
dz, dy, dx = padded_tomo.shape
|
|
100
|
+
dz, dy, dx = padded_tomo.shape if not mem_stack else padded_tomo
|
|
94
101
|
|
|
95
102
|
# 3D FFT of tomo data
|
|
96
|
-
|
|
97
|
-
|
|
103
|
+
if mem_stack:
|
|
104
|
+
mem_stack.malloc(np.prod(padded_tomo) * np.complex64().itemsize)
|
|
105
|
+
mem_stack.free(np.prod(padded_tomo) * np.float32().itemsize)
|
|
106
|
+
fft_input = cp.empty(padded_tomo, dtype=cp.complex64)
|
|
107
|
+
else:
|
|
108
|
+
padded_tomo = cp.asarray(padded_tomo, dtype=cp.complex64)
|
|
109
|
+
fft_input = padded_tomo
|
|
110
|
+
|
|
111
|
+
fft_plan = get_fft_plan(fft_input, axes=(-2, -1))
|
|
112
|
+
if mem_stack:
|
|
113
|
+
mem_stack.malloc(fft_plan.work_area.mem.size)
|
|
114
|
+
mem_stack.free(fft_plan.work_area.mem.size)
|
|
115
|
+
else:
|
|
116
|
+
with fft_plan:
|
|
117
|
+
fft_tomo = fft2(padded_tomo, axes=(-2, -1), overwrite_x=True)
|
|
118
|
+
del padded_tomo
|
|
119
|
+
del fft_input
|
|
120
|
+
del fft_plan
|
|
98
121
|
|
|
99
122
|
# calculate alpha constant
|
|
100
123
|
alpha = _calculate_alpha(energy, distance / 1e-6, ratio_delta_beta)
|
|
@@ -103,18 +126,56 @@ def paganin_filter(
|
|
|
103
126
|
indx = _reciprocal_coord(pixel_size, dy)
|
|
104
127
|
indy = _reciprocal_coord(pixel_size, dx)
|
|
105
128
|
|
|
106
|
-
|
|
107
|
-
|
|
108
|
-
|
|
109
|
-
|
|
129
|
+
if mem_stack:
|
|
130
|
+
mem_stack.malloc(indx.size * indx.dtype.itemsize) # cp.asarray(indx)
|
|
131
|
+
mem_stack.malloc(indx.size * indx.dtype.itemsize) # cp.square
|
|
132
|
+
mem_stack.free(indx.size * indx.dtype.itemsize) # cp.asarray(indx)
|
|
133
|
+
mem_stack.malloc(indy.size * indy.dtype.itemsize) # cp.asarray(indy)
|
|
134
|
+
mem_stack.malloc(indy.size * indy.dtype.itemsize) # cp.square
|
|
135
|
+
mem_stack.free(indy.size * indy.dtype.itemsize) # cp.asarray(indy)
|
|
136
|
+
|
|
137
|
+
mem_stack.malloc(indx.size * indy.size * indx.dtype.itemsize) # cp.add.outer
|
|
138
|
+
mem_stack.free(indx.size * indx.dtype.itemsize) # cp.square
|
|
139
|
+
mem_stack.free(indy.size * indy.dtype.itemsize) # cp.square
|
|
140
|
+
mem_stack.malloc(indx.size * indy.size * indx.dtype.itemsize) # phase_filter
|
|
141
|
+
mem_stack.free(indx.size * indy.size * indx.dtype.itemsize) # cp.add.outer
|
|
142
|
+
mem_stack.free(indx.size * indy.size * indx.dtype.itemsize) # phase_filter
|
|
143
|
+
|
|
144
|
+
else:
|
|
145
|
+
# Build Lorentzian-type filter
|
|
146
|
+
phase_filter = fftshift(
|
|
147
|
+
1.0
|
|
148
|
+
/ (
|
|
149
|
+
1.0
|
|
150
|
+
+ alpha
|
|
151
|
+
* (
|
|
152
|
+
cp.add.outer(
|
|
153
|
+
cp.square(cp.asarray(indx)), cp.square(cp.asarray(indy))
|
|
154
|
+
)
|
|
155
|
+
)
|
|
156
|
+
)
|
|
157
|
+
)
|
|
110
158
|
|
|
111
|
-
|
|
159
|
+
phase_filter = phase_filter / phase_filter.max() # normalisation
|
|
112
160
|
|
|
113
|
-
|
|
114
|
-
|
|
161
|
+
# Filter projections
|
|
162
|
+
fft_tomo *= phase_filter
|
|
163
|
+
del phase_filter
|
|
115
164
|
|
|
116
165
|
# Apply filter and take inverse FFT
|
|
117
|
-
|
|
166
|
+
ifft_input = (
|
|
167
|
+
fft_tomo if not mem_stack else cp.empty(padded_tomo, dtype=cp.complex64)
|
|
168
|
+
)
|
|
169
|
+
ifft_plan = get_fft_plan(ifft_input, axes=(-2, -1))
|
|
170
|
+
if mem_stack:
|
|
171
|
+
mem_stack.malloc(ifft_plan.work_area.mem.size)
|
|
172
|
+
mem_stack.free(ifft_plan.work_area.mem.size)
|
|
173
|
+
else:
|
|
174
|
+
with ifft_plan:
|
|
175
|
+
ifft_filtered_tomo = ifft2(fft_tomo, axes=(-2, -1), overwrite_x=True).real
|
|
176
|
+
del fft_tomo
|
|
177
|
+
del ifft_plan
|
|
178
|
+
del ifft_input
|
|
118
179
|
|
|
119
180
|
# slicing indices for cropping
|
|
120
181
|
slc_indices = (
|
|
@@ -123,8 +184,19 @@ def paganin_filter(
|
|
|
123
184
|
slice(pad_tup[2][0], pad_tup[2][0] + dx_orig, 1),
|
|
124
185
|
)
|
|
125
186
|
|
|
187
|
+
if mem_stack:
|
|
188
|
+
mem_stack.malloc(np.prod(tomo) * np.float32().itemsize) # astype(cp.float32)
|
|
189
|
+
mem_stack.free(
|
|
190
|
+
np.prod(padded_tomo) * np.complex64().itemsize
|
|
191
|
+
) # ifft_filtered_tomo
|
|
192
|
+
mem_stack.malloc(
|
|
193
|
+
np.prod(tomo) * np.float32().itemsize
|
|
194
|
+
) # return _log_kernel(tomo)
|
|
195
|
+
return mem_stack.highwater
|
|
196
|
+
|
|
126
197
|
# crop the padded filtered data:
|
|
127
198
|
tomo = ifft_filtered_tomo[slc_indices].astype(cp.float32)
|
|
199
|
+
del ifft_filtered_tomo
|
|
128
200
|
|
|
129
201
|
# taking the negative log
|
|
130
202
|
_log_kernel = cp.ElementwiseKernel(
|
|
@@ -177,7 +249,7 @@ def _calculate_pad_size(datashape: tuple) -> list:
|
|
|
177
249
|
|
|
178
250
|
|
|
179
251
|
def _pad_projections_to_second_power(
|
|
180
|
-
tomo: cp.ndarray,
|
|
252
|
+
tomo: cp.ndarray, mem_stack: Optional[_DeviceMemStack]
|
|
181
253
|
) -> Tuple[cp.ndarray, Tuple[int, int]]:
|
|
182
254
|
"""
|
|
183
255
|
Performs padding of each projection to the next power of 2.
|
|
@@ -194,11 +266,17 @@ def _pad_projections_to_second_power(
|
|
|
194
266
|
ndarray: padded 3d projection data
|
|
195
267
|
tuple: a tuple with padding dimensions
|
|
196
268
|
"""
|
|
197
|
-
full_shape_tomo = cp.shape(tomo)
|
|
269
|
+
full_shape_tomo = cp.shape(tomo) if not mem_stack else tomo
|
|
198
270
|
|
|
199
271
|
pad_list = _calculate_pad_size(full_shape_tomo)
|
|
200
272
|
|
|
201
|
-
|
|
273
|
+
if mem_stack:
|
|
274
|
+
padded_tomo = [
|
|
275
|
+
sh + pad[0] + pad[1] for sh, pad in zip(full_shape_tomo, pad_list)
|
|
276
|
+
]
|
|
277
|
+
mem_stack.malloc(np.prod(padded_tomo) * np.float32().itemsize)
|
|
278
|
+
else:
|
|
279
|
+
padded_tomo = cp.pad(tomo, tuple(pad_list), "edge")
|
|
202
280
|
|
|
203
281
|
return padded_tomo, tuple(pad_list)
|
|
204
282
|
|
|
@@ -209,7 +287,7 @@ def _wavelength_micron(energy: float) -> float:
|
|
|
209
287
|
return 2 * math.pi * PLANCK_CONSTANT * SPEED_OF_LIGHT / energy
|
|
210
288
|
|
|
211
289
|
|
|
212
|
-
def _reciprocal_coord(pixel_size: float, num_grid: int) ->
|
|
290
|
+
def _reciprocal_coord(pixel_size: float, num_grid: int) -> np.ndarray:
|
|
213
291
|
"""
|
|
214
292
|
Calculate reciprocal grid coordinates for a given pixel size
|
|
215
293
|
and discretization.
|
|
@@ -227,7 +305,7 @@ def _reciprocal_coord(pixel_size: float, num_grid: int) -> cp.ndarray:
|
|
|
227
305
|
Grid coordinates.
|
|
228
306
|
"""
|
|
229
307
|
n = num_grid - 1
|
|
230
|
-
rc =
|
|
308
|
+
rc = np.arange(-n, num_grid, 2, dtype=cp.float32)
|
|
231
309
|
rc *= 2 * math.pi / (n * pixel_size)
|
|
232
310
|
return rc
|
|
233
311
|
|
|
@@ -238,6 +316,7 @@ def paganin_filter_savu_legacy(
|
|
|
238
316
|
distance: float = 1.0,
|
|
239
317
|
energy: float = 53.0,
|
|
240
318
|
ratio_delta_beta: float = 250,
|
|
319
|
+
calc_peak_gpu_mem: bool = False,
|
|
241
320
|
) -> cp.ndarray:
|
|
242
321
|
"""
|
|
243
322
|
Perform single-material phase retrieval from flats/darks corrected tomographic measurements. For more detailed information, see :ref:`phase_contrast_module`.
|
|
@@ -256,6 +335,8 @@ def paganin_filter_savu_legacy(
|
|
|
256
335
|
Beam energy in keV.
|
|
257
336
|
ratio_delta_beta : float
|
|
258
337
|
The ratio of delta/beta, where delta is the phase shift and real part of the complex material refractive index and beta is the absorption.
|
|
338
|
+
calc_peak_gpu_mem: bool
|
|
339
|
+
Parameter to support memory estimation in HTTomo. Irrelevant to the method itself and can be ignored by user.
|
|
259
340
|
|
|
260
341
|
Returns
|
|
261
342
|
-------
|
|
@@ -263,4 +344,11 @@ def paganin_filter_savu_legacy(
|
|
|
263
344
|
The 3D array of Paganin phase-filtered projection images.
|
|
264
345
|
"""
|
|
265
346
|
|
|
266
|
-
return paganin_filter(
|
|
347
|
+
return paganin_filter(
|
|
348
|
+
tomo,
|
|
349
|
+
pixel_size,
|
|
350
|
+
distance,
|
|
351
|
+
energy,
|
|
352
|
+
ratio_delta_beta / 4,
|
|
353
|
+
calc_peak_gpu_mem=calc_peak_gpu_mem,
|
|
354
|
+
)
|
|
@@ -36,9 +36,8 @@ import cupy as cp
|
|
|
36
36
|
import cupyx.scipy.ndimage as ndi
|
|
37
37
|
import numpy as np
|
|
38
38
|
|
|
39
|
-
|
|
40
|
-
|
|
41
|
-
):
|
|
39
|
+
|
|
40
|
+
def _upsampled_dft(data, upsampled_region_size, upsample_factor=1, axis_offsets=None):
|
|
42
41
|
"""
|
|
43
42
|
Upsampled DFT by matrix multiplication.
|
|
44
43
|
|
|
@@ -148,9 +147,7 @@ def _compute_error(cross_correlation_max, src_amp, target_amp):
|
|
|
148
147
|
)
|
|
149
148
|
|
|
150
149
|
with np.errstate(invalid="ignore"):
|
|
151
|
-
error = 1.0 - cross_correlation_max * cross_correlation_max.conj() / (
|
|
152
|
-
amp
|
|
153
|
-
)
|
|
150
|
+
error = 1.0 - cross_correlation_max * cross_correlation_max.conj() / (amp)
|
|
154
151
|
|
|
155
152
|
return cp.sqrt(cp.abs(error))
|
|
156
153
|
|
|
@@ -192,9 +189,7 @@ def _disambiguate_shift(reference_image, moving_image, shift):
|
|
|
192
189
|
negative_shift = [shift_i - s for shift_i, s in zip(positive_shift, shape)]
|
|
193
190
|
subpixel = any(s % 1 != 0 for s in shift)
|
|
194
191
|
interp_order = 3 if subpixel else 0
|
|
195
|
-
shifted = ndi.shift(
|
|
196
|
-
moving_image, shift, mode="grid-wrap", order=interp_order
|
|
197
|
-
)
|
|
192
|
+
shifted = ndi.shift(moving_image, shift, mode="grid-wrap", order=interp_order)
|
|
198
193
|
indices = tuple(round(s) for s in positive_shift)
|
|
199
194
|
splits_per_dim = [(slice(0, i), slice(i, None)) for i in indices]
|
|
200
195
|
max_corr = -1.0
|
|
@@ -217,9 +212,7 @@ def _disambiguate_shift(reference_image, moving_image, shift):
|
|
|
217
212
|
)
|
|
218
213
|
return shift
|
|
219
214
|
real_shift_acc = []
|
|
220
|
-
for sl, pos_shift, neg_shift in zip(
|
|
221
|
-
max_slice, positive_shift, negative_shift
|
|
222
|
-
):
|
|
215
|
+
for sl, pos_shift, neg_shift in zip(max_slice, positive_shift, negative_shift):
|
|
223
216
|
real_shift_acc.append(pos_shift if sl.stop is None else neg_shift)
|
|
224
217
|
if not subpixel:
|
|
225
218
|
real_shift = tuple(map(int, real_shift_acc))
|
|
@@ -359,16 +352,12 @@ def phase_cross_correlation(
|
|
|
359
352
|
# Initial shift estimate in upsampled grid
|
|
360
353
|
# shift = cp.around(shift * upsample_factor) / upsample_factor
|
|
361
354
|
upsample_factor = float(upsample_factor)
|
|
362
|
-
shift = tuple(
|
|
363
|
-
round(s * upsample_factor) / upsample_factor for s in shift
|
|
364
|
-
)
|
|
355
|
+
shift = tuple(round(s * upsample_factor) / upsample_factor for s in shift)
|
|
365
356
|
upsampled_region_size = math.ceil(upsample_factor * 1.5)
|
|
366
357
|
# Center of output array at dftshift + 1
|
|
367
358
|
dftshift = float(upsampled_region_size // 2)
|
|
368
359
|
# Matrix multiply DFT around the current shift estimate
|
|
369
|
-
sample_region_offset = tuple(
|
|
370
|
-
dftshift - s * upsample_factor for s in shift
|
|
371
|
-
)
|
|
360
|
+
sample_region_offset = tuple(dftshift - s * upsample_factor for s in shift)
|
|
372
361
|
cross_correlation = _upsampled_dft(
|
|
373
362
|
image_product.conj(),
|
|
374
363
|
upsampled_region_size,
|
|
@@ -394,9 +383,7 @@ def phase_cross_correlation(
|
|
|
394
383
|
|
|
395
384
|
# If its only one row or column the shift along that dimension has no
|
|
396
385
|
# effect. We set to zero.
|
|
397
|
-
shift = tuple(
|
|
398
|
-
s if axis_size != 1 else 0 for s, axis_size in zip(shift, shape)
|
|
399
|
-
)
|
|
386
|
+
shift = tuple(s if axis_size != 1 else 0 for s, axis_size in zip(shift, shape))
|
|
400
387
|
|
|
401
388
|
if disambiguate:
|
|
402
389
|
if space.lower() != "real":
|
|
@@ -406,10 +393,7 @@ def phase_cross_correlation(
|
|
|
406
393
|
|
|
407
394
|
# Redirect user to masked_phase_cross_correlation if NaNs are observed
|
|
408
395
|
if cp.isnan(CCmax) or cp.isnan(src_amp) or cp.isnan(target_amp):
|
|
409
|
-
raise ValueError(
|
|
410
|
-
"NaN values found, please remove NaNs from your "
|
|
411
|
-
"input data"
|
|
412
|
-
)
|
|
396
|
+
raise ValueError("NaN values found, please remove NaNs from your " "input data")
|
|
413
397
|
|
|
414
398
|
return (
|
|
415
399
|
shift,
|
|
@@ -1,6 +1,6 @@
|
|
|
1
1
|
Metadata-Version: 2.4
|
|
2
2
|
Name: httomolibgpu
|
|
3
|
-
Version: 5.
|
|
3
|
+
Version: 5.1
|
|
4
4
|
Summary: Commonly used tomography data processing methods at DLS.
|
|
5
5
|
Author-email: Daniil Kazantsev <daniil.kazantsev@diamond.ac.uk>, Yousef Moazzam <yousef.moazzam@diamond.ac.uk>, Naman Gera <naman.gera@diamond.ac.uk>
|
|
6
6
|
License: BSD-3-Clause
|
|
@@ -1,5 +1,6 @@
|
|
|
1
1
|
httomolibgpu/__init__.py,sha256=Fdj5ipIGgeKqSCYRb5bBVMAZ04ZvZJzuBoGOAqc0zgk,937
|
|
2
2
|
httomolibgpu/cupywrapper.py,sha256=6ITGJ2Jw5I5kVmKEL5LlsnLRniEqqBLsHiAjvLtk0Xk,493
|
|
3
|
+
httomolibgpu/memory_estimator_helpers.py,sha256=QaJady-z8y9Emw7W-lB608vBTNvVYv3obboQKVj6E9M,705
|
|
3
4
|
httomolibgpu/cuda_kernels/__init__.py,sha256=VQNMaGcVDwiE-C64FfLtubHpLriLG0Y3_QnjHBSHrN0,884
|
|
4
5
|
httomolibgpu/cuda_kernels/calc_metrics.cu,sha256=oV7ZPcwjWafmZjbNsUkBYPvOViJ_nX3zBoOAuPCmIrA,11335
|
|
5
6
|
httomolibgpu/cuda_kernels/center_360_shifts.cu,sha256=Ya_8hxjXGtPBsPY3qfGJaugwnYrTFjFFretRcLiUfFQ,1631
|
|
@@ -16,14 +17,14 @@ httomolibgpu/misc/utils.py,sha256=rHRuQUO47SlTanvKDBgiC0im4tXlGLCw5B_zvlLzzbc,47
|
|
|
16
17
|
httomolibgpu/prep/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
17
18
|
httomolibgpu/prep/alignment.py,sha256=GVxnyioipmqsHb4s3mPQ8tKGoPIQMPftDrQxUO-HBuE,5491
|
|
18
19
|
httomolibgpu/prep/normalize.py,sha256=hee0H4mE7FrSZgcF1fjLsKT06xjTJymkyAxpe2itQe4,4202
|
|
19
|
-
httomolibgpu/prep/phase.py,sha256=
|
|
20
|
+
httomolibgpu/prep/phase.py,sha256=yKJe9gmWuFaUSIuoctV5X1Pb7yEgOmkQ6jxvZkSSwpQ,12128
|
|
20
21
|
httomolibgpu/prep/stripe.py,sha256=8_DV0ON6AWARuziqkmhom56gWTardtqC_z3xG8geg0o,14774
|
|
21
22
|
httomolibgpu/recon/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
22
|
-
httomolibgpu/recon/_phase_cross_correlation.py,sha256=
|
|
23
|
+
httomolibgpu/recon/_phase_cross_correlation.py,sha256=Ru2oLAPv8XOSSuZer5yNQrxD_8lMAwBSvtkVAVs5TCc,16469
|
|
23
24
|
httomolibgpu/recon/algorithm.py,sha256=ds-_io7kGzo5FiJq8k4--PYtIWak3y9H7yuyg1lymyQ,25121
|
|
24
25
|
httomolibgpu/recon/rotation.py,sha256=GaSwNrlDnlP_iIrTfKUQLiXsShJ5aSDvdKPwofggtwQ,27948
|
|
25
|
-
httomolibgpu-5.
|
|
26
|
-
httomolibgpu-5.
|
|
27
|
-
httomolibgpu-5.
|
|
28
|
-
httomolibgpu-5.
|
|
29
|
-
httomolibgpu-5.
|
|
26
|
+
httomolibgpu-5.1.dist-info/licenses/LICENSE,sha256=bXeLsgelPUUXw8HCIYiVC97Dpjhm2nB54m7TACdH8ng,48032
|
|
27
|
+
httomolibgpu-5.1.dist-info/METADATA,sha256=zSD4pi1w0lyFkgkZrB38m1DuhmGj5ad4uWJENNX_J44,3339
|
|
28
|
+
httomolibgpu-5.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
29
|
+
httomolibgpu-5.1.dist-info/top_level.txt,sha256=nV0Ty_YvSPVd1O6MNWuIplD0w1nwk5hT76YgBZ-bzUw,13
|
|
30
|
+
httomolibgpu-5.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|