hpcflow-new2 0.2.0a175__py3-none-any.whl → 0.2.0a177__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hpcflow/_version.py +1 -1
- hpcflow/sdk/core/cache.py +142 -0
- hpcflow/sdk/core/element.py +7 -0
- hpcflow/sdk/core/loop.py +134 -95
- hpcflow/sdk/core/loop_cache.py +140 -0
- hpcflow/sdk/core/task.py +29 -24
- hpcflow/sdk/core/utils.py +11 -1
- hpcflow/sdk/core/workflow.py +65 -22
- hpcflow/sdk/persistence/base.py +16 -3
- hpcflow/sdk/persistence/json.py +11 -4
- hpcflow/sdk/persistence/pending.py +2 -0
- hpcflow/sdk/persistence/zarr.py +8 -1
- hpcflow/tests/unit/test_loop.py +127 -0
- hpcflow/tests/unit/test_utils.py +21 -0
- {hpcflow_new2-0.2.0a175.dist-info → hpcflow_new2-0.2.0a177.dist-info}/METADATA +1 -1
- {hpcflow_new2-0.2.0a175.dist-info → hpcflow_new2-0.2.0a177.dist-info}/RECORD +18 -16
- {hpcflow_new2-0.2.0a175.dist-info → hpcflow_new2-0.2.0a177.dist-info}/WHEEL +0 -0
- {hpcflow_new2-0.2.0a175.dist-info → hpcflow_new2-0.2.0a177.dist-info}/entry_points.txt +0 -0
@@ -0,0 +1,140 @@
|
|
1
|
+
from dataclasses import dataclass
|
2
|
+
from collections import defaultdict
|
3
|
+
from typing import Dict, List, Optional, Tuple
|
4
|
+
|
5
|
+
from hpcflow.sdk import app
|
6
|
+
from hpcflow.sdk.core.utils import nth_key
|
7
|
+
from hpcflow.sdk.log import TimeIt
|
8
|
+
from hpcflow.sdk.core.cache import DependencyCache
|
9
|
+
|
10
|
+
|
11
|
+
@dataclass
|
12
|
+
class LoopCache:
|
13
|
+
"""Class to store a cache for use in `Workflow.add_empty_loop` and
|
14
|
+
`WorkflowLoop.add_iterations`.
|
15
|
+
|
16
|
+
Attributes
|
17
|
+
----------
|
18
|
+
element_dependents
|
19
|
+
Keys are element IDs, values are dicts whose keys are element IDs that depend on
|
20
|
+
the key element ID (via `Element.get_dependent_elements_recursively`), and whose
|
21
|
+
values are dicts with keys: `group_names`, which is a tuple of the string group
|
22
|
+
names associated with the dependent element's element set.
|
23
|
+
elements
|
24
|
+
Keys are element IDs, values are dicts with keys: `input_statuses`,
|
25
|
+
`input_sources`, and `task_insert_ID`.
|
26
|
+
zeroth_iters
|
27
|
+
Keys are element IDs, values are data associated with the zeroth iteration of that
|
28
|
+
element, namely a tuple of iteration ID and `ElementIteration.data_idx`.
|
29
|
+
data_idx
|
30
|
+
Keys are element IDs, values are data associated with all iterations of that
|
31
|
+
element, namely a dict whose keys are the iteration loop index as a tuple, and
|
32
|
+
whose values are data indices via `ElementIteration.get_data_idx()`.
|
33
|
+
iterations
|
34
|
+
Keys are iteration IDs, values are tuples of element ID and iteration index within
|
35
|
+
that element.
|
36
|
+
task_iterations
|
37
|
+
Keys are task insert IDs, values are list of all iteration IDs associated with
|
38
|
+
that task.
|
39
|
+
|
40
|
+
"""
|
41
|
+
|
42
|
+
element_dependents: Dict[int, Dict]
|
43
|
+
elements: Dict[int, Dict]
|
44
|
+
zeroth_iters: Dict[int, Tuple]
|
45
|
+
data_idx: Dict[int, Dict]
|
46
|
+
iterations: Dict[int, Tuple]
|
47
|
+
task_iterations: Dict[int, List[int]]
|
48
|
+
|
49
|
+
@TimeIt.decorator
|
50
|
+
def get_iter_IDs(self, loop: "app.Loop") -> List[int]:
|
51
|
+
"""Retrieve a list of iteration IDs belonging to a given loop."""
|
52
|
+
return [j for i in loop.task_insert_IDs for j in self.task_iterations[i]]
|
53
|
+
|
54
|
+
@TimeIt.decorator
|
55
|
+
def get_iter_loop_indices(self, iter_IDs: List[int]) -> List[Dict[str, int]]:
|
56
|
+
iter_loop_idx = []
|
57
|
+
for i in iter_IDs:
|
58
|
+
elem_id, idx = self.iterations[i]
|
59
|
+
iter_loop_idx.append(dict(nth_key(self.data_idx[elem_id], idx)))
|
60
|
+
return iter_loop_idx
|
61
|
+
|
62
|
+
@TimeIt.decorator
|
63
|
+
def update_loop_indices(self, new_loop_name: str, iter_IDs: List[int]):
|
64
|
+
elem_ids = {v[0] for k, v in self.iterations.items() if k in iter_IDs}
|
65
|
+
for i in elem_ids:
|
66
|
+
new_item = {}
|
67
|
+
for k, v in self.data_idx[i].items():
|
68
|
+
new_k = dict(k)
|
69
|
+
new_k.update({new_loop_name: 0})
|
70
|
+
new_item[tuple(sorted(new_k.items()))] = v
|
71
|
+
self.data_idx[i] = new_item
|
72
|
+
|
73
|
+
@TimeIt.decorator
|
74
|
+
def add_iteration(self, iter_ID, task_insert_ID, element_ID, loop_idx, data_idx):
|
75
|
+
"""Update the cache to include a newly added iteration."""
|
76
|
+
self.task_iterations[task_insert_ID].append(iter_ID)
|
77
|
+
new_iter_idx = len(self.data_idx[element_ID])
|
78
|
+
self.data_idx[element_ID][tuple(sorted(loop_idx.items()))] = data_idx
|
79
|
+
self.iterations[iter_ID] = (element_ID, new_iter_idx)
|
80
|
+
|
81
|
+
@classmethod
|
82
|
+
@TimeIt.decorator
|
83
|
+
def build(cls, workflow: "app.Workflow", loops: Optional[List["app.Loop"]] = None):
|
84
|
+
"""Build a cache of data for use in adding loops and iterations."""
|
85
|
+
|
86
|
+
deps_cache = DependencyCache.build(workflow)
|
87
|
+
|
88
|
+
loops = list(workflow.template.loops) + (loops or [])
|
89
|
+
task_iIDs = set(j for i in loops for j in i.task_insert_IDs)
|
90
|
+
tasks = [workflow.tasks.get(insert_ID=i) for i in sorted(task_iIDs)]
|
91
|
+
elem_deps = {}
|
92
|
+
|
93
|
+
# keys: element IDs, values: dict with keys: tuple(loop_idx), values: data index
|
94
|
+
data_idx_cache = {}
|
95
|
+
|
96
|
+
# keys: iteration IDs, values: tuple of (element ID, integer index into values
|
97
|
+
# dict in `data_idx_cache` [accessed via `.keys()[index]`])
|
98
|
+
iters = {}
|
99
|
+
|
100
|
+
# keys: element IDs, values: dict with keys: "input_statues", "input_sources",
|
101
|
+
# "task_insert_ID":
|
102
|
+
elements = {}
|
103
|
+
|
104
|
+
zeroth_iters = {}
|
105
|
+
task_iterations = defaultdict(list)
|
106
|
+
for task in tasks:
|
107
|
+
for elem_idx in task.element_IDs:
|
108
|
+
element = deps_cache.elements[elem_idx]
|
109
|
+
inp_statuses = task.template.get_input_statuses(element.element_set)
|
110
|
+
elements[element.id_] = {
|
111
|
+
"input_statuses": inp_statuses,
|
112
|
+
"input_sources": element.input_sources,
|
113
|
+
"task_insert_ID": task.insert_ID,
|
114
|
+
}
|
115
|
+
elem_deps[element.id_] = {
|
116
|
+
i: {
|
117
|
+
"group_names": tuple(
|
118
|
+
j.name for j in deps_cache.elements[i].element_set.groups
|
119
|
+
),
|
120
|
+
}
|
121
|
+
for i in deps_cache.elem_elem_dependents_rec[element.id_]
|
122
|
+
}
|
123
|
+
elem_iters = {}
|
124
|
+
for idx, iter_i in enumerate(element.iterations):
|
125
|
+
if idx == 0:
|
126
|
+
zeroth_iters[element.id_] = (iter_i.id_, iter_i.data_idx)
|
127
|
+
loop_idx_key = tuple(sorted(iter_i.loop_idx.items()))
|
128
|
+
elem_iters[loop_idx_key] = iter_i.get_data_idx()
|
129
|
+
task_iterations[task.insert_ID].append(iter_i.id_)
|
130
|
+
iters[iter_i.id_] = (element.id_, idx)
|
131
|
+
data_idx_cache[element.id_] = elem_iters
|
132
|
+
|
133
|
+
return cls(
|
134
|
+
element_dependents=elem_deps,
|
135
|
+
elements=elements,
|
136
|
+
zeroth_iters=zeroth_iters,
|
137
|
+
data_idx=data_idx_cache,
|
138
|
+
iterations=iters,
|
139
|
+
task_iterations=dict(task_iterations),
|
140
|
+
)
|
hpcflow/sdk/core/task.py
CHANGED
@@ -2062,29 +2062,36 @@ class WorkflowTask:
|
|
2062
2062
|
return element_dat_idx
|
2063
2063
|
|
2064
2064
|
@TimeIt.decorator
|
2065
|
-
def initialise_EARs(self) -> List[int]:
|
2065
|
+
def initialise_EARs(self, iter_IDs: Optional[List[int]] = None) -> List[int]:
|
2066
2066
|
"""Try to initialise any uninitialised EARs of this task."""
|
2067
|
+
if iter_IDs:
|
2068
|
+
iters = self.workflow.get_element_iterations_from_IDs(iter_IDs)
|
2069
|
+
else:
|
2070
|
+
iters = []
|
2071
|
+
for element in self.elements:
|
2072
|
+
# We don't yet cache Element objects, so `element`, and also it's
|
2073
|
+
# `ElementIterations, are transient. So there is no reason to update these
|
2074
|
+
# objects in memory to account for the new EARs. Subsequent calls to
|
2075
|
+
# `WorkflowTask.elements` will retrieve correct element data from the
|
2076
|
+
# store. This might need changing once/if we start caching Element
|
2077
|
+
# objects.
|
2078
|
+
iters.extend(element.iterations)
|
2079
|
+
|
2067
2080
|
initialised = []
|
2068
|
-
for
|
2069
|
-
|
2070
|
-
|
2071
|
-
|
2072
|
-
|
2073
|
-
|
2074
|
-
|
2075
|
-
|
2076
|
-
|
2077
|
-
|
2078
|
-
|
2079
|
-
|
2080
|
-
|
2081
|
-
|
2082
|
-
f"UnsetParameterDataError raised: cannot yet initialise runs."
|
2083
|
-
)
|
2084
|
-
pass
|
2085
|
-
else:
|
2086
|
-
iter_i._EARs_initialised = True
|
2087
|
-
self.workflow.set_EARs_initialised(iter_i.id_)
|
2081
|
+
for iter_i in iters:
|
2082
|
+
if not iter_i.EARs_initialised:
|
2083
|
+
try:
|
2084
|
+
self._initialise_element_iter_EARs(iter_i)
|
2085
|
+
initialised.append(iter_i.id_)
|
2086
|
+
except UnsetParameterDataError:
|
2087
|
+
# raised by `Action.test_rules`; cannot yet initialise EARs
|
2088
|
+
self.app.logger.debug(
|
2089
|
+
f"UnsetParameterDataError raised: cannot yet initialise runs."
|
2090
|
+
)
|
2091
|
+
pass
|
2092
|
+
else:
|
2093
|
+
iter_i._EARs_initialised = True
|
2094
|
+
self.workflow.set_EARs_initialised(iter_i.id_)
|
2088
2095
|
return initialised
|
2089
2096
|
|
2090
2097
|
@TimeIt.decorator
|
@@ -2097,7 +2104,6 @@ class WorkflowTask:
|
|
2097
2104
|
param_src_updates = {}
|
2098
2105
|
|
2099
2106
|
count = 0
|
2100
|
-
# TODO: generator is an IO op here, can be pre-calculated/cached?
|
2101
2107
|
for act_idx, action in self.template.all_schema_actions():
|
2102
2108
|
log_common = (
|
2103
2109
|
f"for action {act_idx} of element iteration {element_iter.index} of "
|
@@ -2151,8 +2157,7 @@ class WorkflowTask:
|
|
2151
2157
|
metadata={},
|
2152
2158
|
)
|
2153
2159
|
|
2154
|
-
|
2155
|
-
self.workflow._store.update_param_source(pid, src)
|
2160
|
+
self.workflow._store.update_param_source(param_src_updates)
|
2156
2161
|
|
2157
2162
|
@TimeIt.decorator
|
2158
2163
|
def _add_element_set(self, element_set):
|
hpcflow/sdk/core/utils.py
CHANGED
@@ -3,7 +3,7 @@ import enum
|
|
3
3
|
from functools import wraps
|
4
4
|
import contextlib
|
5
5
|
import hashlib
|
6
|
-
from itertools import accumulate
|
6
|
+
from itertools import accumulate, islice
|
7
7
|
import json
|
8
8
|
import keyword
|
9
9
|
import os
|
@@ -871,3 +871,13 @@ def dict_values_process_flat(d, callable):
|
|
871
871
|
out[k] = proc_idx_k
|
872
872
|
|
873
873
|
return out
|
874
|
+
|
875
|
+
|
876
|
+
def nth_key(dct, n):
|
877
|
+
it = iter(dct)
|
878
|
+
next(islice(it, n, n), None)
|
879
|
+
return next(it)
|
880
|
+
|
881
|
+
|
882
|
+
def nth_value(dct, n):
|
883
|
+
return dct[nth_key(dct, n)]
|
hpcflow/sdk/core/workflow.py
CHANGED
@@ -25,6 +25,7 @@ from hpcflow.sdk.core import (
|
|
25
25
|
ABORT_EXIT_CODE,
|
26
26
|
)
|
27
27
|
from hpcflow.sdk.core.actions import EARStatus
|
28
|
+
from hpcflow.sdk.core.loop_cache import LoopCache
|
28
29
|
from hpcflow.sdk.log import TimeIt
|
29
30
|
from hpcflow.sdk.persistence import store_cls_from_str, DEFAULT_STORE_FORMAT
|
30
31
|
from hpcflow.sdk.persistence.base import TEMPLATE_COMP_TYPES, AnySEAR
|
@@ -41,6 +42,7 @@ from hpcflow.sdk.submission.schedulers.direct import DirectScheduler
|
|
41
42
|
from hpcflow.sdk.typing import PathLike
|
42
43
|
from hpcflow.sdk.core.json_like import ChildObjectSpec, JSONLike
|
43
44
|
from .utils import (
|
45
|
+
nth_key,
|
44
46
|
read_JSON_file,
|
45
47
|
read_JSON_string,
|
46
48
|
read_YAML_str,
|
@@ -625,19 +627,28 @@ class Workflow:
|
|
625
627
|
)
|
626
628
|
with wk._store.cached_load():
|
627
629
|
with wk.batch_update(is_workflow_creation=True):
|
628
|
-
|
630
|
+
with wk._store.cache_ctx():
|
631
|
+
for idx, task in enumerate(template.tasks):
|
632
|
+
if status:
|
633
|
+
status.update(
|
634
|
+
f"Adding task {idx + 1}/{len(template.tasks)} "
|
635
|
+
f"({task.name!r})..."
|
636
|
+
)
|
637
|
+
wk._add_task(task)
|
629
638
|
if status:
|
630
639
|
status.update(
|
631
|
-
f"
|
632
|
-
f"({task.name!r})..."
|
640
|
+
f"Preparing to add {len(template.loops)} loops..."
|
633
641
|
)
|
634
|
-
|
635
|
-
|
636
|
-
|
637
|
-
|
638
|
-
|
639
|
-
|
640
|
-
|
642
|
+
if template.loops:
|
643
|
+
# TODO: if loop with non-initialisable actions, will fail
|
644
|
+
cache = LoopCache.build(workflow=wk, loops=template.loops)
|
645
|
+
for idx, loop in enumerate(template.loops):
|
646
|
+
if status:
|
647
|
+
status.update(
|
648
|
+
f"Adding loop {idx + 1}/"
|
649
|
+
f"{len(template.loops)} ({loop.name!r})"
|
650
|
+
)
|
651
|
+
wk._add_loop(loop, cache=cache, status=status)
|
641
652
|
except Exception:
|
642
653
|
if status:
|
643
654
|
status.stop()
|
@@ -1101,7 +1112,7 @@ class Workflow:
|
|
1101
1112
|
|
1102
1113
|
@TimeIt.decorator
|
1103
1114
|
def _add_empty_loop(
|
1104
|
-
self, loop: app.Loop
|
1115
|
+
self, loop: app.Loop, cache: LoopCache
|
1105
1116
|
) -> Tuple[app.WorkflowLoop, List[app.ElementIteration]]:
|
1106
1117
|
"""Add a new loop (zeroth iterations only) to the workflow."""
|
1107
1118
|
|
@@ -1114,15 +1125,15 @@ class Workflow:
|
|
1114
1125
|
self.template._add_empty_loop(loop_c)
|
1115
1126
|
|
1116
1127
|
# all these element iterations will be initialised for the new loop:
|
1117
|
-
|
1118
|
-
|
1128
|
+
iter_IDs = cache.get_iter_IDs(loop_c)
|
1129
|
+
iter_loop_idx = cache.get_iter_loop_indices(iter_IDs)
|
1119
1130
|
|
1120
1131
|
# create and insert a new WorkflowLoop:
|
1121
1132
|
new_loop = self.app.WorkflowLoop.new_empty_loop(
|
1122
1133
|
index=new_index,
|
1123
1134
|
workflow=self,
|
1124
1135
|
template=loop_c,
|
1125
|
-
|
1136
|
+
iter_loop_idx=iter_loop_idx,
|
1126
1137
|
)
|
1127
1138
|
self.loops.add_object(new_loop)
|
1128
1139
|
wk_loop = self.loops[new_index]
|
@@ -1144,15 +1155,28 @@ class Workflow:
|
|
1144
1155
|
|
1145
1156
|
self._pending["loops"].append(new_index)
|
1146
1157
|
|
1158
|
+
# update cache loop indices:
|
1159
|
+
cache.update_loop_indices(new_loop_name=loop_c.name, iter_IDs=iter_IDs)
|
1160
|
+
|
1147
1161
|
return wk_loop
|
1148
1162
|
|
1149
1163
|
@TimeIt.decorator
|
1150
|
-
def _add_loop(
|
1151
|
-
|
1164
|
+
def _add_loop(
|
1165
|
+
self, loop: app.Loop, cache: Optional[Dict] = None, status: Optional[Any] = None
|
1166
|
+
) -> None:
|
1167
|
+
if not cache:
|
1168
|
+
cache = LoopCache.build(workflow=self, loops=[loop])
|
1169
|
+
new_wk_loop = self._add_empty_loop(loop, cache)
|
1152
1170
|
if loop.num_iterations is not None:
|
1153
1171
|
# fixed number of iterations, so add remaining N > 0 iterations:
|
1154
|
-
|
1155
|
-
|
1172
|
+
if status:
|
1173
|
+
status_prev = status.status
|
1174
|
+
for iter_idx in range(loop.num_iterations - 1):
|
1175
|
+
if status:
|
1176
|
+
status.update(
|
1177
|
+
f"{status_prev}: iteration {iter_idx + 2}/{loop.num_iterations}."
|
1178
|
+
)
|
1179
|
+
new_wk_loop.add_iteration(cache=cache)
|
1156
1180
|
|
1157
1181
|
def add_loop(self, loop: app.Loop) -> None:
|
1158
1182
|
"""Add a loop to a subset of workflow tasks."""
|
@@ -1326,6 +1350,7 @@ class Workflow:
|
|
1326
1350
|
iters.append(iter_i)
|
1327
1351
|
return iters
|
1328
1352
|
|
1353
|
+
@TimeIt.decorator
|
1329
1354
|
def get_elements_from_IDs(self, id_lst: Iterable[int]) -> List[app.Element]:
|
1330
1355
|
"""Return element objects from a list of IDs."""
|
1331
1356
|
|
@@ -1334,6 +1359,7 @@ class Workflow:
|
|
1334
1359
|
task_IDs = [i.task_ID for i in store_elems]
|
1335
1360
|
store_tasks = self._store.get_tasks_by_IDs(task_IDs)
|
1336
1361
|
|
1362
|
+
element_idx_by_task = defaultdict(set)
|
1337
1363
|
index_paths = []
|
1338
1364
|
for el, tk in zip(store_elems, store_tasks):
|
1339
1365
|
elem_idx = tk.element_IDs.index(el.id_)
|
@@ -1343,15 +1369,23 @@ class Workflow:
|
|
1343
1369
|
"task_idx": tk.index,
|
1344
1370
|
}
|
1345
1371
|
)
|
1372
|
+
element_idx_by_task[tk.index].add(elem_idx)
|
1373
|
+
|
1374
|
+
elements_by_task = {}
|
1375
|
+
for task_idx, elem_idx in element_idx_by_task.items():
|
1376
|
+
task = self.tasks[task_idx]
|
1377
|
+
elements_by_task[task_idx] = dict(
|
1378
|
+
zip(elem_idx, task.elements[list(elem_idx)])
|
1379
|
+
)
|
1346
1380
|
|
1347
1381
|
objs = []
|
1348
1382
|
for idx_dat in index_paths:
|
1349
|
-
|
1350
|
-
elem = task.elements[idx_dat["elem_idx"]]
|
1383
|
+
elem = elements_by_task[idx_dat["task_idx"]][idx_dat["elem_idx"]]
|
1351
1384
|
objs.append(elem)
|
1352
1385
|
|
1353
1386
|
return objs
|
1354
1387
|
|
1388
|
+
@TimeIt.decorator
|
1355
1389
|
def get_element_iterations_from_IDs(
|
1356
1390
|
self, id_lst: Iterable[int]
|
1357
1391
|
) -> List[app.ElementIteration]:
|
@@ -1365,6 +1399,8 @@ class Workflow:
|
|
1365
1399
|
task_IDs = [i.task_ID for i in store_elems]
|
1366
1400
|
store_tasks = self._store.get_tasks_by_IDs(task_IDs)
|
1367
1401
|
|
1402
|
+
element_idx_by_task = defaultdict(set)
|
1403
|
+
|
1368
1404
|
index_paths = []
|
1369
1405
|
for it, el, tk in zip(store_iters, store_elems, store_tasks):
|
1370
1406
|
iter_idx = el.iteration_IDs.index(it.id_)
|
@@ -1376,11 +1412,18 @@ class Workflow:
|
|
1376
1412
|
"task_idx": tk.index,
|
1377
1413
|
}
|
1378
1414
|
)
|
1415
|
+
element_idx_by_task[tk.index].add(elem_idx)
|
1416
|
+
|
1417
|
+
elements_by_task = {}
|
1418
|
+
for task_idx, elem_idx in element_idx_by_task.items():
|
1419
|
+
task = self.tasks[task_idx]
|
1420
|
+
elements_by_task[task_idx] = dict(
|
1421
|
+
zip(elem_idx, task.elements[list(elem_idx)])
|
1422
|
+
)
|
1379
1423
|
|
1380
1424
|
objs = []
|
1381
1425
|
for idx_dat in index_paths:
|
1382
|
-
|
1383
|
-
elem = task.elements[idx_dat["elem_idx"]]
|
1426
|
+
elem = elements_by_task[idx_dat["task_idx"]][idx_dat["elem_idx"]]
|
1384
1427
|
iter_ = elem.iterations[idx_dat["iter_idx"]]
|
1385
1428
|
objs.append(iter_)
|
1386
1429
|
|
hpcflow/sdk/persistence/base.py
CHANGED
@@ -716,6 +716,11 @@ class PersistentStore(ABC):
|
|
716
716
|
"""Cache for number of persistent tasks."""
|
717
717
|
return self._cache["num_tasks"]
|
718
718
|
|
719
|
+
@property
|
720
|
+
def num_EARs_cache(self):
|
721
|
+
"""Cache for total number of persistent EARs."""
|
722
|
+
return self._cache["num_EARs"]
|
723
|
+
|
719
724
|
@property
|
720
725
|
def param_sources_cache(self):
|
721
726
|
"""Cache for persistent parameter sources."""
|
@@ -730,6 +735,10 @@ class PersistentStore(ABC):
|
|
730
735
|
def num_tasks_cache(self, value):
|
731
736
|
self._cache["num_tasks"] = value
|
732
737
|
|
738
|
+
@num_EARs_cache.setter
|
739
|
+
def num_EARs_cache(self, value):
|
740
|
+
self._cache["num_EARs"] = value
|
741
|
+
|
733
742
|
def _reset_cache(self):
|
734
743
|
self._cache = {
|
735
744
|
"tasks": {},
|
@@ -739,6 +748,7 @@ class PersistentStore(ABC):
|
|
739
748
|
"param_sources": {},
|
740
749
|
"num_tasks": None,
|
741
750
|
"parameters": {},
|
751
|
+
"num_EARs": None,
|
742
752
|
}
|
743
753
|
|
744
754
|
@contextlib.contextmanager
|
@@ -873,6 +883,7 @@ class PersistentStore(ABC):
|
|
873
883
|
"""Get the total number of persistent and pending element iterations."""
|
874
884
|
return self._get_num_persistent_elem_iters() + len(self._pending.add_elem_iters)
|
875
885
|
|
886
|
+
@TimeIt.decorator
|
876
887
|
def _get_num_total_EARs(self):
|
877
888
|
"""Get the total number of persistent and pending EARs."""
|
878
889
|
return self._get_num_persistent_EARs() + len(self._pending.add_EARs)
|
@@ -1296,9 +1307,11 @@ class PersistentStore(ABC):
|
|
1296
1307
|
self.save()
|
1297
1308
|
|
1298
1309
|
@TimeIt.decorator
|
1299
|
-
def update_param_source(
|
1300
|
-
self
|
1301
|
-
|
1310
|
+
def update_param_source(
|
1311
|
+
self, param_sources: Dict[int, Dict], save: bool = True
|
1312
|
+
) -> None:
|
1313
|
+
self.logger.debug(f"Updating parameter sources with {param_sources!r}.")
|
1314
|
+
self._pending.update_param_sources.update(param_sources)
|
1302
1315
|
if save:
|
1303
1316
|
self.save()
|
1304
1317
|
|
hpcflow/sdk/persistence/json.py
CHANGED
@@ -303,12 +303,13 @@ class JSONPersistentStore(PersistentStore):
|
|
303
303
|
|
304
304
|
def _get_num_persistent_tasks(self) -> int:
|
305
305
|
"""Get the number of persistent tasks."""
|
306
|
-
if self.num_tasks_cache is not None:
|
306
|
+
if self.use_cache and self.num_tasks_cache is not None:
|
307
307
|
num = self.num_tasks_cache
|
308
308
|
else:
|
309
309
|
with self.using_resource("metadata", action="read") as md:
|
310
310
|
num = len(md["tasks"])
|
311
|
-
|
311
|
+
if self.use_cache and self.num_tasks_cache is None:
|
312
|
+
self.num_tasks_cache = num
|
312
313
|
return num
|
313
314
|
|
314
315
|
def _get_num_persistent_loops(self) -> int:
|
@@ -333,8 +334,14 @@ class JSONPersistentStore(PersistentStore):
|
|
333
334
|
|
334
335
|
def _get_num_persistent_EARs(self) -> int:
|
335
336
|
"""Get the number of persistent EARs."""
|
336
|
-
|
337
|
-
|
337
|
+
if self.use_cache and self.num_EARs_cache is not None:
|
338
|
+
num = self.num_EARs_cache
|
339
|
+
else:
|
340
|
+
with self.using_resource("metadata", action="read") as md:
|
341
|
+
num = len(md["runs"])
|
342
|
+
if self.use_cache and self.num_EARs_cache is None:
|
343
|
+
self.num_EARs_cache = num
|
344
|
+
return num
|
338
345
|
|
339
346
|
def _get_num_persistent_parameters(self):
|
340
347
|
with self.using_resource("parameters", "read") as params:
|
@@ -275,6 +275,7 @@ class PendingChanges:
|
|
275
275
|
EAR_ids = list(self.add_EARs.keys())
|
276
276
|
self.logger.debug(f"commit: adding pending EARs with IDs: {EAR_ids!r}")
|
277
277
|
self.store._append_EARs(EARs)
|
278
|
+
self.store.num_EARs_cache = None # invalidate cache
|
278
279
|
# pending start/end times/snapshots, submission indices, and skips that belong
|
279
280
|
# to pending EARs are now committed (accounted for in `get_EARs` above):
|
280
281
|
self.set_EAR_submission_indices = {
|
@@ -408,6 +409,7 @@ class PendingChanges:
|
|
408
409
|
@TimeIt.decorator
|
409
410
|
def commit_loop_indices(self) -> None:
|
410
411
|
"""Make pending update to element iteration loop indices persistent."""
|
412
|
+
# TODO: batch up
|
411
413
|
for iter_ID, loop_idx in self.update_loop_indices.items():
|
412
414
|
self.logger.debug(
|
413
415
|
f"commit: updating loop indices of iteration ID {iter_ID!r} with "
|
hpcflow/sdk/persistence/zarr.py
CHANGED
@@ -774,9 +774,16 @@ class ZarrPersistentStore(PersistentStore):
|
|
774
774
|
"""Get the number of persistent element iterations."""
|
775
775
|
return len(self._get_iters_arr())
|
776
776
|
|
777
|
+
@TimeIt.decorator
|
777
778
|
def _get_num_persistent_EARs(self) -> int:
|
778
779
|
"""Get the number of persistent EARs."""
|
779
|
-
|
780
|
+
if self.use_cache and self.num_EARs_cache is not None:
|
781
|
+
num = self.num_EARs_cache
|
782
|
+
else:
|
783
|
+
num = len(self._get_EARs_arr())
|
784
|
+
if self.use_cache and self.num_EARs_cache is None:
|
785
|
+
self.num_EARs_cache = num
|
786
|
+
return num
|
780
787
|
|
781
788
|
def _get_num_persistent_parameters(self):
|
782
789
|
return len(self._get_parameter_base_array())
|