homa 0.2.9__py3-none-any.whl → 0.3.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (69) hide show
  1. homa/activations/learnable/AOAF.py +1 -1
  2. homa/activations/learnable/AReLU.py +6 -3
  3. homa/activations/learnable/PiLU.py +1 -1
  4. homa/activations/learnable/__init__.py +2 -2
  5. homa/activations/learnable/concerns/ChannelBased.py +2 -0
  6. homa/core/__init__.py +0 -0
  7. homa/core/concerns/MovesNetworkToDevice.py +13 -0
  8. homa/core/concerns/TracksTime.py +7 -0
  9. homa/core/concerns/__init__.py +2 -0
  10. homa/device.py +5 -0
  11. homa/ensemble/Ensemble.py +4 -2
  12. homa/ensemble/concerns/CalculatesMetricNecessities.py +2 -2
  13. homa/ensemble/concerns/PredictsProbabilities.py +2 -2
  14. homa/ensemble/concerns/ReportsClassificationMetrics.py +2 -1
  15. homa/ensemble/concerns/ReportsEnsembleAccuracy.py +2 -2
  16. homa/ensemble/concerns/ReportsEnsembleF1.py +2 -2
  17. homa/ensemble/concerns/ReportsEnsembleKappa.py +2 -2
  18. homa/ensemble/concerns/ReportsEnsembleSize.py +11 -0
  19. homa/ensemble/concerns/ReportsLogits.py +26 -5
  20. homa/ensemble/concerns/SavesEnsembleModels.py +13 -0
  21. homa/ensemble/concerns/StoresModels.py +11 -8
  22. homa/ensemble/concerns/__init__.py +2 -1
  23. homa/ensemble/utils.py +9 -0
  24. homa/graph/GraphAttention.py +13 -0
  25. homa/graph/__init__.py +1 -0
  26. homa/graph/modules/GraphAttentionHeadModule.py +37 -0
  27. homa/graph/modules/MultiHeadGraphAttentionModule.py +22 -0
  28. homa/graph/modules/__init__.py +2 -0
  29. homa/loss/Loss.py +4 -1
  30. homa/rl/DQN.py +2 -0
  31. homa/rl/DRQN.py +5 -0
  32. homa/rl/DiversityIsAllYouNeed.py +96 -0
  33. homa/rl/SoftActorCritic.py +67 -0
  34. homa/rl/__init__.py +4 -0
  35. homa/rl/buffers/Buffer.py +13 -0
  36. homa/rl/buffers/DiversityIsAllYouNeedBuffer.py +50 -0
  37. homa/rl/buffers/ImageBuffer.py +5 -0
  38. homa/rl/buffers/SoftActorCriticBuffer.py +64 -0
  39. homa/rl/buffers/__init__.py +4 -0
  40. homa/rl/buffers/concerns/HasRecordAlternatives.py +12 -0
  41. homa/rl/buffers/concerns/ResetsCollection.py +9 -0
  42. homa/rl/buffers/concerns/__init__.py +2 -0
  43. homa/rl/diayn/Actor.py +54 -0
  44. homa/rl/diayn/Critic.py +41 -0
  45. homa/rl/diayn/Discriminator.py +45 -0
  46. homa/rl/diayn/__init__.py +3 -0
  47. homa/rl/diayn/modules/ContinuousActorModule.py +42 -0
  48. homa/rl/diayn/modules/CriticModule.py +28 -0
  49. homa/rl/diayn/modules/DiscriminatorModule.py +24 -0
  50. homa/rl/diayn/modules/__init__.py +3 -0
  51. homa/rl/sac/SoftActor.py +70 -0
  52. homa/rl/sac/SoftCritic.py +98 -0
  53. homa/rl/sac/__init__.py +2 -0
  54. homa/rl/sac/modules/DualSoftCriticModule.py +22 -0
  55. homa/rl/sac/modules/SoftActorModule.py +35 -0
  56. homa/rl/sac/modules/SoftCriticModule.py +30 -0
  57. homa/rl/sac/modules/__init__.py +3 -0
  58. homa/rl/utils.py +7 -0
  59. homa/vision/Resnet.py +3 -3
  60. homa/vision/Swin.py +17 -5
  61. homa/vision/modules/SwinModule.py +17 -9
  62. {homa-0.2.9.dist-info → homa-0.3.2.dist-info}/METADATA +1 -1
  63. {homa-0.2.9.dist-info → homa-0.3.2.dist-info}/RECORD +66 -28
  64. homa/ensemble/concerns/ReportsSize.py +0 -11
  65. homa/torch/__init__.py +0 -1
  66. homa/torch/helpers.py +0 -6
  67. {homa-0.2.9.dist-info → homa-0.3.2.dist-info}/WHEEL +0 -0
  68. {homa-0.2.9.dist-info → homa-0.3.2.dist-info}/entry_points.txt +0 -0
  69. {homa-0.2.9.dist-info → homa-0.3.2.dist-info}/top_level.txt +0 -0
@@ -1,21 +1,29 @@
1
1
  import torch
2
- from torchvision.models import swin_v2_b
2
+ from torchvision.models import swin_v2_b, swin_v2_s, swin_v2_t
3
3
  from torch.nn.init import kaiming_uniform_ as kaiming
4
4
 
5
5
 
6
6
  class SwinModule(torch.nn.Module):
7
- def __init__(self, num_classes: int):
7
+ def __init__(self, num_classes: int, variant: str, weights):
8
8
  super().__init__()
9
- self.num_classes = num_classes
10
- self._create_encoder()
11
- self._create_fc()
9
+ self._create_encoder(variant=variant, weights=weights)
10
+ self._create_fc(num_classes=num_classes)
12
11
 
13
- def _create_encoder(self):
14
- self.encoder = swin_v2_b(weights="DEFAULT")
12
+ def variant_instance(self, variant: str):
13
+ variant_map = {"tiny": swin_v2_t, "small": swin_v2_s, "base": swin_v2_b}
14
+ return variant_map.get(variant)
15
+
16
+ def _create_encoder(self, variant: str, weights):
17
+ if variant not in ["tiny", "small", "base"]:
18
+ raise ValueError(
19
+ f"Swin variant needs to be one of [tiny, small, base]. Invalid {variant} was provided."
20
+ )
21
+ instance = self.variant_instnace(variant)
22
+ self.encoder = instance(weights=weights)
15
23
  self.encoder.head = torch.nn.Identity()
16
24
 
17
- def _create_fc(self):
18
- self.fc = torch.nn.Linear(1024, self.num_classes)
25
+ def _create_fc(self, num_classes: int):
26
+ self.fc = torch.nn.Linear(1024, num_classes)
19
27
  kaiming(self.fc.weight, mode="fan_in", nonlinearity="relu")
20
28
 
21
29
  def forward(self, images: torch.Tensor):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: homa
3
- Version: 0.2.9
3
+ Version: 0.3.2
4
4
  Summary: A curated list of machine learning and deep learning helpers.
5
5
  Author-email: Taha Shieenavaz <tahashieenavaz@gmail.com>
6
6
  Requires-Python: >=3.7
@@ -1,5 +1,5 @@
1
1
  homa/__init__.py,sha256=NBYFKizG8UASiz5HLsEBqzXNGlWr78xm4sLr5hxKvjU,46
2
- homa/device.py,sha256=9kKXfpYfnEk2cFQWPfcJrVloHgC_SSbP4I8IRY9TYk4,343
2
+ homa/device.py,sha256=J_XpsqXOOXG15ea_9M_W4abtr1DA7VLPFuURUa0f2Qw,424
3
3
  homa/settings.py,sha256=CPZDPvs1380O7SY7FcSKol8kBVFVVYFgSJl3YEyJuZ0,263
4
4
  homa/utils.py,sha256=dPp6TItJwWxBqxmkMzUuCtX_BzdPT-kMOZyXRGVMCbQ,70
5
5
  homa/activations/APLU.py,sha256=cUf6LUjY8TewXe_V1avO_7IcOtY66Hd6Dyk_1K4R3Ms,1555
@@ -51,18 +51,18 @@ homa/activations/TeLU.py,sha256=qU5x0EskjQs6d5rCtbL91C6cMAm8vjDnjQNMX0LcEt8,180
51
51
  homa/activations/TripleStateSwish.py,sha256=UG5BGY29wUEJaryClB2rDM90s0jt5vMJF9Kv-5M4Rgo,507
52
52
  homa/activations/WideMeLU.py,sha256=ieJjTjnK9JJtApPFGpmTynu3G8YlyH5jw6qnhkJkStI,421
53
53
  homa/activations/__init__.py,sha256=2GHNqrOp6WoLAtFFJcSj6j4GP-W8-YAYRZGX9vZbcmU,1659
54
- homa/activations/learnable/AOAF.py,sha256=KYtQtpLiupdyoumqNmz0kMTgRK66sSYiuLnpbr2H7Mw,509
55
- homa/activations/learnable/AReLU.py,sha256=-6kQ0mDGq3p9Xlg74waMa8xsTDALCtkE6pwx7DrTDeI,610
54
+ homa/activations/learnable/AOAF.py,sha256=1ArhgpI6PfCRePgvFq8VqKDQ9rDMHZb0bm6g4Tiz13s,510
55
+ homa/activations/learnable/AReLU.py,sha256=Pfyv_7EEwGgW4_UyKc8CiSg7lhTcO7LZ7uIUeVQWLpA,737
56
56
  homa/activations/learnable/DPReLU.py,sha256=xQhYTJ0-mfRGdld950xoTh8c9O08WIY50K0FjPtVVFs,507
57
57
  homa/activations/learnable/DualLine.py,sha256=cgqyE7dVqXflT8ulCuOyKQQa09FYSj8vJkeVUEOaeIU,600
58
58
  homa/activations/learnable/FReLU.py,sha256=qQ8GjjWWGeoE6qW9tw49mZPs29app0QK1AFOuMc5ASU,413
59
59
  homa/activations/learnable/LeLeLU.py,sha256=ya2m60QRcpVlTwMejJTgMTxM3RRHF0RgNe72_EdD1-U,425
60
60
  homa/activations/learnable/PERU.py,sha256=y2OxRLIA1HTUnFyRHs0zgLhLMJhQz9Q4F6QrqBSkQ00,513
61
- homa/activations/learnable/PiLU.py,sha256=p5FmWGJWlZEdLGVXmiXKg0rTxCVO-qn9bQIVcyAaa8U,616
61
+ homa/activations/learnable/PiLU.py,sha256=w7LkBBs_hr07pvizUie5Z49UkHg3O8LHA-wFK4hbnjE,612
62
62
  homa/activations/learnable/ShiLU.py,sha256=35VC1pCAWMaxHKWYBeXd2DrXn1tepvQaT7a-KwoNdHY,475
63
63
  homa/activations/learnable/StarReLU.py,sha256=hrscp-A0HnIvebFPLGr86K5Uf_U--EWtpNDqdNgonA0,485
64
- homa/activations/learnable/__init__.py,sha256=fcfm-GHEe4AQzEz9mXrWfSLkcgWaTg91ccByx7LxfX4,264
65
- homa/activations/learnable/concerns/ChannelBased.py,sha256=uK6FdC9mJRWSoXinjM8r5GJCZNWWxst7NMt8P6rnhKg,1143
64
+ homa/activations/learnable/__init__.py,sha256=yDzcgM_n5sNEU0kz9I0aVgGihpw_2RvtkCCylaTCPEQ,260
65
+ homa/activations/learnable/concerns/ChannelBased.py,sha256=pSKnWOKVOdb0GoiBobSSUANaZPGNwT9rxBnJUpZ9Eac,1206
66
66
  homa/activations/learnable/concerns/__init__.py,sha256=CubRRYQEQMAK2-igsYKD8tcyesPOYoZYF_IlHzRZXi4,39
67
67
  homa/cli/HomaCommand.py,sha256=w-Dg6dFpoXbQx2tvWSLdND2pdhqB2cPSORyi4MfY8XY,307
68
68
  homa/cli/Commands/Command.py,sha256=DnmsEwpaxdQaLjzyYBO7qtIQTLwYzyhJS31YazA1IHg,24
@@ -71,29 +71,67 @@ homa/cli/Commands/__init__.py,sha256=PYKkcG06R5LqLnp2x8otuimzRpL4oMbziL3xEMkCffc
71
71
  homa/cli/namespaces/CacheNamespace.py,sha256=QXGljzj287stzTx0y_MXnqvCgPLqd7WjSPop2WDe14E,784
72
72
  homa/cli/namespaces/MakeNamespace.py,sha256=5G6LHk3lDkXROz7uq4jYE0DyO_V7JvnhJ33IFCiqYro,590
73
73
  homa/cli/namespaces/__init__.py,sha256=zAKUGPH4wcacxfH5Qvidp-uOuHdfzhan6kvVI6eMKA8,84
74
- homa/ensemble/Ensemble.py,sha256=GNkXEV7Nli8lHSTQ3qTTCTeSBwST1PLZS5wxpKpeC5U,290
74
+ homa/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
75
+ homa/core/concerns/MovesNetworkToDevice.py,sha256=OPMvO7scsM6NNy_fM0cJdkRdoVc-b2j6l4bz88cBif0,348
76
+ homa/core/concerns/TracksTime.py,sha256=atg7iUH5HKqKJd03s9eHsl18iUO_4fzxuYmXgNtqSBQ,129
77
+ homa/core/concerns/__init__.py,sha256=6jL3_kiqmmMs8BV789ZBbwEYNQNAhq1otVOrDJJrSXo,90
78
+ homa/ensemble/Ensemble.py,sha256=mrqwbEm8OtiBmEgKuO6RzO1V8v80vrQFIJ4WHl8Yqgk,356
75
79
  homa/ensemble/__init__.py,sha256=1pk2W-NbgfDFh9WLKZVLUk2E3PTjVZ5Bap9dQEnrs9o,31
76
- homa/ensemble/concerns/CalculatesMetricNecessities.py,sha256=QccROg_FOp_X2T_lZDg8p1DMZhPYdO-7aEdnebRXMsY,825
77
- homa/ensemble/concerns/PredictsProbabilities.py,sha256=7rmI66DzE7-QGoJgZEk-9fu5YQvJW-4ZnMn_dWEEhqU,440
78
- homa/ensemble/concerns/ReportsClassificationMetrics.py,sha256=bg__cdCKp2U1H9qN1aOJH4BoX98oIvt8XaPDGApJhSM,395
79
- homa/ensemble/concerns/ReportsEnsembleAccuracy.py,sha256=AX5X3VGOm7DfdonW0N7FFgUwEr7wnsojRSVEULEii7c,380
80
- homa/ensemble/concerns/ReportsEnsembleF1.py,sha256=hdtdCQrWaFJNUn1KP9cAmi_q_EA4FYnpkBMlYLjzRZg,296
81
- homa/ensemble/concerns/ReportsEnsembleKappa.py,sha256=ZRbtrFCTD84EDql6ZL1xeWtTLFxpO5Y5tQaUlR6_0jw,300
82
- homa/ensemble/concerns/ReportsLogits.py,sha256=vTGuC9NR4rno3Mkbm0MhL8f7YopuCErGyjIorxamKTM,461
83
- homa/ensemble/concerns/ReportsSize.py,sha256=S7lo_Wu6rDnuqyAcv6AI6jspaBhcpfsirpp9RVD8c20,238
84
- homa/ensemble/concerns/StoresModels.py,sha256=PNoaoAOx4v8rercxXHmf7zqVIPGYM4APzIHHEb3RwT0,850
85
- homa/ensemble/concerns/__init__.py,sha256=X0F_b2Jsv0XpiNhYwJsl-dfPsBOdEeW53LQPE4xQD0w,479
80
+ homa/ensemble/utils.py,sha256=nn6eAgGW7ZafjjOVJWzGUWE0XYeyJAOMNEHm-lHxd6A,200
81
+ homa/ensemble/concerns/CalculatesMetricNecessities.py,sha256=HgrLbz8O9grGZZ0LG82Au5lZwq2D1zixDRjegM4f8Wk,793
82
+ homa/ensemble/concerns/PredictsProbabilities.py,sha256=WWUaNXQxCJQ_NrLgeTdw0OXEsDb5xU7899_2d3Pzaoc,408
83
+ homa/ensemble/concerns/ReportsClassificationMetrics.py,sha256=S9IBH6O7dmHhQ4Mxf5c7JFirOsPokKZUyqfOmED13mM,437
84
+ homa/ensemble/concerns/ReportsEnsembleAccuracy.py,sha256=UuaPQ7v2sCaWuo3xa4PaTZzyjciRhcIluhnt6Zla2Fo,348
85
+ homa/ensemble/concerns/ReportsEnsembleF1.py,sha256=aXKBK2-dTB133Rjg-X2a4Khb1sTdxuffXukcSMZlkzM,264
86
+ homa/ensemble/concerns/ReportsEnsembleKappa.py,sha256=AkWTVGuCeIanDusNdtJOHwTgSEh5RJeWwLTQJJqSEKE,268
87
+ homa/ensemble/concerns/ReportsEnsembleSize.py,sha256=lRyHIrK_zr7pE5RlwuNLIkqXoEMoVhNmT1nYDgCaNVI,208
88
+ homa/ensemble/concerns/ReportsLogits.py,sha256=yZobLvxPL6ep70uMFIEtz5-l4rlfaG7m9mti6jJD1E8,1338
89
+ homa/ensemble/concerns/SavesEnsembleModels.py,sha256=d1DcZnzfJABEfxcnYy5tV9N7YOghzO_ZdCdU80VTcno,243
90
+ homa/ensemble/concerns/StoresModels.py,sha256=dg-xP1C4A9K8DrUTnR4VfqWU9iNAdS_0DlQcRThDka8,931
91
+ homa/ensemble/concerns/__init__.py,sha256=IF5mHIgzCuCpA2EmpkctbjAr0kYW4P96v7RffK2V_iQ,548
92
+ homa/graph/GraphAttention.py,sha256=oPXuc1s-3BXwGkHuomEIxnOcZSRBbL8b8fO0432RdDo,478
93
+ homa/graph/__init__.py,sha256=NCtMUB-awe9UvkwDYqWXxTAZ1RW-AwSW1DD9X_kFkD0,43
94
+ homa/graph/modules/GraphAttentionHeadModule.py,sha256=R47ScMnOgpRLNR9encaqbM8tFiYfb2UA2X18f55NMek,1397
95
+ homa/graph/modules/MultiHeadGraphAttentionModule.py,sha256=tmxCGLxIVlvn_mvnPsqT8zrSCH_UVEIMLkR9VHky670,792
96
+ homa/graph/modules/__init__.py,sha256=R-wuNFJvRZ8U-6v7GNGrigxPfh1BlupVZo-MPd0HiR8,136
86
97
  homa/loss/LogitNormLoss.py,sha256=LJMzRA1WoJ7aDYTV-FYGhgo8DMkcpv7e8_74qiJ4zT8,386
87
- homa/loss/Loss.py,sha256=COUr_idShYgAP8xKCxcaXbyUyAoJg7IOON0ARTQykmQ,21
98
+ homa/loss/Loss.py,sha256=OROjusRHg4F3PA92SjU1utCgS1D_5KqELlcVFhvQOoU,53
88
99
  homa/loss/__init__.py,sha256=4mPVzme2_-M64bgBu1cANIfBFAL0voa5I71-ceMr_qk,64
89
- homa/torch/__init__.py,sha256=HTxCVaw1TLgpHMH8guB3hHYQ80cX6_fSEoPT_hz2Y8w,23
90
- homa/torch/helpers.py,sha256=CLbTCXRrroM0n4PfM-K_xFavs4dCZJEu_L7hdgb1DCI,134
100
+ homa/rl/DQN.py,sha256=PaNq9Z1K87IQ7Y7mhiJ1CE4TofgV7c7m1py8qT09vE4,20
101
+ homa/rl/DRQN.py,sha256=zooojji9aeeubOP7cRPSHg31u2Assxk-qjXyGUWIO3A,49
102
+ homa/rl/DiversityIsAllYouNeed.py,sha256=8yKzlVdLisForGyXqxaXUAWG_dozq7dNY8MBasCvniE,3322
103
+ homa/rl/SoftActorCritic.py,sha256=0xQcjAJQAiBsPCl8RORHz02K7tPaBWoQv45Zd12Ud6Q,2044
104
+ homa/rl/__init__.py,sha256=EaNDkIzLH1Oy0Wc0aAyyVs4HVMcZS1tdHDh631LKSXs,146
105
+ homa/rl/utils.py,sha256=IqbN5aDLwovocpPbxgywuetjz7GQwh9aJ4WFIOtLP3g,232
106
+ homa/rl/buffers/Buffer.py,sha256=YCESh9tFxgWOLzGQj_IA0zLJoZWDmz6gCNu1iYsGp1s,388
107
+ homa/rl/buffers/DiversityIsAllYouNeedBuffer.py,sha256=Nwcqs3Q10x6OKZ-zWug4IcBc6RR1TwEIybuFQOtmftA,1612
108
+ homa/rl/buffers/ImageBuffer.py,sha256=HSmMt82hmkL3ooBYo7c6YUtTsMz9TAA8CvPh3y8z3yg,65
109
+ homa/rl/buffers/SoftActorCriticBuffer.py,sha256=N2etaAOA4xkOBdybQX6RQf-H4ivFgCKMJM5QugM9CYc,2154
110
+ homa/rl/buffers/__init__.py,sha256=h1AkCHs6isXbNtxpaZfLp6YudHj1KlnOvURE64vhRa4,190
111
+ homa/rl/buffers/concerns/HasRecordAlternatives.py,sha256=D5aVlPZlnGm0GyGtikKb4wZqyO6zpyqR1IOETmAgLx4,362
112
+ homa/rl/buffers/concerns/ResetsCollection.py,sha256=bZ8q4czYXo1jMtVCnnlG69OgiJ0AqSGY6CiKzJC6xtQ,215
113
+ homa/rl/buffers/concerns/__init__.py,sha256=g9EKH503NhO0clJhxRMFD-upSw1nkzjKLCxH4SVE-wk,104
114
+ homa/rl/diayn/Actor.py,sha256=SYh1gKQ6DgKFYYPq0BEV10B1QVNQw6bDk08GmdwazNc,1868
115
+ homa/rl/diayn/Critic.py,sha256=ML2FQj6dH8gJakDHlDQRCOChUA2z4pPDM52zCrp_6xk,1188
116
+ homa/rl/diayn/Discriminator.py,sha256=m2faov_tZned7Tcogci5X_prHmncqyqPuPrm3xWZWIo,1566
117
+ homa/rl/diayn/__init__.py,sha256=HV0LWJ-FbTPNf3kBH_GFWoxUGFwvsi6SrHRsz7QRYVQ,93
118
+ homa/rl/diayn/modules/ContinuousActorModule.py,sha256=yeC117I5gkXZSidQhjwakjiY7Gi8ycZQeGDq8uzKlDI,1522
119
+ homa/rl/diayn/modules/CriticModule.py,sha256=OUenwCG0dG4PnK7Iq-jy7oCTv_Cn9s7bXRpro6Pvb40,956
120
+ homa/rl/diayn/modules/DiscriminatorModule.py,sha256=D58dKBv4f6gtrpqMKLK8XAZpiMqKfS4sG6s3QcF8iGE,891
121
+ homa/rl/diayn/modules/__init__.py,sha256=1Pgjr4FT5WG-AMh26NPEfbf5pK6I02B1x8HYsgyUCJ4,149
122
+ homa/rl/sac/SoftActor.py,sha256=fCsAp5_KxzFmGplJaiF-4Cvn5qVaKGa51gst9bzHs0w,2221
123
+ homa/rl/sac/SoftCritic.py,sha256=OPJoYgvbyBfkPfAt6DNxFCTsNydsi2__2p_4MmWBxiA,3004
124
+ homa/rl/sac/__init__.py,sha256=8EIkOcVvxN94gGzcZoX2XTnvTsHqW6yBaZ2RdFwIveM,68
125
+ homa/rl/sac/modules/DualSoftCriticModule.py,sha256=Ax28i7U-KnP4QJig-AeeCfpPYNvTT3DfvRMJI-f-TGY,749
126
+ homa/rl/sac/modules/SoftActorModule.py,sha256=LQ4z7s8mE3wwb1JgxPs0QvnriZULK3_ULdhkt60Ffpw,1152
127
+ homa/rl/sac/modules/SoftCriticModule.py,sha256=aOfhDZTB5og-BLTsmdBdIcRufygCJUas7P-ikBvWQ34,928
128
+ homa/rl/sac/modules/__init__.py,sha256=h-22B5CAK1xhn75tolI5J5sQMxl--kOXbQ6r_JfHIOA,147
91
129
  homa/vision/Classifier.py,sha256=bAypqREQVuPamnc8hpbLCwmW9Uly3T1rvrlbMxXp1eA,61
92
130
  homa/vision/Model.py,sha256=JIeVpHJwirHfsDfYYbLsu0kt7bGf4nhMQGIOagUDKw4,22
93
- homa/vision/Resnet.py,sha256=Uitf58bEzIKkZd-F4FTvJ8nmhoFHlzZjJTvBPXEt2Iw,513
131
+ homa/vision/Resnet.py,sha256=BuDMMcu8J_mVlEHaMDche2mVl-SApT80OKmoDA4eAPQ,535
94
132
  homa/vision/StochasticClassifier.py,sha256=6-o0TaH4iWXiPFefL7DOdLr3ZrTnjnJ9PIgQLlygN8w,497
95
133
  homa/vision/StochasticSwin.py,sha256=FggzfaVYrP4fnjAFcdMpDozwQHc7CQhl3iRw78oQh0o,425
96
- homa/vision/Swin.py,sha256=W3XbfUTrjaIhMH8fI_whPP6XO9fVA2R34LlGfQ1hoyo,508
134
+ homa/vision/Swin.py,sha256=8sNm8S3uzyTIhu6msp4hUV0dKIcTBid_EBNr7H_iK20,789
97
135
  homa/vision/__init__.py,sha256=w5OkcmdU6Ik5wHIJzeV1Z2UElQtvCsUZks1Q-xViSVg,153
98
136
  homa/vision/utils.py,sha256=WB2b7eMDaf6UO3SuS7cB6IJk-9NRQesLavuzWUZRZyg,389
99
137
  homa/vision/concerns/HasLabels.py,sha256=fM6nHLeQaEaWDlV6R8NQ5hgOSiwspPxOIwj-nvYXbP0,321
@@ -104,10 +142,10 @@ homa/vision/concerns/ReportsMetrics.py,sha256=93Hw_JBUbwfkrJNJA1xFSQ4cqRwzbSv4nP
104
142
  homa/vision/concerns/Trainable.py,sha256=SRCW3XpG9_DQgubyqhALlYDHwAWNzVVFjshUv1ecuEQ,988
105
143
  homa/vision/concerns/__init__.py,sha256=mrw1YvN-GpQPvMwDF00KxnFkksPKo23RWM4KRioURsg,234
106
144
  homa/vision/modules/ResnetModule.py,sha256=eFudBnILD6OmgQtcW_CQQ8aZ62NEa4HyZ15-lobTtt0,712
107
- homa/vision/modules/SwinModule.py,sha256=h7wq1YdKoN6-7C3FVFA0bpkAET_30002iTRbjZxziFQ,714
145
+ homa/vision/modules/SwinModule.py,sha256=3ZtUcfyJt0NMGmIlGpN35MIJG9QsgcLdFniZH7NxZQo,1227
108
146
  homa/vision/modules/__init__.py,sha256=zVMYB9IAO_xZylC1-N3p8ymHgEkAE2sBbuVz8K5Y1kk,74
109
- homa-0.2.9.dist-info/METADATA,sha256=uqaBYePnoJwrTwJRFB47fx_vh073hlynKWA7JAU0hDs,1759
110
- homa-0.2.9.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
111
- homa-0.2.9.dist-info/entry_points.txt,sha256=tJZzjs-f2QvFe3ES8Qta8IE5sAbeE8-cyZ_UtbgqG4s,51
112
- homa-0.2.9.dist-info/top_level.txt,sha256=tmOfy2tuaAwc3W5-i6j61_vYJsXgR4ivBWkhJ3ZtJDc,5
113
- homa-0.2.9.dist-info/RECORD,,
147
+ homa-0.3.2.dist-info/METADATA,sha256=awU-Sftb68ejizlVGd4_otzjFwpq4EIopenhQHoHlFA,1759
148
+ homa-0.3.2.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
149
+ homa-0.3.2.dist-info/entry_points.txt,sha256=tJZzjs-f2QvFe3ES8Qta8IE5sAbeE8-cyZ_UtbgqG4s,51
150
+ homa-0.3.2.dist-info/top_level.txt,sha256=tmOfy2tuaAwc3W5-i6j61_vYJsXgR4ivBWkhJ3ZtJDc,5
151
+ homa-0.3.2.dist-info/RECORD,,
@@ -1,11 +0,0 @@
1
- class ReportsSize:
2
- def __init__(self, *args, **kwargs):
3
- super().__init__(*args, **kwargs)
4
-
5
- @property
6
- def size(self):
7
- return len(self.models)
8
-
9
- @property
10
- def length(self):
11
- return len(self.models)
homa/torch/__init__.py DELETED
@@ -1 +0,0 @@
1
- from .helpers import *
homa/torch/helpers.py DELETED
@@ -1,6 +0,0 @@
1
- import torch
2
- from ..device import get_device
3
-
4
-
5
- def tensor(*args, **kwargs):
6
- return torch.tensor(*args, **kwargs).to(get_device())
File without changes