homa 0.2.94__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of homa might be problematic. Click here for more details.

Files changed (113) hide show
  1. homa/__init__.py +2 -0
  2. homa/activations/APLU.py +49 -0
  3. homa/activations/ActivationFunction.py +6 -0
  4. homa/activations/AdaptiveActivationFunction.py +15 -0
  5. homa/activations/BaseDLReLU.py +34 -0
  6. homa/activations/CaLU.py +13 -0
  7. homa/activations/DLReLU.py +6 -0
  8. homa/activations/ERF.py +10 -0
  9. homa/activations/Elliot.py +10 -0
  10. homa/activations/ExpExpish.py +9 -0
  11. homa/activations/ExponentialDLReLU.py +6 -0
  12. homa/activations/ExponentialSwish.py +10 -0
  13. homa/activations/GCU.py +9 -0
  14. homa/activations/GaLU.py +11 -0
  15. homa/activations/GaussianReLU.py +50 -0
  16. homa/activations/GeneralizedSwish.py +10 -0
  17. homa/activations/Gish.py +11 -0
  18. homa/activations/LaLU.py +11 -0
  19. homa/activations/LogLogish.py +10 -0
  20. homa/activations/LogSigmoid.py +10 -0
  21. homa/activations/Logish.py +10 -0
  22. homa/activations/MeLU.py +11 -0
  23. homa/activations/MexicanReLU.py +49 -0
  24. homa/activations/MinSin.py +10 -0
  25. homa/activations/NReLU.py +12 -0
  26. homa/activations/NoisyReLU.py +6 -0
  27. homa/activations/PLogish.py +6 -0
  28. homa/activations/ParametricLogish.py +13 -0
  29. homa/activations/Phish.py +11 -0
  30. homa/activations/RReLU.py +16 -0
  31. homa/activations/RandomizedSlopedReLU.py +7 -0
  32. homa/activations/SGELU.py +12 -0
  33. homa/activations/SReLU.py +37 -0
  34. homa/activations/SelfArctan.py +9 -0
  35. homa/activations/ShiftedReLU.py +10 -0
  36. homa/activations/SigmoidDerivative.py +10 -0
  37. homa/activations/SineReLU.py +11 -0
  38. homa/activations/SlopedReLU.py +13 -0
  39. homa/activations/SmallGaLU.py +11 -0
  40. homa/activations/Smish.py +9 -0
  41. homa/activations/SoftsignRReLU.py +17 -0
  42. homa/activations/Suish.py +11 -0
  43. homa/activations/TBSReLU.py +13 -0
  44. homa/activations/TSReLU.py +10 -0
  45. homa/activations/TangentBipolarSigmoidReLU.py +6 -0
  46. homa/activations/TangentSigmoidReLU.py +6 -0
  47. homa/activations/TeLU.py +9 -0
  48. homa/activations/TripleStateSwish.py +15 -0
  49. homa/activations/WideMeLU.py +15 -0
  50. homa/activations/__init__.py +49 -0
  51. homa/activations/learnable/AOAF.py +16 -0
  52. homa/activations/learnable/AReLU.py +19 -0
  53. homa/activations/learnable/DPReLU.py +16 -0
  54. homa/activations/learnable/DualLine.py +18 -0
  55. homa/activations/learnable/FReLU.py +14 -0
  56. homa/activations/learnable/LeLeLU.py +14 -0
  57. homa/activations/learnable/PERU.py +16 -0
  58. homa/activations/learnable/PiLU.py +18 -0
  59. homa/activations/learnable/ShiLU.py +16 -0
  60. homa/activations/learnable/StarReLU.py +16 -0
  61. homa/activations/learnable/__init__.py +10 -0
  62. homa/activations/learnable/concerns/ChannelBased.py +38 -0
  63. homa/activations/learnable/concerns/__init__.py +1 -0
  64. homa/cli/Commands/Command.py +2 -0
  65. homa/cli/Commands/InitCommand.py +34 -0
  66. homa/cli/Commands/__init__.py +2 -0
  67. homa/cli/HomaCommand.py +16 -0
  68. homa/cli/namespaces/CacheNamespace.py +29 -0
  69. homa/cli/namespaces/MakeNamespace.py +18 -0
  70. homa/cli/namespaces/__init__.py +2 -0
  71. homa/device.py +25 -0
  72. homa/ensemble/Ensemble.py +16 -0
  73. homa/ensemble/__init__.py +1 -0
  74. homa/ensemble/concerns/CalculatesMetricNecessities.py +24 -0
  75. homa/ensemble/concerns/PredictsProbabilities.py +15 -0
  76. homa/ensemble/concerns/ReportsClassificationMetrics.py +13 -0
  77. homa/ensemble/concerns/ReportsEnsembleAccuracy.py +11 -0
  78. homa/ensemble/concerns/ReportsEnsembleF1.py +10 -0
  79. homa/ensemble/concerns/ReportsEnsembleKappa.py +10 -0
  80. homa/ensemble/concerns/ReportsLogits.py +17 -0
  81. homa/ensemble/concerns/ReportsSize.py +11 -0
  82. homa/ensemble/concerns/StoresModels.py +36 -0
  83. homa/ensemble/concerns/__init__.py +9 -0
  84. homa/loss/LogitNormLoss.py +12 -0
  85. homa/loss/Loss.py +2 -0
  86. homa/loss/__init__.py +2 -0
  87. homa/settings.py +12 -0
  88. homa/torch/__init__.py +1 -0
  89. homa/torch/helpers.py +6 -0
  90. homa/utils.py +2 -0
  91. homa/vision/Classifier.py +5 -0
  92. homa/vision/Model.py +2 -0
  93. homa/vision/Resnet.py +13 -0
  94. homa/vision/StochasticClassifier.py +29 -0
  95. homa/vision/StochasticSwin.py +11 -0
  96. homa/vision/Swin.py +13 -0
  97. homa/vision/__init__.py +5 -0
  98. homa/vision/concerns/HasLabels.py +13 -0
  99. homa/vision/concerns/HasLogits.py +12 -0
  100. homa/vision/concerns/HasProbabilities.py +9 -0
  101. homa/vision/concerns/ReportsAccuracy.py +27 -0
  102. homa/vision/concerns/ReportsMetrics.py +6 -0
  103. homa/vision/concerns/Trainable.py +29 -0
  104. homa/vision/concerns/__init__.py +6 -0
  105. homa/vision/modules/ResnetModule.py +23 -0
  106. homa/vision/modules/SwinModule.py +23 -0
  107. homa/vision/modules/__init__.py +2 -0
  108. homa/vision/utils.py +12 -0
  109. homa-0.2.94.dist-info/METADATA +75 -0
  110. homa-0.2.94.dist-info/RECORD +113 -0
  111. homa-0.2.94.dist-info/WHEEL +5 -0
  112. homa-0.2.94.dist-info/entry_points.txt +2 -0
  113. homa-0.2.94.dist-info/top_level.txt +1 -0
@@ -0,0 +1,13 @@
1
+ import torch
2
+ from .ActivationFunction import ActivationFunction
3
+
4
+
5
+ class TBSReLU(ActivationFunction):
6
+ def __init__(self):
7
+ super().__init__()
8
+
9
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
10
+ a = 1 - torch.exp(-x)
11
+ b = 1 + torch.exp(-x)
12
+ c = a / b
13
+ return x * torch.tanh(c)
@@ -0,0 +1,10 @@
1
+ import torch
2
+ from .ActivationFunction import ActivationFunction
3
+
4
+
5
+ class TSReLU(ActivationFunction):
6
+ def __init__(self):
7
+ super().__init__()
8
+
9
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
10
+ return x * torch.tanh(torch.sigmoid(x))
@@ -0,0 +1,6 @@
1
+ from .TBSReLU import TBSReLU
2
+
3
+
4
+ class TangentBipolarSigmoidReLU(TBSReLU):
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
@@ -0,0 +1,6 @@
1
+ from .TSReLU import TSReLU
2
+
3
+
4
+ class TangentSigmoidReLU(TSReLU):
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
@@ -0,0 +1,9 @@
1
+ import torch
2
+
3
+
4
+ class TeLU(torch.nn.Module):
5
+ def __init__(self):
6
+ super().__init__()
7
+
8
+ def forward(self, x: torch.Tensor):
9
+ return x * torch.tanh(torch.exp(x))
@@ -0,0 +1,15 @@
1
+ import torch
2
+ from .ActivationFunction import ActivationFunction
3
+
4
+
5
+ class TripleStateSwish(ActivationFunction):
6
+ def __init__(self, alpha: float = 20, beta: float = 40, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+ self.alpha = alpha
9
+ self.beta = beta
10
+
11
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
12
+ a = 1 / (1 + torch.exp(-x))
13
+ b = 1 / (1 + torch.exp(-x + self.alpha))
14
+ c = 1 / (1 + torch.exp(-x + self.beta))
15
+ return x * a * (a + b + c)
@@ -0,0 +1,15 @@
1
+ from .MexicanReLU import MexicanReLU
2
+
3
+
4
+ class WideMeLU(MexicanReLU):
5
+ def __init__(self, channels: int | None = None, max_input: float = 1.0):
6
+ self.hats = [
7
+ (2.0, 2.0),
8
+ (1.0, 1.0),
9
+ (3.0, 1.0),
10
+ (0.5, 0.5),
11
+ (1.5, 0.5),
12
+ (2.5, 0.5),
13
+ (3.5, 0.5),
14
+ ]
15
+ super().__init__(self.hats, channels=channels, max_input=max_input)
@@ -0,0 +1,49 @@
1
+ from .ShiftedReLU import ShiftedReLU
2
+ from .PLogish import PLogish
3
+ from .ParametricLogish import ParametricLogish
4
+ from .ExpExpish import ExpExpish
5
+ from .GeneralizedSwish import GeneralizedSwish
6
+ from .TBSReLU import TBSReLU
7
+ from .NoisyReLU import NoisyReLU
8
+ from .ExponentialDLReLU import ExponentialDLReLU
9
+ from .SReLU import SReLU
10
+ from .TangentSigmoidReLU import TangentSigmoidReLU
11
+ from .Phish import Phish
12
+ from .WideMeLU import WideMeLU
13
+ from .SelfArctan import SelfArctan
14
+ from .LogSigmoid import LogSigmoid
15
+ from .SlopedReLU import SlopedReLU
16
+ from .SmallGaLU import SmallGaLU
17
+ from .MinSin import MinSin
18
+ from .LaLU import LaLU
19
+ from .MexicanReLU import MexicanReLU
20
+ from .APLU import APLU
21
+ from .ERF import ERF
22
+ from .TangentBipolarSigmoidReLU import TangentBipolarSigmoidReLU
23
+ from .BaseDLReLU import BaseDLReLU
24
+ from .Logish import Logish
25
+ from .TripleStateSwish import TripleStateSwish
26
+ from .ExponentialSwish import ExponentialSwish
27
+ from .TeLU import TeLU
28
+ from .Elliot import Elliot
29
+ from .MeLU import MeLU
30
+ from .GaussianReLU import GaussianReLU
31
+ from .ActivationFunction import ActivationFunction
32
+ from .RReLU import RReLU
33
+ from .Suish import Suish
34
+ from .SoftsignRReLU import SoftsignRReLU
35
+ from .Gish import Gish
36
+ from .NReLU import NReLU
37
+ from .LogLogish import LogLogish
38
+ from .SGELU import SGELU
39
+ from .GaLU import GaLU
40
+ from .TSReLU import TSReLU
41
+ from .SineReLU import SineReLU
42
+ from .DLReLU import DLReLU
43
+ from .CaLU import CaLU
44
+ from .RandomizedSlopedReLU import RandomizedSlopedReLU
45
+ from .GCU import GCU
46
+ from .SigmoidDerivative import SigmoidDerivative
47
+ from .Smish import Smish
48
+ from .AdaptiveActivationFunction import AdaptiveActivationFunction
49
+ from .learnable import *
@@ -0,0 +1,16 @@
1
+ import torch
2
+ from .concerns import ChannelBased
3
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
4
+
5
+
6
+ class AOAF(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self, b: float = 0.17, c: float = 0.17):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = b
11
+ self.c = c
12
+
13
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
14
+ self.initialize(x, "a")
15
+ a = self.a.view(self.parameter_shape(x))
16
+ return torch.relu(x - self.b * a) + self.c * a
@@ -0,0 +1,19 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from ...device import get_device
4
+
5
+
6
+ class AReLU(AdaptiveActivationFunction):
7
+ def __init__(self):
8
+ super(AReLU, self).__init__()
9
+ self.a = torch.nn.Parameter(torch.tensor(0.9, requires_grad=True))
10
+ self.b = torch.nn.Parameter(torch.tensor(2.0, requires_grad=True))
11
+ self.a.to(get_device())
12
+ self.b.to(get_device())
13
+
14
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
15
+ negative_slope = torch.clamp(self.a, 0.01, 0.99)
16
+ positive_slope = 1 + torch.sigmoid(self.b)
17
+ positive = positive_slope * torch.relu(x)
18
+ negative = negative_slope * (-torch.relu(-x))
19
+ return positive + negative
@@ -0,0 +1,16 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class DPReLU(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+
12
+ def forward(self, x: torch.Tensor):
13
+ self.initialize(x, ["a", "b"], [1, 0.01])
14
+ a = self.a.view(self.parameter_shape(x))
15
+ b = self.b.view(self.parameter_shape(x))
16
+ return torch.where(x >= 0, a * x, b * x)
@@ -0,0 +1,18 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class DualLine(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+ self.m = None
12
+
13
+ def forward(self, x: torch.Tensor):
14
+ self.initialize(x, ["a", "b", "m"], [1, 0.01, -0.22])
15
+ a = self.a.view(self.parameter_shape(x))
16
+ b = self.b.view(self.parameter_shape(x))
17
+ m = self.m.view(self.parameter_shape(x))
18
+ return torch.where(x >= 0, a * x + m, b * x + m)
@@ -0,0 +1,14 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class FReLU(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.b = None
10
+
11
+ def forward(self, x: torch.Tensor):
12
+ self.initialize(x, "b")
13
+ b = self.b.view(self.parameter_shape(x))
14
+ return torch.where(x >= 0, x + b, b)
@@ -0,0 +1,14 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class LeLeLU(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+
11
+ def forward(self, x: torch.Tensor):
12
+ self.initialize(x, "a")
13
+ a = self.a.view(self.parameter_shape(x))
14
+ return torch.where(x >= 0, a * x, 0.01 * a * x)
@@ -0,0 +1,16 @@
1
+ import torch
2
+ from .concerns import ChannelBased
3
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
4
+
5
+
6
+ class PERU(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+
12
+ def forward(self, x: torch.Tensor):
13
+ self.initialize(x, ["a", "b"])
14
+ a = self.a.view(self.parameter_shape(x))
15
+ b = self.b.view(self.parameter_shape(x))
16
+ return torch.where(x >= 0, a * x, a * x * torch.exp(b * x))
@@ -0,0 +1,18 @@
1
+ import torch
2
+ from ..AdaptiveActivationFunction import AdaptiveActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class PiLU(AdaptiveActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+ self.c = None
12
+
13
+ def forward(self, x: torch.Tensor):
14
+ self.initialize(x, ["a", "b", "c"], [1, 0.01, 1])
15
+ a = self.a.view(self.parameter_shape(x))
16
+ b = self.b.view(self.parameter_shape(x))
17
+ c = self.c.view(self.parameter_shape(x))
18
+ return torch.where(x >= c, a * x + c * (1 - a), b * x + c * (1 - b))
@@ -0,0 +1,16 @@
1
+ import torch
2
+ from ..ActivationFunction import ActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class ShiLU(ActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+
12
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
13
+ self.initialize(x, ["a", "b"])
14
+ a = self.a.view(self.parameter_shape(x))
15
+ b = self.b.view(self.parameter_shape(x))
16
+ return torch.relu(x) * a + b
@@ -0,0 +1,16 @@
1
+ import torch
2
+ from ..ActivationFunction import ActivationFunction
3
+ from .concerns import ChannelBased
4
+
5
+
6
+ class StarReLU(ActivationFunction, ChannelBased):
7
+ def __init__(self):
8
+ super().__init__()
9
+ self.a = None
10
+ self.b = None
11
+
12
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
13
+ self.initialize(x, ["a", "b"])
14
+ a = self.a.view(self.parameter_shape(x))
15
+ b = self.b.view(self.parameter_shape(x))
16
+ return a * torch.relu(x).pow(2) + b
@@ -0,0 +1,10 @@
1
+ from .DualLine import DualLine
2
+ from .LeLeLU import LeLeLU
3
+ from .AReLU import AReLU
4
+ from .PERU import PERU
5
+ from .ShiLU import ShiLU
6
+ from .StarReLU import StarReLU
7
+ from .DPReLU import DPReLU
8
+ from .PiLU import PiLU
9
+ from .FReLU import FReLU
10
+ from .AOAF import AOAF
@@ -0,0 +1,38 @@
1
+ import torch
2
+ from typing import List
3
+
4
+
5
+ class ChannelBased:
6
+ def __init__(self, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+ self._initialized = False
9
+ self.num_channels = None
10
+
11
+ def initialize(
12
+ self, x: torch.Tensor, attrs: List[str] | str, values: List[float] | float = []
13
+ ):
14
+ if getattr(self, "_initialized", False):
15
+ return
16
+
17
+ if not isinstance(values, list):
18
+ values = [values]
19
+
20
+ if not isinstance(attrs, list):
21
+ attrs = [attrs]
22
+
23
+ self.num_channels = x.shape[1]
24
+ device = x.device
25
+ for index, attr in enumerate(attrs):
26
+ if index < len(values) and values[index] is not None:
27
+ default_value = float(values[index])
28
+ else:
29
+ default_value = 1.0
30
+ param = torch.nn.Parameter(torch.full((self.num_channels,), default_value))
31
+ param = param.to(device)
32
+ setattr(self, attr, param)
33
+ self._initialized = True
34
+
35
+ def parameter_shape(self, x: torch.Tensor) -> tuple | None:
36
+ if hasattr(self, "num_channels"):
37
+ return (1, self.num_channels) + (1,) * (x.ndim - 2)
38
+ return None
@@ -0,0 +1 @@
1
+ from .ChannelBased import ChannelBased
@@ -0,0 +1,2 @@
1
+ class Command:
2
+ pass
@@ -0,0 +1,34 @@
1
+ import ast
2
+ from pathlib import Path
3
+ from .Command import Command
4
+
5
+
6
+ class InitCommand(Command):
7
+ @staticmethod
8
+ def run():
9
+ path = Path(".")
10
+ init_file = path / "__init__.py"
11
+ init_file.write_text("")
12
+ for file in path.iterdir():
13
+ if file.name == "__init__.py" or file.suffix != ".py":
14
+ continue
15
+ tree = ast.parse(file.read_text())
16
+ classes = [
17
+ node.name
18
+ for node in tree.body
19
+ if isinstance(node, ast.ClassDef) and not node.name.startswith("_")
20
+ ]
21
+ functions = [
22
+ node.name
23
+ for node in tree.body
24
+ if isinstance(node, ast.FunctionDef) and not node.name.startswith("_")
25
+ ]
26
+ if not (classes or functions):
27
+ continue
28
+ module = file.stem
29
+ lines = [
30
+ f"from .{module} import {name}\n" for name in (*classes, *functions)
31
+ ]
32
+ with init_file.open("a") as f:
33
+ f.writelines(lines)
34
+ print(f"Processed {file}: classes={classes}, functions={functions}")
@@ -0,0 +1,2 @@
1
+ from .Command import Command
2
+ from .InitCommand import InitCommand
@@ -0,0 +1,16 @@
1
+ import fire
2
+ from .namespaces import MakeNamespace, CacheNamespace
3
+ from .Commands import InitCommand
4
+
5
+
6
+ class HomaCommand:
7
+ def __init__(self):
8
+ self.make = MakeNamespace()
9
+ self.cache = CacheNamespace()
10
+
11
+ def init(self):
12
+ InitCommand.run()
13
+
14
+
15
+ def main():
16
+ fire.Fire(HomaCommand)
@@ -0,0 +1,29 @@
1
+ import shutil
2
+ import sys
3
+ from pathlib import Path
4
+
5
+
6
+ class CacheNamespace:
7
+ def clear(self):
8
+ root = Path.cwd()
9
+ removed = 0
10
+ errors: list[str] = []
11
+
12
+ for candidate in root.rglob("__pycache__"):
13
+ if not candidate.is_dir():
14
+ continue
15
+ try:
16
+ shutil.rmtree(candidate)
17
+ removed += 1
18
+ except OSError as exc:
19
+ errors.append(f"{candidate}: {exc}")
20
+
21
+ if errors:
22
+ print("Failed to remove the following paths:", file=sys.stderr)
23
+ for error in errors:
24
+ print(f" - {error}", file=sys.stderr)
25
+ return 1
26
+
27
+ return (
28
+ f"Removed {removed} __pycache__ director{'ies' if removed != 1 else 'y'}."
29
+ )
@@ -0,0 +1,18 @@
1
+ from pathlib import Path
2
+
3
+
4
+ class MakeNamespace:
5
+ def trait(self, name: str):
6
+ class_name = name.split(".")[-1]
7
+ file = name.replace(".", "/") + ".py"
8
+ path = Path(file)
9
+ parent = path.parent
10
+ parent.mkdir(parents=True, exist_ok=True)
11
+ path.touch()
12
+
13
+ # copy the tempalte path
14
+ current_path = Path(__file__).parent.parent.resolve()
15
+ template_path = current_path / "templates" / "trait.txt"
16
+ content = template_path.read_text()
17
+ content = content.replace("{{CLASS}}", class_name)
18
+ path.write_text(content)
@@ -0,0 +1,2 @@
1
+ from .MakeNamespace import MakeNamespace
2
+ from .CacheNamespace import CacheNamespace
homa/device.py ADDED
@@ -0,0 +1,25 @@
1
+ import torch
2
+
3
+
4
+ def get_device():
5
+ if torch.backends.mps.is_available():
6
+ return mps()
7
+ if torch.cuda.is_available():
8
+ return cuda()
9
+ return cpu()
10
+
11
+
12
+ def cpu():
13
+ return torch.device("cpu")
14
+
15
+
16
+ def cuda():
17
+ return torch.device("cuda")
18
+
19
+
20
+ def mps():
21
+ return torch.device("mps")
22
+
23
+
24
+ def device():
25
+ return get_device()
@@ -0,0 +1,16 @@
1
+ from .concerns import (
2
+ ReportsSize,
3
+ StoresModels,
4
+ ReportsClassificationMetrics,
5
+ PredictsProbabilities,
6
+ )
7
+
8
+
9
+ class Ensemble(
10
+ ReportsSize,
11
+ ReportsClassificationMetrics,
12
+ PredictsProbabilities,
13
+ StoresModels,
14
+ ):
15
+ def __init__(self):
16
+ super().__init__()
@@ -0,0 +1 @@
1
+ from .Ensemble import Ensemble
@@ -0,0 +1,24 @@
1
+ import torch
2
+ from ...device import get_device
3
+
4
+
5
+ class CalculatesMetricNecessities:
6
+ def __init__(self, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+
9
+ @torch.no_grad()
10
+ def metric_necessities(self, dataloader):
11
+ predictions, labels = [], []
12
+ device = get_device()
13
+ for x, y in dataloader:
14
+ x, y = x.to(device), y.to(device)
15
+ sum_logits = None
16
+ for model in self.models:
17
+ model.to(device)
18
+ model.eval()
19
+ logits = model(x)
20
+ sum_logits = logits if sum_logits is None else sum_logits + logits
21
+ batch_predictions = sum_logits.argmax(dim=1)
22
+ predictions.extend(batch_predictions.cpu().numpy())
23
+ labels.extend(y.cpu().numpy())
24
+ return predictions, labels
@@ -0,0 +1,15 @@
1
+ import torch
2
+ from .ReportsLogits import ReportsLogits
3
+
4
+
5
+ class PredictsProbabilities(ReportsLogits):
6
+ def __init__(self, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+
9
+ def predict(self, x: torch.Tensor) -> torch.Tensor:
10
+ logits = self.logits(x)
11
+ return torch.nn.functional.softmax(logits, dim=1)
12
+
13
+ @torch.no_grad()
14
+ def predict_(self, x: torch.Tensor) -> torch.Tensor:
15
+ return self.predict(x)
@@ -0,0 +1,13 @@
1
+ from .ReportsEnsembleF1 import ReportsEnsembleF1
2
+ from .ReportsEnsembleAccuracy import ReportsEnsembleAccuracy
3
+ from .ReportsEnsembleKappa import ReportsEnsembleKappa
4
+ from .CalculatesMetricNecessities import CalculatesMetricNecessities
5
+
6
+
7
+ class ReportsClassificationMetrics(
8
+ CalculatesMetricNecessities,
9
+ ReportsEnsembleAccuracy,
10
+ ReportsEnsembleF1,
11
+ ReportsEnsembleKappa,
12
+ ):
13
+ pass
@@ -0,0 +1,11 @@
1
+ from sklearn.metrics import accuracy_score as accuracy
2
+ from torch.utils.data import DataLoader
3
+
4
+
5
+ class ReportsEnsembleAccuracy:
6
+ def __init__(self, *args, **kwargs):
7
+ super().__init__(*args, **kwargs)
8
+
9
+ def accuracy(self, dataloader: DataLoader) -> float:
10
+ predictions, labels = self.metric_necessities(dataloader)
11
+ return accuracy(labels, predictions)
@@ -0,0 +1,10 @@
1
+ from sklearn.metrics import f1_score as f1
2
+
3
+
4
+ class ReportsEnsembleF1:
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+
8
+ def f1(self) -> float:
9
+ predictions, labels = self.metric_necessities()
10
+ return f1(labels, predictions, average="weighted")
@@ -0,0 +1,10 @@
1
+ from sklearn.metrics import cohen_kappa_score as kappa
2
+
3
+
4
+ class ReportsEnsembleKappa:
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+
8
+ def accuracy(self) -> float:
9
+ predictions, labels = self.metric_necessities()
10
+ return kappa(labels, predictions)
@@ -0,0 +1,17 @@
1
+ import torch
2
+
3
+
4
+ class ReportsLogits:
5
+ def __init__(self, *args, **kwargs):
6
+ super().__init__(*args, **kwargs)
7
+
8
+ def logits(self, x: torch.Tensor) -> torch.Tensor:
9
+ batch_size = x.shape[0]
10
+ logits = torch.zeros((batch_size, self.num_classes))
11
+ for model in self.models:
12
+ logits += model(x)
13
+ return logits
14
+
15
+ @torch.no_grad()
16
+ def logits_(self, *args, **kwargs):
17
+ return self.logits(*args, **kwargs)
@@ -0,0 +1,11 @@
1
+ class ReportsSize:
2
+ def __init__(self, *args, **kwargs):
3
+ super().__init__(*args, **kwargs)
4
+
5
+ @property
6
+ def size(self):
7
+ return len(self.models)
8
+
9
+ @property
10
+ def length(self):
11
+ return len(self.models)