homa 0.1.1__py3-none-any.whl → 0.2.9__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- homa/activations/APLU.py +49 -0
- homa/activations/ActivationFunction.py +6 -0
- homa/activations/AdaptiveActivationFunction.py +15 -0
- homa/activations/BaseDLReLU.py +34 -0
- homa/activations/CaLU.py +13 -0
- homa/activations/DLReLU.py +6 -0
- homa/activations/ERF.py +10 -0
- homa/activations/Elliot.py +10 -0
- homa/activations/ExpExpish.py +9 -0
- homa/activations/ExponentialDLReLU.py +6 -0
- homa/activations/ExponentialSwish.py +10 -0
- homa/activations/GCU.py +9 -0
- homa/activations/GaLU.py +11 -0
- homa/activations/GaussianReLU.py +50 -0
- homa/activations/GeneralizedSwish.py +10 -0
- homa/activations/Gish.py +11 -0
- homa/activations/LaLU.py +11 -0
- homa/activations/LogLogish.py +10 -0
- homa/activations/LogSigmoid.py +10 -0
- homa/activations/Logish.py +10 -0
- homa/activations/MeLU.py +11 -0
- homa/activations/MexicanReLU.py +49 -0
- homa/activations/MinSin.py +10 -0
- homa/activations/NReLU.py +12 -0
- homa/activations/NoisyReLU.py +6 -0
- homa/activations/PLogish.py +6 -0
- homa/activations/ParametricLogish.py +13 -0
- homa/activations/Phish.py +11 -0
- homa/activations/RReLU.py +16 -0
- homa/activations/RandomizedSlopedReLU.py +7 -0
- homa/activations/SGELU.py +12 -0
- homa/activations/SReLU.py +37 -0
- homa/activations/SelfArctan.py +9 -0
- homa/activations/ShiftedReLU.py +10 -0
- homa/activations/SigmoidDerivative.py +10 -0
- homa/activations/SineReLU.py +11 -0
- homa/activations/SlopedReLU.py +13 -0
- homa/activations/SmallGaLU.py +11 -0
- homa/activations/Smish.py +9 -0
- homa/activations/SoftsignRReLU.py +17 -0
- homa/activations/Suish.py +11 -0
- homa/activations/TBSReLU.py +13 -0
- homa/activations/TSReLU.py +10 -0
- homa/activations/TangentBipolarSigmoidReLU.py +6 -0
- homa/activations/TangentSigmoidReLU.py +6 -0
- homa/activations/TeLU.py +9 -0
- homa/activations/TripleStateSwish.py +15 -0
- homa/activations/WideMeLU.py +15 -0
- homa/activations/__init__.py +49 -2
- homa/activations/learnable/AOAF.py +16 -0
- homa/activations/learnable/AReLU.py +16 -0
- homa/activations/learnable/DPReLU.py +16 -0
- homa/activations/learnable/DualLine.py +18 -0
- homa/activations/learnable/FReLU.py +14 -0
- homa/activations/learnable/LeLeLU.py +14 -0
- homa/activations/learnable/PERU.py +16 -0
- homa/activations/learnable/PiLU.py +18 -0
- homa/activations/learnable/ShiLU.py +16 -0
- homa/activations/learnable/StarReLU.py +16 -0
- homa/activations/learnable/__init__.py +10 -0
- homa/activations/learnable/concerns/ChannelBased.py +36 -0
- homa/activations/learnable/concerns/__init__.py +1 -0
- homa/cli/Commands/Command.py +2 -0
- homa/cli/Commands/InitCommand.py +34 -0
- homa/cli/Commands/__init__.py +2 -0
- homa/cli/HomaCommand.py +4 -0
- homa/ensemble/Ensemble.py +2 -4
- homa/ensemble/concerns/CalculatesMetricNecessities.py +14 -10
- homa/ensemble/concerns/PredictsProbabilities.py +4 -0
- homa/ensemble/concerns/ReportsClassificationMetrics.py +1 -1
- homa/ensemble/concerns/ReportsEnsembleAccuracy.py +3 -2
- homa/ensemble/concerns/ReportsLogits.py +4 -0
- homa/ensemble/concerns/ReportsSize.py +2 -2
- homa/ensemble/concerns/StoresModels.py +29 -0
- homa/ensemble/concerns/__init__.py +1 -2
- homa/loss/LogitNormLoss.py +12 -0
- homa/loss/Loss.py +2 -0
- homa/loss/__init__.py +2 -0
- homa/torch/__init__.py +0 -1
- homa/vision/Classifier.py +5 -0
- homa/vision/Resnet.py +6 -5
- homa/vision/StochasticClassifier.py +29 -0
- homa/vision/StochasticSwin.py +11 -0
- homa/vision/Swin.py +13 -0
- homa/vision/__init__.py +3 -1
- homa/vision/concerns/HasLabels.py +13 -0
- homa/vision/concerns/HasLogits.py +12 -0
- homa/vision/concerns/HasProbabilities.py +9 -0
- homa/vision/concerns/ReportsAccuracy.py +27 -0
- homa/vision/concerns/ReportsMetrics.py +6 -0
- homa/vision/concerns/Trainable.py +5 -2
- homa/vision/concerns/__init__.py +5 -0
- homa/vision/modules/SwinModule.py +23 -0
- homa/vision/modules/__init__.py +1 -1
- homa/vision/utils.py +9 -18
- homa-0.2.9.dist-info/METADATA +75 -0
- homa-0.2.9.dist-info/RECORD +113 -0
- homa/activations/classes/APLU.py +0 -48
- homa/activations/classes/GALU.py +0 -51
- homa/activations/classes/MELU.py +0 -50
- homa/activations/classes/PDELU.py +0 -39
- homa/activations/classes/SReLU.py +0 -49
- homa/activations/classes/SmallGALU.py +0 -39
- homa/activations/classes/StochasticActivation.py +0 -20
- homa/activations/classes/WideMELU.py +0 -61
- homa/activations/classes/__init__.py +0 -8
- homa/activations/utils.py +0 -27
- homa/ensemble/concerns/HasNetwork.py +0 -5
- homa/ensemble/concerns/HasStateDicts.py +0 -8
- homa/ensemble/concerns/RecordsStateDictionaries.py +0 -23
- homa/torch/Module.py +0 -8
- homa/vision/StochasticResnet.py +0 -8
- homa/vision/modules/StochasticResnetModule.py +0 -9
- homa-0.1.1.dist-info/METADATA +0 -21
- homa-0.1.1.dist-info/RECORD +0 -51
- {homa-0.1.1.dist-info → homa-0.2.9.dist-info}/WHEEL +0 -0
- {homa-0.1.1.dist-info → homa-0.2.9.dist-info}/entry_points.txt +0 -0
- {homa-0.1.1.dist-info → homa-0.2.9.dist-info}/top_level.txt +0 -0
|
@@ -1,39 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class SmallGALU(torch.nn.Module):
|
|
5
|
-
def __init__(self, max_input: float = 1.0):
|
|
6
|
-
super(SmallGALU, self).__init__()
|
|
7
|
-
if max_input <= 0:
|
|
8
|
-
raise ValueError("max_input must be positive.")
|
|
9
|
-
self.max_input = max_input
|
|
10
|
-
self.alpha = None
|
|
11
|
-
self.beta = None
|
|
12
|
-
self._num_channels = None
|
|
13
|
-
|
|
14
|
-
def _initialize_parameters(self, x):
|
|
15
|
-
if x.ndim < 2:
|
|
16
|
-
raise ValueError(
|
|
17
|
-
f"Input tensor must have at least 2 dimensions (N, C), but got shape {x.shape}"
|
|
18
|
-
)
|
|
19
|
-
|
|
20
|
-
num_channels = x.shape[1]
|
|
21
|
-
self._num_channels = num_channels
|
|
22
|
-
param_shape = [1] * x.ndim
|
|
23
|
-
param_shape[1] = num_channels
|
|
24
|
-
self.alpha = torch.nn.Parameter(torch.zeros(param_shape))
|
|
25
|
-
self.beta = torch.nn.Parameter(torch.zeros(param_shape))
|
|
26
|
-
|
|
27
|
-
def forward(self, x):
|
|
28
|
-
if self.alpha is None:
|
|
29
|
-
self._initialize_parameters(x)
|
|
30
|
-
|
|
31
|
-
zero = torch.tensor(0.0, device=x.device, dtype=x.dtype)
|
|
32
|
-
x_norm = x / self.max_input
|
|
33
|
-
part_prelu = torch.relu(x_norm) + self.alpha * torch.min(x_norm, zero)
|
|
34
|
-
part_beta = self.beta * (
|
|
35
|
-
torch.relu(1.0 - torch.abs(x_norm - 1.0))
|
|
36
|
-
+ torch.min(torch.abs(x_norm - 3.0) - 1.0, zero)
|
|
37
|
-
)
|
|
38
|
-
z = part_prelu + part_beta
|
|
39
|
-
return z * self.max_input
|
|
@@ -1,20 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
import random
|
|
3
|
-
|
|
4
|
-
from .APLU import APLU
|
|
5
|
-
from .GALU import GALU
|
|
6
|
-
from .SmallGALU import SmallGALU
|
|
7
|
-
from .MELU import MELU
|
|
8
|
-
from .WideMELU import WideMELU
|
|
9
|
-
from .PDELU import PDELU
|
|
10
|
-
from .SReLU import SReLU
|
|
11
|
-
|
|
12
|
-
|
|
13
|
-
class StochasticActivation(torch.nn.Module):
|
|
14
|
-
def __init__(self):
|
|
15
|
-
super().__init__()
|
|
16
|
-
self.gate = random.choice([APLU, GALU, SmallGALU, MELU, WideMELU, PDELU, SReLU])
|
|
17
|
-
self.gate = self.gate()
|
|
18
|
-
|
|
19
|
-
def forward(self, x: torch.Tensor) -> torch.Tensor:
|
|
20
|
-
return self.gate(x)
|
|
@@ -1,61 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
class WideMELU(torch.nn.Module):
|
|
5
|
-
def __init__(self, maxInput: float = 1.0):
|
|
6
|
-
super().__init__()
|
|
7
|
-
self.maxInput = float(maxInput)
|
|
8
|
-
self.alpha = None
|
|
9
|
-
self.beta = None
|
|
10
|
-
self.gamma = None
|
|
11
|
-
self.delta = None
|
|
12
|
-
self.xi = None
|
|
13
|
-
self.psi = None
|
|
14
|
-
self.theta = None
|
|
15
|
-
self.lam = None
|
|
16
|
-
self._initialized = False
|
|
17
|
-
|
|
18
|
-
def _initialize_parameters(self, X: torch.Tensor):
|
|
19
|
-
if X.dim() != 4:
|
|
20
|
-
raise ValueError(
|
|
21
|
-
f"Expected 4D input (B, C, H, W), but got {X.dim()}D input."
|
|
22
|
-
)
|
|
23
|
-
|
|
24
|
-
num_channels = X.shape[1]
|
|
25
|
-
shape = (1, num_channels, 1, 1)
|
|
26
|
-
|
|
27
|
-
self.alpha = torch.nn.Parameter(torch.zeros(shape))
|
|
28
|
-
self.beta = torch.nn.Parameter(torch.zeros(shape))
|
|
29
|
-
self.gamma = torch.nn.Parameter(torch.zeros(shape))
|
|
30
|
-
self.delta = torch.nn.Parameter(torch.zeros(shape))
|
|
31
|
-
self.xi = torch.nn.Parameter(torch.zeros(shape))
|
|
32
|
-
self.psi = torch.nn.Parameter(torch.zeros(shape))
|
|
33
|
-
self.theta = torch.nn.Parameter(torch.zeros(shape))
|
|
34
|
-
self.lam = torch.nn.Parameter(torch.zeros(shape))
|
|
35
|
-
self._initialized = True
|
|
36
|
-
|
|
37
|
-
def forward(self, X: torch.Tensor) -> torch.Tensor:
|
|
38
|
-
if not self._initialized:
|
|
39
|
-
self._initialize_parameters(X)
|
|
40
|
-
X_norm = X / self.maxInput
|
|
41
|
-
Y = torch.roll(X_norm, shifts=-1, dims=1)
|
|
42
|
-
term1 = torch.relu(X_norm)
|
|
43
|
-
term2 = self.alpha * torch.clamp(X_norm, max=0)
|
|
44
|
-
dist_sq_beta = (X_norm - 2) ** 2 + (Y - 2) ** 2
|
|
45
|
-
dist_sq_gamma = (X_norm - 1) ** 2 + (Y - 1) ** 2
|
|
46
|
-
dist_sq_delta = (X_norm - 1) ** 2 + (Y - 3) ** 2
|
|
47
|
-
dist_sq_xi = (X_norm - 3) ** 2 + (Y - 1) ** 2
|
|
48
|
-
dist_sq_psi = (X_norm - 3) ** 2 + (Y - 3) ** 2
|
|
49
|
-
dist_sq_theta = (X_norm - 1) ** 2 + (Y - 2) ** 2
|
|
50
|
-
dist_sq_lambda = (X_norm - 3) ** 2 + (Y - 2) ** 2
|
|
51
|
-
|
|
52
|
-
term3 = self.beta * torch.sqrt(torch.relu(2 - dist_sq_beta))
|
|
53
|
-
term4 = self.gamma * torch.sqrt(torch.relu(1 - dist_sq_gamma))
|
|
54
|
-
term5 = self.delta * torch.sqrt(torch.relu(1 - dist_sq_delta))
|
|
55
|
-
term6 = self.xi * torch.sqrt(torch.relu(1 - dist_sq_xi))
|
|
56
|
-
term7 = self.psi * torch.sqrt(torch.relu(1 - dist_sq_psi))
|
|
57
|
-
term8 = self.theta * torch.sqrt(torch.relu(1 - dist_sq_theta))
|
|
58
|
-
term9 = self.lam * torch.sqrt(torch.relu(1 - dist_sq_lambda))
|
|
59
|
-
Z_norm = term1 + term2 + term3 + term4 + term5 + term6 + term7 + term8 + term9
|
|
60
|
-
Z = Z_norm * self.maxInput
|
|
61
|
-
return Z
|
homa/activations/utils.py
DELETED
|
@@ -1,27 +0,0 @@
|
|
|
1
|
-
import torch
|
|
2
|
-
|
|
3
|
-
|
|
4
|
-
def negative_part(x):
|
|
5
|
-
return torch.minimum(x, torch.zeros_like(x))
|
|
6
|
-
|
|
7
|
-
|
|
8
|
-
def positive_part(x):
|
|
9
|
-
return torch.maximum(x, torch.zeros_like(x))
|
|
10
|
-
|
|
11
|
-
|
|
12
|
-
def as_channel_parameters(parameter: torch.Tensor, x: torch.Tensor):
|
|
13
|
-
shape = [1] * x.dim()
|
|
14
|
-
shape[1] = -1
|
|
15
|
-
return parameter.view(*shape)
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def device_compatibility_check(model, x: torch.Tensor):
|
|
19
|
-
for p in model.parameters():
|
|
20
|
-
if p.device != x.device or p.dtype != x.dtype:
|
|
21
|
-
p.data = p.data.to(device=x.device, dtype=x.dtype)
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
def phi_hat(x, a, lam):
|
|
25
|
-
term_pos = torch.maximum(lam - torch.abs(x - a), torch.zeros_like(x))
|
|
26
|
-
term_neg = torch.minimum(torch.abs(x - (a + 2 * lam)) - lam, torch.zeros_like(x))
|
|
27
|
-
return term_pos + term_neg
|
|
@@ -1,23 +0,0 @@
|
|
|
1
|
-
from copy import deepcopy
|
|
2
|
-
from .HasStateDicts import HasStateDicts
|
|
3
|
-
from ...vision import Model
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class RecordsStateDictionaries(HasStateDicts):
|
|
7
|
-
def __init__(self, *args, **kwargs):
|
|
8
|
-
super().__init__(*args, **kwargs)
|
|
9
|
-
|
|
10
|
-
def record(self, model: Model):
|
|
11
|
-
if self.network is None:
|
|
12
|
-
self.network = deepcopy(model.network)
|
|
13
|
-
|
|
14
|
-
self.state_dicts.append(model.network.state_dict())
|
|
15
|
-
|
|
16
|
-
def push(self, *args, **kwargs):
|
|
17
|
-
self.record(*args, **kwargs)
|
|
18
|
-
|
|
19
|
-
def append(self, *args, **kwargs):
|
|
20
|
-
self.record(*args, **kwargs)
|
|
21
|
-
|
|
22
|
-
def add(self, *args, **kwargs):
|
|
23
|
-
self.record(*args, **kwargs)
|
homa/torch/Module.py
DELETED
homa/vision/StochasticResnet.py
DELETED
|
@@ -1,9 +0,0 @@
|
|
|
1
|
-
from .ResnetModule import ResnetModule
|
|
2
|
-
from ..utils import replace_relu
|
|
3
|
-
from ...activations import StochasticActivation
|
|
4
|
-
|
|
5
|
-
|
|
6
|
-
class StochasticResnetModule(ResnetModule):
|
|
7
|
-
def __init__(self, *args, **kwargs):
|
|
8
|
-
super().__init__(*args, **kwargs)
|
|
9
|
-
replace_relu(self, StochasticActivation)
|
homa-0.1.1.dist-info/METADATA
DELETED
|
@@ -1,21 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: homa
|
|
3
|
-
Version: 0.1.1
|
|
4
|
-
Summary: A curated list of machine learning and deep learning helpers.
|
|
5
|
-
Author-email: Taha Shieenavaz <tahashieenavaz@gmail.com>
|
|
6
|
-
Requires-Python: >=3.7
|
|
7
|
-
Description-Content-Type: text/markdown
|
|
8
|
-
Requires-Dist: numpy
|
|
9
|
-
Requires-Dist: torch
|
|
10
|
-
Requires-Dist: fire
|
|
11
|
-
|
|
12
|
-
## Device Management
|
|
13
|
-
|
|
14
|
-
```py
|
|
15
|
-
from homa import cpu, mps, cuda, device
|
|
16
|
-
|
|
17
|
-
torch.tensor([1, 2, 3, 4, 5]).to(cpu())
|
|
18
|
-
torch.tensor([1, 2, 3, 4, 5]).to(cuda())
|
|
19
|
-
torch.tensor([1, 2, 3, 4, 5]).to(mps())
|
|
20
|
-
torch.tensor([1, 2, 3, 4, 5]).to(device())
|
|
21
|
-
```
|
homa-0.1.1.dist-info/RECORD
DELETED
|
@@ -1,51 +0,0 @@
|
|
|
1
|
-
homa/__init__.py,sha256=NBYFKizG8UASiz5HLsEBqzXNGlWr78xm4sLr5hxKvjU,46
|
|
2
|
-
homa/device.py,sha256=9kKXfpYfnEk2cFQWPfcJrVloHgC_SSbP4I8IRY9TYk4,343
|
|
3
|
-
homa/settings.py,sha256=CPZDPvs1380O7SY7FcSKol8kBVFVVYFgSJl3YEyJuZ0,263
|
|
4
|
-
homa/utils.py,sha256=dPp6TItJwWxBqxmkMzUuCtX_BzdPT-kMOZyXRGVMCbQ,70
|
|
5
|
-
homa/activations/__init__.py,sha256=zrEyWrYuQAD9R8GJBJUChfkW8_lsMUEwHvAcASoac3k,44
|
|
6
|
-
homa/activations/utils.py,sha256=asXbV7tl48ORLiggXHo6hjYNIjWuHvmuhVv311IJebA,734
|
|
7
|
-
homa/activations/classes/APLU.py,sha256=tjdHYrOqO6vA6qFVAbUuu1O9kB_bPq4AYuiXpbyk2vg,1499
|
|
8
|
-
homa/activations/classes/GALU.py,sha256=LNH-iO89cDXoL6iXtny5DxW3n7sO34s4_GWXcFlzgQM,1864
|
|
9
|
-
homa/activations/classes/MELU.py,sha256=80_0H4pjGXngiGsyT09c4h2MFRkds8Ypn-zXRJ45NQY,2060
|
|
10
|
-
homa/activations/classes/PDELU.py,sha256=tRdxa1RLQuXEjXrSD283qgIulbOPX1mQtV5GGqrVUH0,1418
|
|
11
|
-
homa/activations/classes/SReLU.py,sha256=TxTxcAvRQHYykGq0uXP2QthNIK_BNsLaoqzHPHSFRIY,1828
|
|
12
|
-
homa/activations/classes/SmallGALU.py,sha256=LS92S4lgIOrqbJPMA1pBJSkkm3lIChd1dRE_XV-YRd8,1342
|
|
13
|
-
homa/activations/classes/StochasticActivation.py,sha256=0A2iTQmtvA7Yx9hOf4fuqTvTSi_8bIT3dsKLe--Od3o,515
|
|
14
|
-
homa/activations/classes/WideMELU.py,sha256=7-p-mhOt8kc_qniXqF6wGYVxtLveL7bUIUJSFKQYD0M,2507
|
|
15
|
-
homa/activations/classes/__init__.py,sha256=RBI51Jc9EBPrpwLNCmzLkz3fhJCRRSI46HjsI1CL1Es,238
|
|
16
|
-
homa/cli/HomaCommand.py,sha256=zUWDLpXb6zO6DWZ71MuhPNawjXTqkXJPEwZxWN7Ejx0,226
|
|
17
|
-
homa/cli/namespaces/CacheNamespace.py,sha256=QXGljzj287stzTx0y_MXnqvCgPLqd7WjSPop2WDe14E,784
|
|
18
|
-
homa/cli/namespaces/MakeNamespace.py,sha256=5G6LHk3lDkXROz7uq4jYE0DyO_V7JvnhJ33IFCiqYro,590
|
|
19
|
-
homa/cli/namespaces/__init__.py,sha256=zAKUGPH4wcacxfH5Qvidp-uOuHdfzhan6kvVI6eMKA8,84
|
|
20
|
-
homa/ensemble/Ensemble.py,sha256=gYfQfdKSZdLlWNGMUGCOEv3vQj0nhYYpJmznETizXfA,346
|
|
21
|
-
homa/ensemble/__init__.py,sha256=1pk2W-NbgfDFh9WLKZVLUk2E3PTjVZ5Bap9dQEnrs9o,31
|
|
22
|
-
homa/ensemble/concerns/CalculatesMetricNecessities.py,sha256=hU0Nn-4UYQXUy7gQmWL638w4vZjwigAMkxyFnqRboiM,706
|
|
23
|
-
homa/ensemble/concerns/HasNetwork.py,sha256=WlE-gpt7WlCOW0vIlnqJJsYCi2Ids7uE6CDjolOoElw,227
|
|
24
|
-
homa/ensemble/concerns/HasStateDicts.py,sha256=EAQj01qC_wnJUgQ6ReZI9kc1fFC-tqPrXjeGhE2Ka6M,215
|
|
25
|
-
homa/ensemble/concerns/PredictsProbabilities.py,sha256=qdCpS-NdoYQdtXJXRKz96MY1VW06baJ-pu_7zP3X_JU,330
|
|
26
|
-
homa/ensemble/concerns/RecordsStateDictionaries.py,sha256=FeIyDDxm60p5DCNVjq7xRyuhM04gvJI0ftigtjfXXLA,635
|
|
27
|
-
homa/ensemble/concerns/ReportsClassificationMetrics.py,sha256=YDFH7nMStudtc6pJqBGDNzQmknKIVDLgwCWsr4NFXc4,395
|
|
28
|
-
homa/ensemble/concerns/ReportsEnsembleAccuracy.py,sha256=x_cfPsikXc4dUsta2-gnOUoiSCb5J-gq4ao4ESZPDFs,306
|
|
29
|
-
homa/ensemble/concerns/ReportsEnsembleF1.py,sha256=hdtdCQrWaFJNUn1KP9cAmi_q_EA4FYnpkBMlYLjzRZg,296
|
|
30
|
-
homa/ensemble/concerns/ReportsEnsembleKappa.py,sha256=ZRbtrFCTD84EDql6ZL1xeWtTLFxpO5Y5tQaUlR6_0jw,300
|
|
31
|
-
homa/ensemble/concerns/ReportsLogits.py,sha256=H0AFvCcRDYjGtgrpinVLUyhvumF4Lmo2nyvtNOa_ARM,355
|
|
32
|
-
homa/ensemble/concerns/ReportsSize.py,sha256=6XJYc24isbbnoNV8DJWwaFfhi__qAnYEQZQJMDPL4VA,248
|
|
33
|
-
homa/ensemble/concerns/__init__.py,sha256=UtEqGhxlNypLa29bxw59Z1W4SN3Tju1ynJI72luIiAo,538
|
|
34
|
-
homa/torch/Module.py,sha256=UuRTJXxp7hlQHHL2dBGVlHlyA2OFgJ1Xz9SAff8Iv3c,171
|
|
35
|
-
homa/torch/__init__.py,sha256=Z-sIT4UjMBo2BgGoEPyQ20xJWVeX1W5Q4_C7CDa0SdE,50
|
|
36
|
-
homa/torch/helpers.py,sha256=CLbTCXRrroM0n4PfM-K_xFavs4dCZJEu_L7hdgb1DCI,134
|
|
37
|
-
homa/vision/Model.py,sha256=JIeVpHJwirHfsDfYYbLsu0kt7bGf4nhMQGIOagUDKw4,22
|
|
38
|
-
homa/vision/Resnet.py,sha256=Kh5QLYp8X8o9vFHYqTeOs1uRb6n36FsENdHTIiFZTAs,409
|
|
39
|
-
homa/vision/StochasticResnet.py,sha256=mLgKBfqRJtOgWdgfVHHTnIJVg2SHQDYz4ywXiTWqcIY,241
|
|
40
|
-
homa/vision/__init__.py,sha256=9M65-r8ykfncoPS3UYJC536vi2ytyzHAf4ZZ4ZlMz1g,99
|
|
41
|
-
homa/vision/utils.py,sha256=O58TkXooa31mXJ1JQTykO2OXzmUm9H8Qvvk9lsIZnZ0,623
|
|
42
|
-
homa/vision/concerns/Trainable.py,sha256=trnacyt3W3FrPON09uOTHeb06KT-uEi_oMzJonTwjL0,835
|
|
43
|
-
homa/vision/concerns/__init__.py,sha256=UnZfL_YH4IwNqip1wokoWJHe6fn4pE0ePtchTuykxJY,33
|
|
44
|
-
homa/vision/modules/ResnetModule.py,sha256=eFudBnILD6OmgQtcW_CQQ8aZ62NEa4HyZ15-lobTtt0,712
|
|
45
|
-
homa/vision/modules/StochasticResnetModule.py,sha256=zSfx6FW5c5NfHMDGw7MTbaxQ3EmyKV1WVnWqH7G7CDc,298
|
|
46
|
-
homa/vision/modules/__init__.py,sha256=kGlcc0BvYjuT_pBijI54VXLoWluPMfLzif1eO_9RoJc,98
|
|
47
|
-
homa-0.1.1.dist-info/METADATA,sha256=b5C7qLYoMVkSisQwDbn07_6E3yE6Roxrz4651KKebRM,539
|
|
48
|
-
homa-0.1.1.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
|
|
49
|
-
homa-0.1.1.dist-info/entry_points.txt,sha256=tJZzjs-f2QvFe3ES8Qta8IE5sAbeE8-cyZ_UtbgqG4s,51
|
|
50
|
-
homa-0.1.1.dist-info/top_level.txt,sha256=tmOfy2tuaAwc3W5-i6j61_vYJsXgR4ivBWkhJ3ZtJDc,5
|
|
51
|
-
homa-0.1.1.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|
|
File without changes
|