holobench 1.3.6__py2.py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (74) hide show
  1. bencher/__init__.py +41 -0
  2. bencher/bench_cfg.py +462 -0
  3. bencher/bench_plot_server.py +100 -0
  4. bencher/bench_report.py +268 -0
  5. bencher/bench_runner.py +136 -0
  6. bencher/bencher.py +805 -0
  7. bencher/caching.py +51 -0
  8. bencher/example/__init__.py +0 -0
  9. bencher/example/benchmark_data.py +200 -0
  10. bencher/example/example_all.py +45 -0
  11. bencher/example/example_categorical.py +99 -0
  12. bencher/example/example_custom_sweep.py +59 -0
  13. bencher/example/example_docs.py +34 -0
  14. bencher/example/example_float3D.py +101 -0
  15. bencher/example/example_float_cat.py +98 -0
  16. bencher/example/example_floats.py +89 -0
  17. bencher/example/example_floats2D.py +93 -0
  18. bencher/example/example_holosweep.py +104 -0
  19. bencher/example/example_holosweep_objects.py +111 -0
  20. bencher/example/example_holosweep_tap.py +144 -0
  21. bencher/example/example_image.py +82 -0
  22. bencher/example/example_levels.py +181 -0
  23. bencher/example/example_pareto.py +53 -0
  24. bencher/example/example_sample_cache.py +85 -0
  25. bencher/example/example_sample_cache_context.py +116 -0
  26. bencher/example/example_simple.py +134 -0
  27. bencher/example/example_simple_bool.py +34 -0
  28. bencher/example/example_simple_cat.py +47 -0
  29. bencher/example/example_simple_float.py +38 -0
  30. bencher/example/example_strings.py +46 -0
  31. bencher/example/example_time_event.py +62 -0
  32. bencher/example/example_video.py +124 -0
  33. bencher/example/example_workflow.py +189 -0
  34. bencher/example/experimental/example_bokeh_plotly.py +38 -0
  35. bencher/example/experimental/example_hover_ex.py +45 -0
  36. bencher/example/experimental/example_hvplot_explorer.py +39 -0
  37. bencher/example/experimental/example_interactive.py +75 -0
  38. bencher/example/experimental/example_streamnd.py +49 -0
  39. bencher/example/experimental/example_streams.py +36 -0
  40. bencher/example/experimental/example_template.py +40 -0
  41. bencher/example/experimental/example_updates.py +84 -0
  42. bencher/example/experimental/example_vector.py +84 -0
  43. bencher/example/meta/example_meta.py +171 -0
  44. bencher/example/meta/example_meta_cat.py +25 -0
  45. bencher/example/meta/example_meta_float.py +23 -0
  46. bencher/example/meta/example_meta_levels.py +26 -0
  47. bencher/example/optuna/example_optuna.py +78 -0
  48. bencher/example/shelved/example_float2D_scatter.py +109 -0
  49. bencher/example/shelved/example_float3D_cone.py +96 -0
  50. bencher/example/shelved/example_kwargs.py +63 -0
  51. bencher/job.py +184 -0
  52. bencher/optuna_conversions.py +168 -0
  53. bencher/plotting/__init__.py +0 -0
  54. bencher/plotting/plot_filter.py +110 -0
  55. bencher/plotting/plt_cnt_cfg.py +74 -0
  56. bencher/results/__init__.py +0 -0
  57. bencher/results/bench_result.py +80 -0
  58. bencher/results/bench_result_base.py +405 -0
  59. bencher/results/float_formatter.py +44 -0
  60. bencher/results/holoview_result.py +592 -0
  61. bencher/results/optuna_result.py +354 -0
  62. bencher/results/panel_result.py +113 -0
  63. bencher/results/plotly_result.py +65 -0
  64. bencher/utils.py +148 -0
  65. bencher/variables/inputs.py +193 -0
  66. bencher/variables/parametrised_sweep.py +206 -0
  67. bencher/variables/results.py +176 -0
  68. bencher/variables/sweep_base.py +167 -0
  69. bencher/variables/time.py +74 -0
  70. bencher/video_writer.py +30 -0
  71. bencher/worker_job.py +40 -0
  72. holobench-1.3.6.dist-info/METADATA +85 -0
  73. holobench-1.3.6.dist-info/RECORD +74 -0
  74. holobench-1.3.6.dist-info/WHEEL +5 -0
@@ -0,0 +1,167 @@
1
+ from __future__ import annotations
2
+ from typing import List, Any, Tuple
3
+ from copy import deepcopy
4
+
5
+ import numpy as np
6
+ import param
7
+ from param import Parameterized
8
+ import holoviews as hv
9
+ import panel as pn
10
+ from bencher.utils import hash_sha1
11
+
12
+ # slots that are shared across all Sweep classes
13
+ # param and slots don't work easily with multiple inheritance so define here
14
+ shared_slots = ["units", "samples", "samples_debug"]
15
+
16
+
17
+ def describe_variable(
18
+ v: Parameterized, debug: bool, include_samples: bool, value=None
19
+ ) -> List[str]:
20
+ """Generate a string description of a variable
21
+
22
+ Args:
23
+ v (param.Parameterized): parameter to describe
24
+ debug (bool): Generate a reduced number of samples from the variable
25
+ include_samples (bool): Include a description of the samples
26
+
27
+ Returns:
28
+ str: String description of the variable
29
+ """
30
+ indent = " "
31
+ sampling_str = []
32
+ sampling_str.append(f"{v.name}:")
33
+ if include_samples:
34
+ # sampling_str.append(f"{indent}{v.sampling_str(debug)}")
35
+ sampling_str.append(f"{indent}number of samples: {len(v.values(debug))}")
36
+ sampling_str.append(f"{indent}sample values: {[str(v) for v in v.values(debug)]}")
37
+
38
+ if value is not None:
39
+ sampling_str.append(f"{indent}value: {value}")
40
+ if hasattr(v, "units"):
41
+ if v.units != "ul" and len(v.units) > 0:
42
+ sampling_str.append(f"{indent}units: [{v.units}]")
43
+ if v.doc is not None:
44
+ sampling_str.append(f"{indent}docs: {v.doc}")
45
+ for i in range(len(sampling_str)):
46
+ sampling_str[i] = f"{indent}{sampling_str[i]}"
47
+ return sampling_str
48
+
49
+
50
+ class SweepBase(param.Parameter):
51
+ # def __init__(self, **params):
52
+ # super().__init__(**params)
53
+ # self.units = ""
54
+ # slots = ["units", "samples", "samples_debug"]
55
+ # __slots__ = shared_slots
56
+
57
+ def values(self, debug: bool) -> List[Any]:
58
+ """All sweep classes must implement this method. This generates sample values from based on the parameters bounds and sample number.
59
+
60
+ Args:
61
+ debug (bool): Return a reduced set of samples to enable fast debugging of a data generation and plotting pipeline. Ideally when debug is true, 2 samples will be returned
62
+
63
+ Returns:
64
+ List[Any]: A list of samples from the variable
65
+ """
66
+ raise NotImplementedError
67
+
68
+ def hash_persistent(self) -> str:
69
+ """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
70
+ return hash_sha1(
71
+ (self.units, self.samples, self.samples_debug) # pylint: disable=no-member
72
+ )
73
+
74
+ def sampling_str(self, debug=False) -> str:
75
+ """Generate a string representation of the of the sampling procedure
76
+
77
+ Args:
78
+ debug (bool): If true then self.samples_debug is used
79
+ """
80
+
81
+ samples = self.values(debug)
82
+ object_str = ",".join([str(i) for i in samples])
83
+ return f"Taking {len(samples)} samples from {self.name} with values: [{object_str}]"
84
+
85
+ def as_slider(self, debug=False) -> pn.widgets.slider.DiscreteSlider:
86
+ """given a sweep variable (self), return the range of values as a panel slider
87
+
88
+ Args:
89
+ debug (bool, optional): pass to the sweepvar to produce a full set of varaibles, or when debug=True, a reduces number of sweep vars. Defaults to False.
90
+
91
+ Returns:
92
+ pn.widgets.slider.DiscreteSlider: A panel slider with the values() of the sweep variable
93
+ """
94
+ return pn.widgets.slider.DiscreteSlider(name=self.name, options=list(self.values(debug)))
95
+
96
+ def as_dim(self, compute_values=False, debug=False) -> hv.Dimension:
97
+ """Takes a sweep variable and turns it into a holoview dimension
98
+
99
+ Returns:
100
+ hv.Dimension:
101
+ """
102
+ name_tuple = (self.name, self.name)
103
+
104
+ params = {}
105
+ if hasattr(self, "bounds"):
106
+ if compute_values:
107
+ params["values"] = self.values(debug)
108
+ # params["range"] = tuple(self.bounds)
109
+ else:
110
+ params["range"] = tuple(self.bounds)
111
+ params["default"] = self.default
112
+
113
+ else:
114
+ params["values"] = self.values(debug)
115
+ params["default"] = self.default
116
+
117
+ if hasattr(self, "step"):
118
+ params["step"] = getattr(self, "step")
119
+
120
+ return hv.Dimension(name_tuple, unit=self.units, **params) # pylint: disable=no-member
121
+
122
+ def indices_to_samples(self, desires_num_samples, sample_values):
123
+ indices = [
124
+ int(i) for i in np.linspace(0, len(sample_values) - 1, desires_num_samples, dtype=int)
125
+ ]
126
+
127
+ if len(indices) > len(sample_values):
128
+ return sample_values
129
+
130
+ return [sample_values[i] for i in indices]
131
+
132
+ def with_samples(self, samples: int) -> SweepBase:
133
+ output = deepcopy(self)
134
+ # TODO set up class properly. Slightly complicated due to slots
135
+ output.samples = samples # pylint: disable = attribute-defined-outside-init
136
+ if hasattr(output, "step"):
137
+ # hack TODO fix this
138
+ output.step = None # pylint: disable = attribute-defined-outside-init
139
+ return output
140
+
141
+ def with_sample_values(self, sample_values: int) -> SweepBase:
142
+ output = deepcopy(self)
143
+ # TODO set up class properly. Slightly complicated due to slots
144
+ try:
145
+ output.sample_values = sample_values # pylint: disable = attribute-defined-outside-init
146
+ except AttributeError:
147
+ output.objects = sample_values # pylint: disable = attribute-defined-outside-init
148
+ output.samples = len(sample_values) # pylint: disable = attribute-defined-outside-init
149
+ return output
150
+
151
+ def with_const(self, const_value: Any) -> Tuple[SweepBase, Any]:
152
+ """Create a new instance of SweepBase with a constant value.
153
+
154
+ Args:
155
+ const_value (Any): The constant value to be associated with the new instance.
156
+
157
+ Returns:
158
+ Tuple[SweepBase, Any]: A tuple containing the new instance of SweepBase and the constant value.
159
+ """
160
+ return (deepcopy(self), const_value)
161
+
162
+ def with_level(self, level: int = 1, max_level: int = 12) -> SweepBase:
163
+ assert level >= 1
164
+ # TODO work out if the order can be returned in level order always
165
+ samples = [0, 1, 2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049]
166
+ out = self.with_sample_values(self.with_samples(samples[min(max_level, level)]).values())
167
+ return out
@@ -0,0 +1,74 @@
1
+ from datetime import datetime
2
+ from typing import List
3
+
4
+ from pandas import Timestamp
5
+ from param import Selector
6
+ from bencher.variables.sweep_base import SweepBase, shared_slots
7
+
8
+
9
+ class TimeBase(SweepBase, Selector):
10
+ """A class to capture a time snapshot of benchmark values. Time is reprented as a continous value i.e a datetime which is converted into a np.datetime64. To represent time as a discrete value use the TimeEvent class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
11
+
12
+ __slots__ = shared_slots
13
+
14
+ def values(self, debug=False) -> List[str]:
15
+ """return all the values for a parameter sweep. If debug is true return a reduced list"""
16
+ # print(self.sampling_str(debug))
17
+ return self.objects
18
+
19
+
20
+ class TimeSnapshot(TimeBase):
21
+ """A class to capture a time snapshot of benchmark values. Time is reprented as a continous value i.e a datetime which is converted into a np.datetime64. To represent time as a discrete value use the TimeEvent class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
22
+
23
+ __slots__ = shared_slots
24
+
25
+ def __init__(
26
+ self,
27
+ datetime_src: datetime | str,
28
+ units: str = "time",
29
+ samples: int = None,
30
+ samples_debug: int = 2,
31
+ **params,
32
+ ):
33
+ if isinstance(datetime_src, str):
34
+ TimeBase.__init__(self, [datetime_src], instantiate=True, **params)
35
+ else:
36
+ TimeBase.__init__(
37
+ self,
38
+ objects=[Timestamp(datetime_src)],
39
+ instantiate=True,
40
+ **params,
41
+ )
42
+ self.units = units
43
+ if samples is None:
44
+ self.samples = len(self.objects)
45
+ else:
46
+ self.samples = samples
47
+ self.samples_debug = min(self.samples, samples_debug)
48
+
49
+
50
+ class TimeEvent(TimeBase):
51
+ """A class to represent a discrete event in time where the data was captured i.e a series of pull requests. Here time is discrete and can't be interpolated, to represent time as a continous value use the TimeSnapshot class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
52
+
53
+ __slots__ = shared_slots
54
+
55
+ def __init__(
56
+ self,
57
+ time_event: str,
58
+ units: str = "event",
59
+ samples: int = None,
60
+ samples_debug: int = 2,
61
+ **params,
62
+ ):
63
+ TimeBase.__init__(
64
+ self,
65
+ objects=[time_event],
66
+ instantiate=True,
67
+ **params,
68
+ )
69
+ self.units = units
70
+ if samples is None:
71
+ self.samples = len(self.objects)
72
+ else:
73
+ self.samples = samples
74
+ self.samples_debug = min(self.samples, samples_debug)
@@ -0,0 +1,30 @@
1
+ from bencher import gen_video_path, gen_image_path
2
+ from PIL import Image
3
+ import numpy as np
4
+
5
+
6
+ class VideoWriter:
7
+ def __init__(self, filename: str = "vid") -> None:
8
+ self.images = []
9
+ self.filename = gen_video_path(filename)
10
+
11
+ def append(self, img):
12
+ self.images.append(img)
13
+
14
+ def write(self, bitrate: int = 1500) -> str:
15
+ import moviepy.video.io.ImageSequenceClip
16
+
17
+ # todo
18
+ # if len(self.images[0.shape) == 2:
19
+ # for i in range(len(self.images)):
20
+ # self.images[i] = np.expand_dims(self.images[i], 2)
21
+
22
+ clip = moviepy.video.io.ImageSequenceClip.ImageSequenceClip(self.images, fps=30)
23
+ clip.write_videofile(self.filename, bitrate=f"{bitrate}k", logger=None)
24
+ return self.filename
25
+
26
+
27
+ def add_image(np_array: np.ndarray, name: str = "img"):
28
+ filename = gen_image_path(name)
29
+ Image.fromarray(np_array).save(filename)
30
+ return filename
bencher/worker_job.py ADDED
@@ -0,0 +1,40 @@
1
+ from typing import List, Tuple, Any
2
+ from dataclasses import dataclass, field
3
+ from sortedcontainers import SortedDict
4
+ from .utils import hash_sha1
5
+ from bencher.utils import hmap_canonical_input
6
+
7
+
8
+ @dataclass
9
+ class WorkerJob:
10
+ function_input_vars: List
11
+ index_tuple: Tuple[int]
12
+ dims_name: List[str]
13
+ constant_inputs: dict
14
+ bench_cfg_sample_hash: str
15
+ tag: str
16
+
17
+ function_input: SortedDict = None
18
+ canonical_input: Tuple[Any] = None
19
+ fn_inputs_sorted: List[str] = None
20
+ function_input_signature_pure: str = None
21
+ function_input_signature_benchmark_context: str = None
22
+ found_in_cache: bool = False
23
+ msgs: List[str] = field(default_factory=list)
24
+
25
+ def setup_hashes(self) -> None:
26
+ self.function_input = SortedDict(zip(self.dims_name, self.function_input_vars))
27
+
28
+ self.canonical_input = hmap_canonical_input(self.function_input)
29
+
30
+ if self.constant_inputs is not None:
31
+ self.function_input = self.function_input | self.constant_inputs
32
+
33
+ # store a tuple of the inputs as keys for a holomap
34
+ # the signature is the hash of the inputs to to the function + meta variables such as repeat and time + the hash of the benchmark sweep as a whole (without the repeats hash)
35
+ self.fn_inputs_sorted = list(SortedDict(self.function_input).items())
36
+ self.function_input_signature_pure = hash_sha1((self.fn_inputs_sorted, self.tag))
37
+
38
+ self.function_input_signature_benchmark_context = hash_sha1(
39
+ (self.function_input_signature_pure, self.bench_cfg_sample_hash)
40
+ )
@@ -0,0 +1,85 @@
1
+ Metadata-Version: 2.1
2
+ Name: holobench
3
+ Version: 1.3.6
4
+ Summary: A package for benchmarking the performance of arbitrary functions
5
+ Author-email: Austin Gregg-Smith <blooop@gmail.com>
6
+ Description-Content-Type: text/markdown
7
+ Requires-Dist: holoviews>=1.15,<=1.18.1
8
+ Requires-Dist: numpy>=1.0,<=1.26.2
9
+ Requires-Dist: param>=1.13.0,<=2.0.1
10
+ Requires-Dist: hvplot>=0.8,<=0.9.1
11
+ Requires-Dist: matplotlib>=3.6.3,<=3.8.2
12
+ Requires-Dist: panel>=1.3.6,<=1.3.6
13
+ Requires-Dist: diskcache>=5.6,<=5.6.3
14
+ Requires-Dist: optuna>=3.2,<=3.5.0
15
+ Requires-Dist: xarray>=2023.7,<=2023.12.0
16
+ Requires-Dist: plotly>=5.15,<=5.18.0
17
+ Requires-Dist: sortedcontainers>=2.4,<=2.4
18
+ Requires-Dist: pandas>=2.0,<=2.1.4
19
+ Requires-Dist: strenum>=0.4.0,<=0.4.15
20
+ Requires-Dist: scikit-learn>=1.2,<=1.3.2
21
+ Requires-Dist: str2bool>=1.1,<=1.1
22
+ Requires-Dist: scoop>=0.7.0,<=0.7.2.0
23
+ Requires-Dist: moviepy>=1.0.3,<=1.0.3
24
+ Requires-Dist: black>=23,<=23.12.1 ; extra == "test"
25
+ Requires-Dist: pylint>=2.16,<=3.0.3 ; extra == "test"
26
+ Requires-Dist: pytest-cov>=4.1,<=4.1 ; extra == "test"
27
+ Requires-Dist: pytest>=7.4,<=7.4.4 ; extra == "test"
28
+ Requires-Dist: hypothesis>=6.82,<=6.92.2 ; extra == "test"
29
+ Requires-Dist: ruff>=0.0.280,<=0.1.9 ; extra == "test"
30
+ Requires-Dist: coverage>=7.2.7,<=7.4.0 ; extra == "test"
31
+ Project-URL: Documentation, https://bencher.readthedocs.io/en/latest/
32
+ Project-URL: Home, https://github.com/dyson-ai/bencher
33
+ Project-URL: Repository, https://github.com/dyson-ai/bencher
34
+ Provides-Extra: test
35
+
36
+ # Bencher
37
+
38
+ ## Continuous Integration Status
39
+
40
+ [![Ci](https://github.com/dyson-ai/bencher/actions/workflows/ci.yml/badge.svg?branch=main)](https://github.com/dyson-ai/bencher/actions/workflows/ci.yml?query=branch%3Amain)
41
+ ![Read the Docs](https://img.shields.io/readthedocs/bencher)
42
+ [![Codecov](https://codecov.io/gh/dyson-ai/bencher/branch/main/graph/badge.svg?token=Y212GW1PG6)](https://codecov.io/gh/dyson-ai/bencher)
43
+ [![GitHub issues](https://img.shields.io/github/issues/dyson-ai/bencher.svg)](https://GitHub.com/dyson-ai/bencher/issues/)
44
+ [![GitHub pull-requests merged](https://badgen.net/github/merged-prs/dyson-ai/bencher)](https://github.com/dyson-ai/bencher/pulls?q=is%3Amerged)
45
+ [![PyPI](https://img.shields.io/pypi/v/holobench)](https://pypi.org/project/holobench/)
46
+ [![GitHub release](https://img.shields.io/github/release/dyson-ai/bencher.svg)](https://GitHub.com/dyson-ai/bencher/releases/)
47
+ [![License](https://img.shields.io/pypi/l/bencher)](https://opensource.org/license/mit/)
48
+ [![Python](https://img.shields.io/badge/python-3.10%20%7C%203.11-blue)](https://www.python.org/downloads/release/python-310/)
49
+
50
+
51
+ ## Intro
52
+
53
+ Bencher is a tool to make it easy to benchmark the interactions between the input parameters to your algorithm and its resulting performance on a set of metrics.
54
+
55
+ Parameters for bencher are defined using the param library https://param.holoviz.org/ as a config class with extra metadata that describes the bounds of the search space you want to measure. You must define a benchmarking function that accepts an instance of the config class and return a dictionary with string metric names and float values.
56
+
57
+ Parameters are benchmarked by passing in a list N parameters, and an N-Dimensional tensor is returned. You can optionally sample each point multiple times to get back a distribution and also track its value over time. By default the data will be plotted automatically based on the types of parameters you are sampling (e.g, continous, discrete), but you can also pass in a callback to customize plotting.
58
+
59
+ The data is stored in a persistent database so that past performance is tracked.
60
+
61
+ ## Assumptions
62
+
63
+ The input types should also be of one of the basic datatypes (bool, int, float, str, enum, datetime) so that the data can be easily hashed, cached and stored in the database and processed with seaborn and xarray plotting functions. You can use class inheritance to define hierarchical parameter configuration class types that can be reused in a bigger configuration classes.
64
+
65
+ Bencher is designed to work with stochastic pure functions with no side effects. It assumes that when the objective function is given the same inputs, it will return the same output +- random noise. This is because the function must be called multiple times to get a good statistical distribution of it and so each call must not be influenced by anything or the results will be corrupted.
66
+
67
+ ### Pseudocode of bencher
68
+
69
+ Enumerate a list of all input parameter combinations
70
+ for each set of input parameters:
71
+ pass the inputs to the objective function and store results in the N-D array
72
+
73
+ get unique hash for the set of inputs parameters
74
+ look up previous results for that hash
75
+ if it exists:
76
+ load historical data
77
+ combine latest data with historical data
78
+
79
+ store the results using the input hash as a key
80
+ deduce the type of plot based on the input types
81
+ return data and plot
82
+
83
+ ### Example Output
84
+
85
+ https://dyson-ai.github.io/bencher/
@@ -0,0 +1,74 @@
1
+ bencher/__init__.py,sha256=lw9moEkY3rb3kQVS3_SM9L0LsOAXRSM1JUJ_mm16tMQ,1236
2
+ bencher/bench_cfg.py,sha256=0dIF_JrvWYiugNDi28wh_8a8ejm99cnw3RrlMIDI2Ww,18714
3
+ bencher/bench_plot_server.py,sha256=HnW6XpmARweMCd-koqzu1lxuj0gA4_fP-72D3Yfy-0M,4087
4
+ bencher/bench_report.py,sha256=b9jLksrXzBhSmvI7KetO1i0hsHknE7qk4b4k0MGGtNw,10484
5
+ bencher/bench_runner.py,sha256=TLJGn-NO4BBBZMG8W5E6u7IPyij67Yk3S4B29ONClnk,6049
6
+ bencher/bencher.py,sha256=jYOkqs5F6vIL9_KLygVgi0O_vj-xspBVlipduNMtt1Y,32012
7
+ bencher/caching.py,sha256=AusaNrzGGlj5m6zcwcqnTn55Mam2mQdF--oqelO806M,1627
8
+ bencher/job.py,sha256=Q2zpia95Ibukk8EeFq5IBbpo2PMRe7o5keelJCJlGnI,5927
9
+ bencher/optuna_conversions.py,sha256=9nLVPAydSQ8PyJlyhzs__Em6_Rx8l8Ld94UNJZxy6cY,5303
10
+ bencher/utils.py,sha256=oKUtD3Uw76n82ZeyWRBleneYKrZuuNE8pb7Gswlhwjc,5034
11
+ bencher/video_writer.py,sha256=L_RVrHU4C6hj9BhbEPelgPgtGZeHH4PYYW4CHjGXgJ0,937
12
+ bencher/worker_job.py,sha256=FREi0yWQACFmH86R1j-LH72tALEFkKhLDmmoGQY9Jh4,1571
13
+ bencher/example/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
+ bencher/example/benchmark_data.py,sha256=D9yUg_KKtqqEkAiLceodDwsv6sh7xEFWZNp6P6Y3pj4,6989
15
+ bencher/example/example_all.py,sha256=iiKV2poYWu4SUIQkpoX4qT1zTm574QfuNHpYww3meFA,1952
16
+ bencher/example/example_categorical.py,sha256=3BeOQN58nCGx6xzB0YvkgaBFInzJ5L3XsIYKfKOs0gM,3684
17
+ bencher/example/example_custom_sweep.py,sha256=-y8mYuXYD91j8kcCEe9c6Gx6g1dK-bvHM9sbXqHL2gA,1916
18
+ bencher/example/example_docs.py,sha256=aUi33O543JBPoOGlpHaY2eA74GR7cHH_6-hcC8xf3z0,1174
19
+ bencher/example/example_float3D.py,sha256=pwi3YlDad3NL4IrfMK2V5yV1CRpqfmUO-zUnGmVYxDs,3425
20
+ bencher/example/example_float_cat.py,sha256=RZiKEACZyGDnubxhaUcabI43AYvm3h7qt0SCUp5Yuso,3810
21
+ bencher/example/example_floats.py,sha256=HcQgfwldTVeFBmBTMtZ0yRy17ZJ4cfJeI_t8TxY2iOI,4269
22
+ bencher/example/example_floats2D.py,sha256=D0kljoUCinMKCEW-Zg-cQ8sYu_yPCZqzKJ9tRtt-Ono,3697
23
+ bencher/example/example_holosweep.py,sha256=d9g5aWCAUb7FMZahb4t3xNs344EshPhA-8-K6K1SBXg,3180
24
+ bencher/example/example_holosweep_objects.py,sha256=vHuAtkM1VrJelHOazn_SJfzxNywKyaMzN-DE8W7Ricc,3228
25
+ bencher/example/example_holosweep_tap.py,sha256=3ayQ0bTj_XWP_92ifQJAhe1whwPAj_xWHPkzC7fvqAY,4540
26
+ bencher/example/example_image.py,sha256=DBB7oe-67XoxPBPhUJNSr45U8t8xJvi9KiC3ptZkAHE,2713
27
+ bencher/example/example_levels.py,sha256=rpSNB571yfMnT7iO66Ds-DPGHWzOTM9FLMNfSetJdHY,6896
28
+ bencher/example/example_pareto.py,sha256=yyAg8Vb-5sgsS6LkYKT7T5Evcfg69FlCqCakUippSmU,2687
29
+ bencher/example/example_sample_cache.py,sha256=7gf1BJ63VAgdqNuNXkbL9-jeTeC3kXA_PY9yG3ulTz0,4200
30
+ bencher/example/example_sample_cache_context.py,sha256=IAUBbL78QM20R8evaq7L8I-xPxFDFykF1Gk1y2Ru1W0,4063
31
+ bencher/example/example_simple.py,sha256=Nn2ixNx29jbgvwH2K5vDGhSFcqKLMNaP1occPxhHoU0,11703
32
+ bencher/example/example_simple_bool.py,sha256=36KMSHyXZhzS1cp2TZnDLn7-GpShLdQ7mycuT0M3le8,1247
33
+ bencher/example/example_simple_cat.py,sha256=YFccE84g37U2M3ByWYIcGNLXWdW_ktJbbZvGL0D6oHA,1759
34
+ bencher/example/example_simple_float.py,sha256=X4vsH0F4fZAoO0EKB1xIzFMY0f0Wyk8LV2plPlSEsbI,1323
35
+ bencher/example/example_strings.py,sha256=BdsEZgLT9mOxLkBKNHz2XpPwwe4SzNTdjnY1WVlOmNM,1570
36
+ bencher/example/example_time_event.py,sha256=y1vpK7UDrObEu0Z1x3e4OQzvGCQ7pF5GZvpKLegMbYk,2158
37
+ bencher/example/example_video.py,sha256=w2NtsDL-afZWGlScrrHxr9vdCrxTvyzqOUhIeDOHjvU,4079
38
+ bencher/example/example_workflow.py,sha256=00QnUuViMfX_PqzqkXmg1wPX6yAq7IS7mCL_RFKwrMM,6806
39
+ bencher/example/experimental/example_bokeh_plotly.py,sha256=3jUKh8eKIAlpklKnp8UopIHhUDw1A0_5CwjeyTzbi7o,846
40
+ bencher/example/experimental/example_hover_ex.py,sha256=qszw4FkIfqQkVviPSpmUoFOoi6PGotGbsc7Ojyx8EtU,1052
41
+ bencher/example/experimental/example_hvplot_explorer.py,sha256=B9u-kh6D_8J0wAtkYu2w8kML8eL3DkOZg0p91n_nBT4,1815
42
+ bencher/example/experimental/example_interactive.py,sha256=MM1A2EVsKTy95RERTNnld0tUmZmCy8N41_jGm2wlG7U,2619
43
+ bencher/example/experimental/example_streamnd.py,sha256=LqkTtdY4NhnP5dEB1Ifv7RQ5Vq4dLkp5E3aWnWuzniA,1414
44
+ bencher/example/experimental/example_streams.py,sha256=rrTmcmxDlirGoyTbJ4LT4fBIAc1k28qjnjy5JxGKyhg,1030
45
+ bencher/example/experimental/example_template.py,sha256=XdIVS9RtLdE5GNnerWiZMXvP7n17lzuc_YTLqJTwb6Q,1172
46
+ bencher/example/experimental/example_updates.py,sha256=rF4UgWY-CW6ohNtOpQklTuwbwVRvEM5j6edZOiMkspQ,1835
47
+ bencher/example/experimental/example_vector.py,sha256=3o_1dA4dc2HL6uIEvDAcvLPVJB8jgkq1QZ3BQIL-LEo,3118
48
+ bencher/example/meta/example_meta.py,sha256=P71Q-3G8B44DYaZQe5eFmFxUsjbViSat3DcUvgdSSuw,5605
49
+ bencher/example/meta/example_meta_cat.py,sha256=YKVUiZ7M1tFFYgUTVQZeOe-1bnmxOjLdWy3nmCoyEe0,693
50
+ bencher/example/meta/example_meta_float.py,sha256=f3OcORsRUt9Bnd1M1hOjmgxulxcalwdQHSQ0Psx1rY8,650
51
+ bencher/example/meta/example_meta_levels.py,sha256=O77D4gAGYf7uZo7-Kj2ZwyNmpnc4paoQXE_DQtKKWKo,1488
52
+ bencher/example/optuna/example_optuna.py,sha256=-RIuDrdPjfXz1c1hOAmWeJNdmGICiWnyJfAavRsiMuk,2370
53
+ bencher/example/shelved/example_float2D_scatter.py,sha256=z8ranMq8IcJ1yoVSFDncp3gw-yWG7X9lXLimXKpy5Ks,3372
54
+ bencher/example/shelved/example_float3D_cone.py,sha256=T3-IapccLYX3BM9sGDyOTLhZVEmzkeMsXzQMT5msnNQ,2966
55
+ bencher/example/shelved/example_kwargs.py,sha256=Bgxkd7qeHdySBE24amdP-VNFRRgK_enyzprlxBwY9Ko,2461
56
+ bencher/plotting/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
57
+ bencher/plotting/plot_filter.py,sha256=Zff02hEcRffiqDEoXUHVZQJK5kW4HbMxe2GYCrxI8jg,4688
58
+ bencher/plotting/plt_cnt_cfg.py,sha256=BkiAsgHm35Mqb5OsjULGVK0Q6pGZ0WSsJxxwSOrbaQs,3124
59
+ bencher/results/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
60
+ bencher/results/bench_result.py,sha256=NiJ8UIYrw5QBksltIHAOh-4CaIMYI8YA-cEcWgfwZ70,2838
61
+ bencher/results/bench_result_base.py,sha256=-c46om4Gulzxn3PPvQAsQF9qzT7rQLtX6hsO65f9N2A,15767
62
+ bencher/results/float_formatter.py,sha256=sX6HNCyaXdHDxC8ybVUHwCJ3qOKbPUkBOplVIHtKWjM,1746
63
+ bencher/results/holoview_result.py,sha256=nfXYTaGQkXwLqJ_gEB3TYJxHfKAQCN1E60D9Tfbkxos,22254
64
+ bencher/results/optuna_result.py,sha256=jtsWJGdCS0L98EzxTxXU_AyarCL5CkXRLOVuSvs048M,13437
65
+ bencher/results/panel_result.py,sha256=SpVHHdTdlNHh1pGcK3DYLw6BClDRJ_37TNTkicnErTU,3936
66
+ bencher/results/plotly_result.py,sha256=wkgfL38qJp6RviekXBYpNPeU4HCf0nbtKDAhu5QZhUg,2132
67
+ bencher/variables/inputs.py,sha256=XtUko3qNYB1xk7fwM9teVGRU0MNCW673n2teGtoyFGU,6393
68
+ bencher/variables/parametrised_sweep.py,sha256=3ioxqm8xg9WYIH-eRFRhDSn_YphGD-269gZ_FaxuEv8,7029
69
+ bencher/variables/results.py,sha256=omENIr_Y3RxRG8sr4RQKD1Y_vTyMJUoA7P-fV1uSX5Y,6015
70
+ bencher/variables/sweep_base.py,sha256=I1LEeG1y5Jsw0a-Ik03t0tSzcfENht2GmBECJ3KNs28,6559
71
+ bencher/variables/time.py,sha256=Le7s8_oUYJD4wCqwQw-a_FRDpYQOi8CqMbGYsBF07jg,2860
72
+ holobench-1.3.6.dist-info/WHEEL,sha256=Sgu64hAMa6g5FdzHxXv9Xdse9yxpGGMeagVtPMWpJQY,99
73
+ holobench-1.3.6.dist-info/METADATA,sha256=LyfizZKUZi92A3pYWd_faXDRH-fpfDsNyv_4NThnHWo,4996
74
+ holobench-1.3.6.dist-info/RECORD,,
@@ -0,0 +1,5 @@
1
+ Wheel-Version: 1.0
2
+ Generator: flit 3.9.0
3
+ Root-Is-Purelib: true
4
+ Tag: py2-none-any
5
+ Tag: py3-none-any