holobench 1.3.5__py3-none-any.whl → 1.22.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (77) hide show
  1. bencher/__init__.py +3 -0
  2. bencher/bench_cfg.py +29 -33
  3. bencher/bench_plot_server.py +5 -1
  4. bencher/bench_report.py +14 -14
  5. bencher/bench_runner.py +2 -1
  6. bencher/bencher.py +77 -52
  7. bencher/class_enum.py +52 -0
  8. bencher/job.py +6 -4
  9. bencher/optuna_conversions.py +1 -1
  10. bencher/utils.py +42 -4
  11. bencher/video_writer.py +101 -10
  12. holobench-1.22.2.data/data/share/bencher/package.xml +33 -0
  13. holobench-1.22.2.dist-info/LICENSE +21 -0
  14. {holobench-1.3.5.dist-info → holobench-1.22.2.dist-info}/METADATA +39 -31
  15. holobench-1.22.2.dist-info/RECORD +20 -0
  16. {holobench-1.3.5.dist-info → holobench-1.22.2.dist-info}/WHEEL +2 -1
  17. holobench-1.22.2.dist-info/top_level.txt +1 -0
  18. bencher/example/benchmark_data.py +0 -200
  19. bencher/example/example_all.py +0 -45
  20. bencher/example/example_categorical.py +0 -99
  21. bencher/example/example_custom_sweep.py +0 -59
  22. bencher/example/example_docs.py +0 -34
  23. bencher/example/example_float3D.py +0 -101
  24. bencher/example/example_float_cat.py +0 -98
  25. bencher/example/example_floats.py +0 -89
  26. bencher/example/example_floats2D.py +0 -93
  27. bencher/example/example_holosweep.py +0 -104
  28. bencher/example/example_holosweep_objects.py +0 -111
  29. bencher/example/example_holosweep_tap.py +0 -144
  30. bencher/example/example_image.py +0 -82
  31. bencher/example/example_levels.py +0 -181
  32. bencher/example/example_pareto.py +0 -53
  33. bencher/example/example_sample_cache.py +0 -85
  34. bencher/example/example_sample_cache_context.py +0 -116
  35. bencher/example/example_simple.py +0 -134
  36. bencher/example/example_simple_bool.py +0 -34
  37. bencher/example/example_simple_cat.py +0 -47
  38. bencher/example/example_simple_float.py +0 -38
  39. bencher/example/example_strings.py +0 -46
  40. bencher/example/example_time_event.py +0 -62
  41. bencher/example/example_video.py +0 -124
  42. bencher/example/example_workflow.py +0 -189
  43. bencher/example/experimental/example_bokeh_plotly.py +0 -38
  44. bencher/example/experimental/example_hover_ex.py +0 -45
  45. bencher/example/experimental/example_hvplot_explorer.py +0 -39
  46. bencher/example/experimental/example_interactive.py +0 -75
  47. bencher/example/experimental/example_streamnd.py +0 -49
  48. bencher/example/experimental/example_streams.py +0 -36
  49. bencher/example/experimental/example_template.py +0 -40
  50. bencher/example/experimental/example_updates.py +0 -84
  51. bencher/example/experimental/example_vector.py +0 -84
  52. bencher/example/meta/example_meta.py +0 -171
  53. bencher/example/meta/example_meta_cat.py +0 -25
  54. bencher/example/meta/example_meta_float.py +0 -23
  55. bencher/example/meta/example_meta_levels.py +0 -26
  56. bencher/example/optuna/example_optuna.py +0 -78
  57. bencher/example/shelved/example_float2D_scatter.py +0 -109
  58. bencher/example/shelved/example_float3D_cone.py +0 -96
  59. bencher/example/shelved/example_kwargs.py +0 -63
  60. bencher/plotting/__init__.py +0 -0
  61. bencher/plotting/plot_filter.py +0 -110
  62. bencher/plotting/plt_cnt_cfg.py +0 -74
  63. bencher/results/__init__.py +0 -0
  64. bencher/results/bench_result.py +0 -80
  65. bencher/results/bench_result_base.py +0 -405
  66. bencher/results/float_formatter.py +0 -44
  67. bencher/results/holoview_result.py +0 -592
  68. bencher/results/optuna_result.py +0 -354
  69. bencher/results/panel_result.py +0 -113
  70. bencher/results/plotly_result.py +0 -65
  71. bencher/variables/inputs.py +0 -193
  72. bencher/variables/parametrised_sweep.py +0 -206
  73. bencher/variables/results.py +0 -176
  74. bencher/variables/sweep_base.py +0 -167
  75. bencher/variables/time.py +0 -74
  76. holobench-1.3.5.dist-info/RECORD +0 -74
  77. /bencher/example/__init__.py → /holobench-1.22.2.data/data/share/ament_index/resource_index/packages/bencher +0 -0
@@ -1,193 +0,0 @@
1
- from enum import Enum
2
- from typing import List, Any
3
-
4
- import numpy as np
5
- from param import Integer, Number, Selector
6
- from bencher.variables.sweep_base import SweepBase, shared_slots
7
-
8
-
9
- class SweepSelector(Selector, SweepBase):
10
- """A class to reprsent a parameter sweep of bools"""
11
-
12
- __slots__ = shared_slots
13
-
14
- def __init__(self, units: str = "ul", samples: int = None, samples_debug: int = 2, **params):
15
- SweepBase.__init__(self)
16
- Selector.__init__(self, **params)
17
-
18
- self.units = units
19
- if samples is None:
20
- self.samples = len(self.objects)
21
- else:
22
- self.samples = samples
23
- self.samples_debug = min(self.samples, samples_debug)
24
-
25
- def values(self, debug=False) -> List[Any]:
26
- """return all the values for a parameter sweep. If debug is true return a reduced list"""
27
- return self.indices_to_samples(self.samples_debug if debug else self.samples, self.objects)
28
-
29
-
30
- class BoolSweep(SweepSelector):
31
- """A class to reprsent a parameter sweep of bools"""
32
-
33
- def __init__(
34
- self, units: str = "ul", samples: int = None, samples_debug: int = 2, default=True, **params
35
- ):
36
- SweepSelector.__init__(
37
- self,
38
- units=units,
39
- samples=samples,
40
- samples_debug=samples_debug,
41
- default=default,
42
- objects=[True, False] if default else [False, True],
43
- **params,
44
- )
45
-
46
-
47
- class StringSweep(SweepSelector):
48
- """A class to reprsent a parameter sweep of strings"""
49
-
50
- def __init__(
51
- self,
52
- string_list: List[str],
53
- units: str = "",
54
- samples: int = None,
55
- samples_debug: int = 2,
56
- **params,
57
- ):
58
- SweepSelector.__init__(
59
- self,
60
- objects=string_list,
61
- instantiate=True,
62
- units=units,
63
- samples=samples,
64
- samples_debug=samples_debug,
65
- **params,
66
- )
67
-
68
-
69
- class EnumSweep(SweepSelector):
70
- """A class to reprsent a parameter sweep of enums"""
71
-
72
- __slots__ = shared_slots
73
-
74
- def __init__(
75
- self, enum_type: Enum | List[Enum], units=" ", samples=None, samples_debug=2, **params
76
- ):
77
- # The enum can either be an Enum type or a list of enums
78
- list_of_enums = isinstance(enum_type, list)
79
- selector_list = enum_type if list_of_enums else list(enum_type)
80
- SweepSelector.__init__(
81
- self,
82
- objects=selector_list,
83
- instantiate=True,
84
- units=units,
85
- samples=samples,
86
- samples_debug=samples_debug,
87
- **params,
88
- )
89
- if not list_of_enums: # Grab the docs from the enum type def
90
- self.doc = enum_type.__doc__
91
-
92
-
93
- class IntSweep(Integer, SweepBase):
94
- """A class to reprsent a parameter sweep of ints"""
95
-
96
- __slots__ = shared_slots + ["sample_values"]
97
-
98
- def __init__(self, units="ul", samples=None, samples_debug=2, sample_values=None, **params):
99
- SweepBase.__init__(self)
100
- Integer.__init__(self, **params)
101
-
102
- self.units = units
103
- self.samples_debug = samples_debug
104
-
105
- if sample_values is None:
106
- if samples is None:
107
- if self.bounds is None:
108
- raise RuntimeError("You must define bounds for integer types")
109
- self.samples = 1 + self.bounds[1] - self.bounds[0]
110
- else:
111
- self.samples = samples
112
- self.sample_values = None
113
- else:
114
- self.sample_values = sample_values
115
- self.samples = len(self.sample_values)
116
- if "default" not in params:
117
- self.default = sample_values[0]
118
-
119
- def values(self, debug=False) -> List[int]:
120
- """return all the values for a parameter sweep. If debug is true return the list"""
121
- sample_values = (
122
- self.sample_values
123
- if self.sample_values is not None
124
- else list(range(int(self.bounds[0]), int(self.bounds[1] + 1)))
125
- )
126
-
127
- return self.indices_to_samples(self.samples_debug if debug else self.samples, sample_values)
128
-
129
- ###THESE ARE COPIES OF INTEGER VALIDATION BUT ALSO ALLOW NUMPY INT TYPES
130
- def _validate_value(self, val, allow_None):
131
- if callable(val):
132
- return
133
-
134
- if allow_None and val is None:
135
- return
136
-
137
- if not isinstance(val, (int, np.integer)):
138
- raise ValueError(
139
- "Integer parameter %r must be an integer, " "not type %r." % (self.name, type(val))
140
- )
141
-
142
- ###THESE ARE COPIES OF INTEGER VALIDATION BUT ALSO ALLOW NUMPY INT TYPES
143
- def _validate_step(self, val, step):
144
- if step is not None and not isinstance(step, (int, np.integer)):
145
- raise ValueError(
146
- "Step can only be None or an " "integer value, not type %r" % type(step)
147
- )
148
-
149
-
150
- class FloatSweep(Number, SweepBase):
151
- """A class to represent a parameter sweep of floats"""
152
-
153
- __slots__ = shared_slots + ["sample_values"]
154
-
155
- def __init__(
156
- self, units="ul", samples=10, samples_debug=2, sample_values=None, step=None, **params
157
- ):
158
- SweepBase.__init__(self)
159
- Number.__init__(self, step=step, **params)
160
-
161
- self.units = units
162
- self.samples_debug = samples_debug
163
-
164
- self.sample_values = sample_values
165
-
166
- if sample_values is None:
167
- self.samples = samples
168
- else:
169
- self.samples = len(self.sample_values)
170
- if "default" not in params:
171
- self.default = sample_values[0]
172
-
173
- def values(self, debug=False) -> List[float]:
174
- """return all the values for a parameter sweep. If debug is true return a reduced list"""
175
- samps = self.samples_debug if debug else self.samples
176
- if self.sample_values is None:
177
- if self.step is None:
178
- return np.linspace(self.bounds[0], self.bounds[1], samps)
179
-
180
- return np.arange(self.bounds[0], self.bounds[1], self.step)
181
- if debug:
182
- indices = [
183
- int(i)
184
- for i in np.linspace(0, len(self.sample_values) - 1, self.samples_debug, dtype=int)
185
- ]
186
- return [self.sample_values[i] for i in indices]
187
- return self.sample_values
188
-
189
-
190
- def box(name, center, width):
191
- var = FloatSweep(default=center, bounds=(center - width, center + width))
192
- var.name = name
193
- return var
@@ -1,206 +0,0 @@
1
- from functools import partial
2
- from typing import List, Tuple, Any
3
- from param import Parameter, Parameterized
4
- import holoviews as hv
5
- import panel as pn
6
-
7
-
8
- from bencher.utils import make_namedtuple, hash_sha1
9
- from bencher.variables.results import (
10
- ResultVar,
11
- ResultVec,
12
- ResultHmap,
13
- ResultVideo,
14
- ResultImage,
15
- ResultString,
16
- ResultContainer,
17
- ResultReference,
18
- )
19
-
20
-
21
- class ParametrizedSweep(Parameterized):
22
- """Parent class for all Sweep types that need a custom hash"""
23
-
24
- @staticmethod
25
- def param_hash(param_type: Parameterized, hash_value: bool = True) -> int:
26
- """A custom hash function for parametrised types with options for hashing the value of the type and hashing metadata
27
-
28
- Args:
29
- param_type (Parameterized): A parameter
30
- hash_value (bool, optional): use the value as part of the hash. Defaults to True.
31
- # hash_meta (bool, optional): use metadata as part of the hash. Defaults to False.
32
-
33
- Returns:
34
- int: a hash
35
- """
36
-
37
- curhash = 0
38
- if hash_value:
39
- for k, v in param_type.param.values().items():
40
- if k != "name":
41
- curhash = hash_sha1((curhash, hash_sha1(v)))
42
-
43
- # if hash_meta:
44
- # for k, v in param_type.param.objects().items():
45
- # if k != "name":
46
- # print(f"key:{k}, hash:{hash_sha1(k)}")
47
- # print(f"value:{v}, hash:{hash_sha1(v)}")
48
- # curhash = hash_sha1((curhash, hash_sha1(k), hash_sha1(v)))
49
- return curhash
50
-
51
- def hash_persistent(self) -> str:
52
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
53
- return ParametrizedSweep.param_hash(self, True)
54
-
55
- def update_params_from_kwargs(self, **kwargs) -> None:
56
- """Given a dictionary of kwargs, set the parameters of the passed class 'self' to the values in the dictionary."""
57
- used_params = {}
58
- for key in self.param.objects().keys():
59
- if key in kwargs:
60
- if key != "name":
61
- used_params[key] = kwargs[key]
62
-
63
- self.param.update(**used_params)
64
-
65
- @classmethod
66
- def get_input_and_results(cls, include_name: bool = False) -> Tuple[dict, dict]:
67
- """Get dictionaries of input parameters and result parameters
68
-
69
- Args:
70
- cls: A parametrised class
71
- include_name (bool): Include the name parameter that all parametrised classes have. Default False
72
-
73
- Returns:
74
- Tuple[dict, dict]: a tuple containing the inputs and result parameters as dictionaries
75
- """
76
- inputs = {}
77
- results = {}
78
- for k, v in cls.param.objects().items():
79
- if isinstance(
80
- v,
81
- (
82
- ResultVar,
83
- ResultVec,
84
- ResultHmap,
85
- ResultVideo,
86
- ResultImage,
87
- ResultString,
88
- ResultContainer,
89
- ResultReference,
90
- ),
91
- ):
92
- results[k] = v
93
- else:
94
- inputs[k] = v
95
-
96
- if not include_name:
97
- inputs.pop("name")
98
- return make_namedtuple("inputresult", inputs=inputs, results=results)
99
-
100
- def get_inputs_as_dict(self) -> dict:
101
- """Get the key:value pairs for all the input variables"""
102
- inp = self.get_input_and_results().inputs
103
- vals = self.param.values()
104
- return {i: vals[i] for i, v in inp.items()}
105
-
106
- def get_results_values_as_dict(self, holomap=None) -> dict:
107
- """Get a dictionary of result variables with the name and the current value"""
108
- values = self.param.values()
109
- output = {key: values[key] for key in self.get_input_and_results().results}
110
- if holomap is not None:
111
- output |= {"hmap": holomap}
112
- return output
113
-
114
- @classmethod
115
- def get_inputs_only(cls) -> List[Parameter]:
116
- """Return a list of input parameters
117
-
118
- Returns:
119
- List[param.Parameter]: A list of input parameters
120
- """
121
- return list(cls.get_input_and_results().inputs.values())
122
-
123
- @staticmethod
124
- def filter_fn(item, p_name):
125
- return item.name != p_name
126
-
127
- @classmethod
128
- def get_input_defaults(cls, override_defaults=None) -> List[Tuple[Parameter, Any]]:
129
- inp = cls.get_inputs_only()
130
- if override_defaults is None:
131
- override_defaults = []
132
- assert isinstance(override_defaults, list)
133
- for p in override_defaults:
134
- inp = filter(partial(ParametrizedSweep.filter_fn, p_name=p[0].name), inp)
135
- return override_defaults + [[i, i.default] for i in inp]
136
-
137
- @classmethod
138
- def get_results_only(cls) -> List[Parameter]:
139
- """Return a list of input parameters
140
-
141
- Returns:
142
- List[param.Parameter]: A list of result parameters
143
- """
144
- return list(cls.get_input_and_results().results.values())
145
-
146
- @classmethod
147
- def get_inputs_as_dims(
148
- self, compute_values=False, remove_dims: str | List[str] = None
149
- ) -> List[hv.Dimension]:
150
- inputs = self.get_inputs_only()
151
-
152
- if remove_dims is not None:
153
- if isinstance(remove_dims, str):
154
- remove_dims = [remove_dims]
155
- filtered_inputs = [i for i in inputs if i.name not in remove_dims]
156
- inputs = filtered_inputs
157
-
158
- return [iv.as_dim(compute_values) for iv in inputs]
159
-
160
- def to_dynamic_map(
161
- self,
162
- callback=None,
163
- name=None,
164
- remove_dims: str | List[str] = None,
165
- ) -> hv.DynamicMap:
166
- if callback is None:
167
- callback = self.__call__
168
-
169
- def callback_wrapper(**kwargs):
170
- return callback(**kwargs)["hmap"]
171
-
172
- return hv.DynamicMap(
173
- callback=callback_wrapper,
174
- kdims=self.get_inputs_as_dims(compute_values=False, remove_dims=remove_dims),
175
- name=name,
176
- ).opts(shared_axes=False, framewise=True, width=1000, height=1000)
177
-
178
- def to_gui(self): # pragma: no cover
179
- main = pn.Row(
180
- self.to_dynamic_map(),
181
- )
182
- main.show()
183
-
184
- def to_holomap(self, callback, remove_dims: str | List[str] = None) -> hv.DynamicMap:
185
- return hv.HoloMap(
186
- hv.DynamicMap(
187
- callback=callback,
188
- kdims=self.get_inputs_as_dims(compute_values=True, remove_dims=remove_dims),
189
- )
190
- )
191
-
192
- def __call__(self):
193
- return self.get_results_values_as_dict()
194
-
195
- def plot_hmap(self, **kwargs):
196
- return self.__call__(**kwargs)["hmap"]
197
-
198
- def to_bench(self, run_cfg=None, report=None, name: str = None):
199
- from bencher import Bench
200
-
201
- assert isinstance(self, ParametrizedSweep)
202
-
203
- if name is None:
204
- name = self.name[:-5] # param adds 5 digit number to the end, so remove it
205
-
206
- return Bench(name, self, run_cfg=run_cfg, report=report)
@@ -1,176 +0,0 @@
1
- from enum import auto
2
- from typing import List, Callable, Any
3
-
4
- import panel as pn
5
- import param
6
- from param import Number
7
- from strenum import StrEnum
8
- import holoviews as hv
9
- from bencher.utils import hash_sha1
10
-
11
- # from bencher.variables.parametrised_sweep import ParametrizedSweep
12
-
13
-
14
- class OptDir(StrEnum):
15
- minimize = auto()
16
- maximize = auto()
17
- none = auto() # If none this var will not appear in pareto plots
18
-
19
-
20
- class ResultVar(Number):
21
- """A class to represent result variables and the desired optimisation direction"""
22
-
23
- __slots__ = ["units", "direction"]
24
-
25
- def __init__(self, units="ul", direction: OptDir = OptDir.minimize, **params):
26
- Number.__init__(self, **params)
27
- assert isinstance(units, str)
28
- self.units = units
29
- self.default = 0 # json is terrible and does not support nan values
30
- self.direction = direction
31
-
32
- def as_dim(self) -> hv.Dimension:
33
- return hv.Dimension((self.name, self.name), unit=self.units)
34
-
35
- def hash_persistent(self) -> str:
36
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
37
- return hash_sha1((self.units, self.direction))
38
-
39
-
40
- class ResultVec(param.List):
41
- """A class to represent fixed size vector result variable"""
42
-
43
- __slots__ = ["units", "direction", "size"]
44
-
45
- def __init__(self, size, units="ul", direction: OptDir = OptDir.minimize, **params):
46
- param.List.__init__(self, **params)
47
- self.units = units
48
- self.default = 0 # json is terrible and does not support nan values
49
- self.direction = direction
50
- self.size = size
51
-
52
- def hash_persistent(self) -> str:
53
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
54
- return hash_sha1((self.units, self.direction))
55
-
56
- def index_name(self, idx: int) -> str:
57
- """given the index of the vector, return the column name that
58
-
59
- Args:
60
- idx (int): index of the result vector
61
-
62
- Returns:
63
- str: column name of the vector for the xarray dataset
64
- """
65
-
66
- mapping = ["x", "y", "z"]
67
- if idx < 3:
68
- index = mapping[idx]
69
- else:
70
- index = idx
71
- return f"{self.name}_{index}"
72
-
73
- def index_names(self) -> List[str]:
74
- """Returns a list of all the xarray column names for the result vector
75
-
76
- Returns:
77
- list[str]: column names
78
- """
79
- return [self.index_name(i) for i in range(self.size)]
80
-
81
-
82
- class ResultHmap(param.Parameter):
83
- """A class to represent a holomap return type"""
84
-
85
- def hash_persistent(self) -> str:
86
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
87
- return hash_sha1(self)
88
-
89
-
90
- def curve(x_vals: List[float], y_vals: List[float], x_name: str, y_name: str, **kwargs) -> hv.Curve:
91
- return hv.Curve(zip(x_vals, y_vals), kdims=[x_name], vdims=[y_name], label=y_name, **kwargs)
92
-
93
-
94
- class PathResult(param.Filename):
95
- __slots__ = ["units"]
96
-
97
- def __init__(self, default=None, units="path", **params):
98
- super().__init__(default=default, check_exists=False, **params)
99
- self.units = units
100
-
101
- def hash_persistent(self) -> str:
102
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
103
- return hash_sha1(self)
104
-
105
-
106
- class ResultVideo(PathResult):
107
- def __init__(self, default=None, units="video", **params):
108
- super().__init__(default=default, units=units, **params)
109
-
110
-
111
- class ResultImage(PathResult):
112
- def __init__(self, default=None, units="image", **params):
113
- super().__init__(default=default, units=units, **params)
114
-
115
-
116
- class ResultString(param.String):
117
- __slots__ = ["units"]
118
-
119
- def __init__(self, default=None, units="str", **params):
120
- super().__init__(default=default, **params)
121
- self.units = units
122
-
123
- def hash_persistent(self) -> str:
124
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
125
- return hash_sha1(self)
126
-
127
-
128
- class ResultContainer(param.Parameter):
129
- __slots__ = ["units"]
130
-
131
- def __init__(self, default=None, units="container", **params):
132
- super().__init__(default=default, **params)
133
- self.units = units
134
-
135
- def hash_persistent(self) -> str:
136
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
137
- return hash_sha1(self)
138
-
139
-
140
- class ResultReference(param.Parameter):
141
- """Use this class to save arbitrary objects that are not picklable or native to panel. You can pass a container callback that takes the object and returns a panel pane to be displayed"""
142
-
143
- __slots__ = ["units", "obj", "container"]
144
-
145
- def __init__(
146
- self,
147
- obj: Any = None,
148
- container: Callable[Any, pn.pane.panel] = None,
149
- default: Any = None,
150
- units: str = "container",
151
- **params,
152
- ):
153
- super().__init__(default=default, **params)
154
- self.units = units
155
- self.obj = obj
156
- self.container = container
157
-
158
- def hash_persistent(self) -> str:
159
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
160
- return hash_sha1(self)
161
-
162
-
163
- class ResultVolume(param.Parameter):
164
- __slots__ = ["units", "obj"]
165
-
166
- def __init__(self, obj=None, default=None, units="container", **params):
167
- super().__init__(default=default, **params)
168
- self.units = units
169
- self.obj = obj
170
-
171
- def hash_persistent(self) -> str:
172
- """A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
173
- return hash_sha1(self)
174
-
175
-
176
- PANEL_TYPES = (ResultImage, ResultContainer, ResultString, ResultReference)