holobench 1.3.4__py3-none-any.whl → 1.22.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- bencher/__init__.py +4 -1
- bencher/bench_cfg.py +37 -34
- bencher/bench_plot_server.py +5 -1
- bencher/bench_report.py +14 -14
- bencher/bench_runner.py +2 -1
- bencher/bencher.py +87 -50
- bencher/class_enum.py +52 -0
- bencher/job.py +6 -4
- bencher/optuna_conversions.py +1 -1
- bencher/utils.py +58 -3
- bencher/video_writer.py +110 -6
- holobench-1.22.2.data/data/share/bencher/package.xml +33 -0
- holobench-1.22.2.dist-info/LICENSE +21 -0
- {holobench-1.3.4.dist-info → holobench-1.22.2.dist-info}/METADATA +39 -32
- holobench-1.22.2.dist-info/RECORD +20 -0
- {holobench-1.3.4.dist-info → holobench-1.22.2.dist-info}/WHEEL +2 -1
- holobench-1.22.2.dist-info/top_level.txt +1 -0
- bencher/example/benchmark_data.py +0 -200
- bencher/example/example_all.py +0 -45
- bencher/example/example_categorical.py +0 -99
- bencher/example/example_custom_sweep.py +0 -59
- bencher/example/example_docs.py +0 -34
- bencher/example/example_float3D.py +0 -101
- bencher/example/example_float_cat.py +0 -98
- bencher/example/example_floats.py +0 -89
- bencher/example/example_floats2D.py +0 -93
- bencher/example/example_holosweep.py +0 -104
- bencher/example/example_holosweep_objects.py +0 -111
- bencher/example/example_holosweep_tap.py +0 -144
- bencher/example/example_image.py +0 -82
- bencher/example/example_levels.py +0 -181
- bencher/example/example_pareto.py +0 -53
- bencher/example/example_sample_cache.py +0 -85
- bencher/example/example_sample_cache_context.py +0 -116
- bencher/example/example_simple.py +0 -134
- bencher/example/example_simple_bool.py +0 -34
- bencher/example/example_simple_cat.py +0 -47
- bencher/example/example_simple_float.py +0 -38
- bencher/example/example_strings.py +0 -46
- bencher/example/example_time_event.py +0 -62
- bencher/example/example_video.py +0 -98
- bencher/example/example_workflow.py +0 -189
- bencher/example/experimental/example_bokeh_plotly.py +0 -38
- bencher/example/experimental/example_hover_ex.py +0 -45
- bencher/example/experimental/example_hvplot_explorer.py +0 -39
- bencher/example/experimental/example_interactive.py +0 -75
- bencher/example/experimental/example_streamnd.py +0 -49
- bencher/example/experimental/example_streams.py +0 -36
- bencher/example/experimental/example_template.py +0 -40
- bencher/example/experimental/example_updates.py +0 -84
- bencher/example/experimental/example_vector.py +0 -84
- bencher/example/meta/example_meta.py +0 -171
- bencher/example/meta/example_meta_cat.py +0 -25
- bencher/example/meta/example_meta_float.py +0 -23
- bencher/example/meta/example_meta_levels.py +0 -26
- bencher/example/optuna/example_optuna.py +0 -78
- bencher/example/shelved/example_float2D_scatter.py +0 -109
- bencher/example/shelved/example_float3D_cone.py +0 -96
- bencher/example/shelved/example_kwargs.py +0 -63
- bencher/plotting/__init__.py +0 -0
- bencher/plotting/plot_filter.py +0 -110
- bencher/plotting/plt_cnt_cfg.py +0 -74
- bencher/results/__init__.py +0 -0
- bencher/results/bench_result.py +0 -83
- bencher/results/bench_result_base.py +0 -401
- bencher/results/float_formatter.py +0 -44
- bencher/results/holoview_result.py +0 -535
- bencher/results/optuna_result.py +0 -332
- bencher/results/panel_result.py +0 -113
- bencher/results/plotly_result.py +0 -65
- bencher/variables/inputs.py +0 -193
- bencher/variables/parametrised_sweep.py +0 -206
- bencher/variables/results.py +0 -176
- bencher/variables/sweep_base.py +0 -167
- bencher/variables/time.py +0 -74
- holobench-1.3.4.dist-info/RECORD +0 -74
- /bencher/example/__init__.py → /holobench-1.22.2.data/data/share/ament_index/resource_index/packages/bencher +0 -0
@@ -1,206 +0,0 @@
|
|
1
|
-
from functools import partial
|
2
|
-
from typing import List, Tuple, Any
|
3
|
-
from param import Parameter, Parameterized
|
4
|
-
import holoviews as hv
|
5
|
-
import panel as pn
|
6
|
-
|
7
|
-
|
8
|
-
from bencher.utils import make_namedtuple, hash_sha1
|
9
|
-
from bencher.variables.results import (
|
10
|
-
ResultVar,
|
11
|
-
ResultVec,
|
12
|
-
ResultHmap,
|
13
|
-
ResultVideo,
|
14
|
-
ResultImage,
|
15
|
-
ResultString,
|
16
|
-
ResultContainer,
|
17
|
-
ResultReference,
|
18
|
-
)
|
19
|
-
|
20
|
-
|
21
|
-
class ParametrizedSweep(Parameterized):
|
22
|
-
"""Parent class for all Sweep types that need a custom hash"""
|
23
|
-
|
24
|
-
@staticmethod
|
25
|
-
def param_hash(param_type: Parameterized, hash_value: bool = True) -> int:
|
26
|
-
"""A custom hash function for parametrised types with options for hashing the value of the type and hashing metadata
|
27
|
-
|
28
|
-
Args:
|
29
|
-
param_type (Parameterized): A parameter
|
30
|
-
hash_value (bool, optional): use the value as part of the hash. Defaults to True.
|
31
|
-
# hash_meta (bool, optional): use metadata as part of the hash. Defaults to False.
|
32
|
-
|
33
|
-
Returns:
|
34
|
-
int: a hash
|
35
|
-
"""
|
36
|
-
|
37
|
-
curhash = 0
|
38
|
-
if hash_value:
|
39
|
-
for k, v in param_type.param.values().items():
|
40
|
-
if k != "name":
|
41
|
-
curhash = hash_sha1((curhash, hash_sha1(v)))
|
42
|
-
|
43
|
-
# if hash_meta:
|
44
|
-
# for k, v in param_type.param.objects().items():
|
45
|
-
# if k != "name":
|
46
|
-
# print(f"key:{k}, hash:{hash_sha1(k)}")
|
47
|
-
# print(f"value:{v}, hash:{hash_sha1(v)}")
|
48
|
-
# curhash = hash_sha1((curhash, hash_sha1(k), hash_sha1(v)))
|
49
|
-
return curhash
|
50
|
-
|
51
|
-
def hash_persistent(self) -> str:
|
52
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
53
|
-
return ParametrizedSweep.param_hash(self, True)
|
54
|
-
|
55
|
-
def update_params_from_kwargs(self, **kwargs) -> None:
|
56
|
-
"""Given a dictionary of kwargs, set the parameters of the passed class 'self' to the values in the dictionary."""
|
57
|
-
used_params = {}
|
58
|
-
for key in self.param.objects().keys():
|
59
|
-
if key in kwargs:
|
60
|
-
if key != "name":
|
61
|
-
used_params[key] = kwargs[key]
|
62
|
-
|
63
|
-
self.param.update(**used_params)
|
64
|
-
|
65
|
-
@classmethod
|
66
|
-
def get_input_and_results(cls, include_name: bool = False) -> Tuple[dict, dict]:
|
67
|
-
"""Get dictionaries of input parameters and result parameters
|
68
|
-
|
69
|
-
Args:
|
70
|
-
cls: A parametrised class
|
71
|
-
include_name (bool): Include the name parameter that all parametrised classes have. Default False
|
72
|
-
|
73
|
-
Returns:
|
74
|
-
Tuple[dict, dict]: a tuple containing the inputs and result parameters as dictionaries
|
75
|
-
"""
|
76
|
-
inputs = {}
|
77
|
-
results = {}
|
78
|
-
for k, v in cls.param.objects().items():
|
79
|
-
if isinstance(
|
80
|
-
v,
|
81
|
-
(
|
82
|
-
ResultVar,
|
83
|
-
ResultVec,
|
84
|
-
ResultHmap,
|
85
|
-
ResultVideo,
|
86
|
-
ResultImage,
|
87
|
-
ResultString,
|
88
|
-
ResultContainer,
|
89
|
-
ResultReference,
|
90
|
-
),
|
91
|
-
):
|
92
|
-
results[k] = v
|
93
|
-
else:
|
94
|
-
inputs[k] = v
|
95
|
-
|
96
|
-
if not include_name:
|
97
|
-
inputs.pop("name")
|
98
|
-
return make_namedtuple("inputresult", inputs=inputs, results=results)
|
99
|
-
|
100
|
-
def get_inputs_as_dict(self) -> dict:
|
101
|
-
"""Get the key:value pairs for all the input variables"""
|
102
|
-
inp = self.get_input_and_results().inputs
|
103
|
-
vals = self.param.values()
|
104
|
-
return {i: vals[i] for i, v in inp.items()}
|
105
|
-
|
106
|
-
def get_results_values_as_dict(self, holomap=None) -> dict:
|
107
|
-
"""Get a dictionary of result variables with the name and the current value"""
|
108
|
-
values = self.param.values()
|
109
|
-
output = {key: values[key] for key in self.get_input_and_results().results}
|
110
|
-
if holomap is not None:
|
111
|
-
output |= {"hmap": holomap}
|
112
|
-
return output
|
113
|
-
|
114
|
-
@classmethod
|
115
|
-
def get_inputs_only(cls) -> List[Parameter]:
|
116
|
-
"""Return a list of input parameters
|
117
|
-
|
118
|
-
Returns:
|
119
|
-
List[param.Parameter]: A list of input parameters
|
120
|
-
"""
|
121
|
-
return list(cls.get_input_and_results().inputs.values())
|
122
|
-
|
123
|
-
@staticmethod
|
124
|
-
def filter_fn(item, p_name):
|
125
|
-
return item.name != p_name
|
126
|
-
|
127
|
-
@classmethod
|
128
|
-
def get_input_defaults(cls, override_defaults=None) -> List[Tuple[Parameter, Any]]:
|
129
|
-
inp = cls.get_inputs_only()
|
130
|
-
if override_defaults is None:
|
131
|
-
override_defaults = []
|
132
|
-
assert isinstance(override_defaults, list)
|
133
|
-
for p in override_defaults:
|
134
|
-
inp = filter(partial(ParametrizedSweep.filter_fn, p_name=p[0].name), inp)
|
135
|
-
return override_defaults + [[i, i.default] for i in inp]
|
136
|
-
|
137
|
-
@classmethod
|
138
|
-
def get_results_only(cls) -> List[Parameter]:
|
139
|
-
"""Return a list of input parameters
|
140
|
-
|
141
|
-
Returns:
|
142
|
-
List[param.Parameter]: A list of result parameters
|
143
|
-
"""
|
144
|
-
return list(cls.get_input_and_results().results.values())
|
145
|
-
|
146
|
-
@classmethod
|
147
|
-
def get_inputs_as_dims(
|
148
|
-
self, compute_values=False, remove_dims: str | List[str] = None
|
149
|
-
) -> List[hv.Dimension]:
|
150
|
-
inputs = self.get_inputs_only()
|
151
|
-
|
152
|
-
if remove_dims is not None:
|
153
|
-
if isinstance(remove_dims, str):
|
154
|
-
remove_dims = [remove_dims]
|
155
|
-
filtered_inputs = [i for i in inputs if i.name not in remove_dims]
|
156
|
-
inputs = filtered_inputs
|
157
|
-
|
158
|
-
return [iv.as_dim(compute_values) for iv in inputs]
|
159
|
-
|
160
|
-
def to_dynamic_map(
|
161
|
-
self,
|
162
|
-
callback=None,
|
163
|
-
name=None,
|
164
|
-
remove_dims: str | List[str] = None,
|
165
|
-
) -> hv.DynamicMap:
|
166
|
-
if callback is None:
|
167
|
-
callback = self.__call__
|
168
|
-
|
169
|
-
def callback_wrapper(**kwargs):
|
170
|
-
return callback(**kwargs)["hmap"]
|
171
|
-
|
172
|
-
return hv.DynamicMap(
|
173
|
-
callback=callback_wrapper,
|
174
|
-
kdims=self.get_inputs_as_dims(compute_values=False, remove_dims=remove_dims),
|
175
|
-
name=name,
|
176
|
-
).opts(shared_axes=False, framewise=True, width=1000, height=1000)
|
177
|
-
|
178
|
-
def to_gui(self): # pragma: no cover
|
179
|
-
main = pn.Row(
|
180
|
-
self.to_dynamic_map(),
|
181
|
-
)
|
182
|
-
main.show()
|
183
|
-
|
184
|
-
def to_holomap(self, callback, remove_dims: str | List[str] = None) -> hv.DynamicMap:
|
185
|
-
return hv.HoloMap(
|
186
|
-
hv.DynamicMap(
|
187
|
-
callback=callback,
|
188
|
-
kdims=self.get_inputs_as_dims(compute_values=True, remove_dims=remove_dims),
|
189
|
-
)
|
190
|
-
)
|
191
|
-
|
192
|
-
def __call__(self):
|
193
|
-
return self.get_results_values_as_dict()
|
194
|
-
|
195
|
-
def plot_hmap(self, **kwargs):
|
196
|
-
return self.__call__(**kwargs)["hmap"]
|
197
|
-
|
198
|
-
def to_bench(self, run_cfg=None, report=None, name: str = None):
|
199
|
-
from bencher import Bench
|
200
|
-
|
201
|
-
assert isinstance(self, ParametrizedSweep)
|
202
|
-
|
203
|
-
if name is None:
|
204
|
-
name = self.name[:-5] # param adds 5 digit number to the end, so remove it
|
205
|
-
|
206
|
-
return Bench(name, self, run_cfg=run_cfg, report=report)
|
bencher/variables/results.py
DELETED
@@ -1,176 +0,0 @@
|
|
1
|
-
from enum import auto
|
2
|
-
from typing import List, Callable, Any
|
3
|
-
|
4
|
-
import panel as pn
|
5
|
-
import param
|
6
|
-
from param import Number
|
7
|
-
from strenum import StrEnum
|
8
|
-
import holoviews as hv
|
9
|
-
from bencher.utils import hash_sha1
|
10
|
-
|
11
|
-
# from bencher.variables.parametrised_sweep import ParametrizedSweep
|
12
|
-
|
13
|
-
|
14
|
-
class OptDir(StrEnum):
|
15
|
-
minimize = auto()
|
16
|
-
maximize = auto()
|
17
|
-
none = auto() # If none this var will not appear in pareto plots
|
18
|
-
|
19
|
-
|
20
|
-
class ResultVar(Number):
|
21
|
-
"""A class to represent result variables and the desired optimisation direction"""
|
22
|
-
|
23
|
-
__slots__ = ["units", "direction"]
|
24
|
-
|
25
|
-
def __init__(self, units="ul", direction: OptDir = OptDir.minimize, **params):
|
26
|
-
Number.__init__(self, **params)
|
27
|
-
assert isinstance(units, str)
|
28
|
-
self.units = units
|
29
|
-
self.default = 0 # json is terrible and does not support nan values
|
30
|
-
self.direction = direction
|
31
|
-
|
32
|
-
def as_dim(self) -> hv.Dimension:
|
33
|
-
return hv.Dimension((self.name, self.name), unit=self.units)
|
34
|
-
|
35
|
-
def hash_persistent(self) -> str:
|
36
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
37
|
-
return hash_sha1((self.units, self.direction))
|
38
|
-
|
39
|
-
|
40
|
-
class ResultVec(param.List):
|
41
|
-
"""A class to represent fixed size vector result variable"""
|
42
|
-
|
43
|
-
__slots__ = ["units", "direction", "size"]
|
44
|
-
|
45
|
-
def __init__(self, size, units="ul", direction: OptDir = OptDir.minimize, **params):
|
46
|
-
param.List.__init__(self, **params)
|
47
|
-
self.units = units
|
48
|
-
self.default = 0 # json is terrible and does not support nan values
|
49
|
-
self.direction = direction
|
50
|
-
self.size = size
|
51
|
-
|
52
|
-
def hash_persistent(self) -> str:
|
53
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
54
|
-
return hash_sha1((self.units, self.direction))
|
55
|
-
|
56
|
-
def index_name(self, idx: int) -> str:
|
57
|
-
"""given the index of the vector, return the column name that
|
58
|
-
|
59
|
-
Args:
|
60
|
-
idx (int): index of the result vector
|
61
|
-
|
62
|
-
Returns:
|
63
|
-
str: column name of the vector for the xarray dataset
|
64
|
-
"""
|
65
|
-
|
66
|
-
mapping = ["x", "y", "z"]
|
67
|
-
if idx < 3:
|
68
|
-
index = mapping[idx]
|
69
|
-
else:
|
70
|
-
index = idx
|
71
|
-
return f"{self.name}_{index}"
|
72
|
-
|
73
|
-
def index_names(self) -> List[str]:
|
74
|
-
"""Returns a list of all the xarray column names for the result vector
|
75
|
-
|
76
|
-
Returns:
|
77
|
-
list[str]: column names
|
78
|
-
"""
|
79
|
-
return [self.index_name(i) for i in range(self.size)]
|
80
|
-
|
81
|
-
|
82
|
-
class ResultHmap(param.Parameter):
|
83
|
-
"""A class to represent a holomap return type"""
|
84
|
-
|
85
|
-
def hash_persistent(self) -> str:
|
86
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
87
|
-
return hash_sha1(self)
|
88
|
-
|
89
|
-
|
90
|
-
def curve(x_vals: List[float], y_vals: List[float], x_name: str, y_name: str, **kwargs) -> hv.Curve:
|
91
|
-
return hv.Curve(zip(x_vals, y_vals), kdims=[x_name], vdims=[y_name], label=y_name, **kwargs)
|
92
|
-
|
93
|
-
|
94
|
-
class PathResult(param.Filename):
|
95
|
-
__slots__ = ["units"]
|
96
|
-
|
97
|
-
def __init__(self, default=None, units="path", **params):
|
98
|
-
super().__init__(default=default, check_exists=False, **params)
|
99
|
-
self.units = units
|
100
|
-
|
101
|
-
def hash_persistent(self) -> str:
|
102
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
103
|
-
return hash_sha1(self)
|
104
|
-
|
105
|
-
|
106
|
-
class ResultVideo(PathResult):
|
107
|
-
def __init__(self, default=None, units="video", **params):
|
108
|
-
super().__init__(default=default, units=units, **params)
|
109
|
-
|
110
|
-
|
111
|
-
class ResultImage(PathResult):
|
112
|
-
def __init__(self, default=None, units="image", **params):
|
113
|
-
super().__init__(default=default, units=units, **params)
|
114
|
-
|
115
|
-
|
116
|
-
class ResultString(param.String):
|
117
|
-
__slots__ = ["units"]
|
118
|
-
|
119
|
-
def __init__(self, default=None, units="str", **params):
|
120
|
-
super().__init__(default=default, **params)
|
121
|
-
self.units = units
|
122
|
-
|
123
|
-
def hash_persistent(self) -> str:
|
124
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
125
|
-
return hash_sha1(self)
|
126
|
-
|
127
|
-
|
128
|
-
class ResultContainer(param.Parameter):
|
129
|
-
__slots__ = ["units"]
|
130
|
-
|
131
|
-
def __init__(self, default=None, units="container", **params):
|
132
|
-
super().__init__(default=default, **params)
|
133
|
-
self.units = units
|
134
|
-
|
135
|
-
def hash_persistent(self) -> str:
|
136
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
137
|
-
return hash_sha1(self)
|
138
|
-
|
139
|
-
|
140
|
-
class ResultReference(param.Parameter):
|
141
|
-
"""Use this class to save arbitrary objects that are not picklable or native to panel. You can pass a container callback that takes the object and returns a panel pane to be displayed"""
|
142
|
-
|
143
|
-
__slots__ = ["units", "obj", "container"]
|
144
|
-
|
145
|
-
def __init__(
|
146
|
-
self,
|
147
|
-
obj: Any = None,
|
148
|
-
container: Callable[Any, pn.pane.panel] = None,
|
149
|
-
default: Any = None,
|
150
|
-
units: str = "container",
|
151
|
-
**params,
|
152
|
-
):
|
153
|
-
super().__init__(default=default, **params)
|
154
|
-
self.units = units
|
155
|
-
self.obj = obj
|
156
|
-
self.container = container
|
157
|
-
|
158
|
-
def hash_persistent(self) -> str:
|
159
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
160
|
-
return hash_sha1(self)
|
161
|
-
|
162
|
-
|
163
|
-
class ResultVolume(param.Parameter):
|
164
|
-
__slots__ = ["units", "obj"]
|
165
|
-
|
166
|
-
def __init__(self, obj=None, default=None, units="container", **params):
|
167
|
-
super().__init__(default=default, **params)
|
168
|
-
self.units = units
|
169
|
-
self.obj = obj
|
170
|
-
|
171
|
-
def hash_persistent(self) -> str:
|
172
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
173
|
-
return hash_sha1(self)
|
174
|
-
|
175
|
-
|
176
|
-
PANEL_TYPES = (ResultImage, ResultContainer, ResultString, ResultReference)
|
bencher/variables/sweep_base.py
DELETED
@@ -1,167 +0,0 @@
|
|
1
|
-
from __future__ import annotations
|
2
|
-
from typing import List, Any, Tuple
|
3
|
-
from copy import deepcopy
|
4
|
-
|
5
|
-
import numpy as np
|
6
|
-
import param
|
7
|
-
from param import Parameterized
|
8
|
-
import holoviews as hv
|
9
|
-
import panel as pn
|
10
|
-
from bencher.utils import hash_sha1
|
11
|
-
|
12
|
-
# slots that are shared across all Sweep classes
|
13
|
-
# param and slots don't work easily with multiple inheritance so define here
|
14
|
-
shared_slots = ["units", "samples", "samples_debug"]
|
15
|
-
|
16
|
-
|
17
|
-
def describe_variable(
|
18
|
-
v: Parameterized, debug: bool, include_samples: bool, value=None
|
19
|
-
) -> List[str]:
|
20
|
-
"""Generate a string description of a variable
|
21
|
-
|
22
|
-
Args:
|
23
|
-
v (param.Parameterized): parameter to describe
|
24
|
-
debug (bool): Generate a reduced number of samples from the variable
|
25
|
-
include_samples (bool): Include a description of the samples
|
26
|
-
|
27
|
-
Returns:
|
28
|
-
str: String description of the variable
|
29
|
-
"""
|
30
|
-
indent = " "
|
31
|
-
sampling_str = []
|
32
|
-
sampling_str.append(f"{v.name}:")
|
33
|
-
if include_samples:
|
34
|
-
# sampling_str.append(f"{indent}{v.sampling_str(debug)}")
|
35
|
-
sampling_str.append(f"{indent}number of samples: {len(v.values(debug))}")
|
36
|
-
sampling_str.append(f"{indent}sample values: {[str(v) for v in v.values(debug)]}")
|
37
|
-
|
38
|
-
if value is not None:
|
39
|
-
sampling_str.append(f"{indent}value: {value}")
|
40
|
-
if hasattr(v, "units"):
|
41
|
-
if v.units != "ul" and len(v.units) > 0:
|
42
|
-
sampling_str.append(f"{indent}units: [{v.units}]")
|
43
|
-
if v.doc is not None:
|
44
|
-
sampling_str.append(f"{indent}docs: {v.doc}")
|
45
|
-
for i in range(len(sampling_str)):
|
46
|
-
sampling_str[i] = f"{indent}{sampling_str[i]}"
|
47
|
-
return sampling_str
|
48
|
-
|
49
|
-
|
50
|
-
class SweepBase(param.Parameter):
|
51
|
-
# def __init__(self, **params):
|
52
|
-
# super().__init__(**params)
|
53
|
-
# self.units = ""
|
54
|
-
# slots = ["units", "samples", "samples_debug"]
|
55
|
-
# __slots__ = shared_slots
|
56
|
-
|
57
|
-
def values(self, debug: bool) -> List[Any]:
|
58
|
-
"""All sweep classes must implement this method. This generates sample values from based on the parameters bounds and sample number.
|
59
|
-
|
60
|
-
Args:
|
61
|
-
debug (bool): Return a reduced set of samples to enable fast debugging of a data generation and plotting pipeline. Ideally when debug is true, 2 samples will be returned
|
62
|
-
|
63
|
-
Returns:
|
64
|
-
List[Any]: A list of samples from the variable
|
65
|
-
"""
|
66
|
-
raise NotImplementedError
|
67
|
-
|
68
|
-
def hash_persistent(self) -> str:
|
69
|
-
"""A hash function that avoids the PYTHONHASHSEED 'feature' which returns a different hash value each time the program is run"""
|
70
|
-
return hash_sha1(
|
71
|
-
(self.units, self.samples, self.samples_debug) # pylint: disable=no-member
|
72
|
-
)
|
73
|
-
|
74
|
-
def sampling_str(self, debug=False) -> str:
|
75
|
-
"""Generate a string representation of the of the sampling procedure
|
76
|
-
|
77
|
-
Args:
|
78
|
-
debug (bool): If true then self.samples_debug is used
|
79
|
-
"""
|
80
|
-
|
81
|
-
samples = self.values(debug)
|
82
|
-
object_str = ",".join([str(i) for i in samples])
|
83
|
-
return f"Taking {len(samples)} samples from {self.name} with values: [{object_str}]"
|
84
|
-
|
85
|
-
def as_slider(self, debug=False) -> pn.widgets.slider.DiscreteSlider:
|
86
|
-
"""given a sweep variable (self), return the range of values as a panel slider
|
87
|
-
|
88
|
-
Args:
|
89
|
-
debug (bool, optional): pass to the sweepvar to produce a full set of varaibles, or when debug=True, a reduces number of sweep vars. Defaults to False.
|
90
|
-
|
91
|
-
Returns:
|
92
|
-
pn.widgets.slider.DiscreteSlider: A panel slider with the values() of the sweep variable
|
93
|
-
"""
|
94
|
-
return pn.widgets.slider.DiscreteSlider(name=self.name, options=list(self.values(debug)))
|
95
|
-
|
96
|
-
def as_dim(self, compute_values=False, debug=False) -> hv.Dimension:
|
97
|
-
"""Takes a sweep variable and turns it into a holoview dimension
|
98
|
-
|
99
|
-
Returns:
|
100
|
-
hv.Dimension:
|
101
|
-
"""
|
102
|
-
name_tuple = (self.name, self.name)
|
103
|
-
|
104
|
-
params = {}
|
105
|
-
if hasattr(self, "bounds"):
|
106
|
-
if compute_values:
|
107
|
-
params["values"] = self.values(debug)
|
108
|
-
# params["range"] = tuple(self.bounds)
|
109
|
-
else:
|
110
|
-
params["range"] = tuple(self.bounds)
|
111
|
-
params["default"] = self.default
|
112
|
-
|
113
|
-
else:
|
114
|
-
params["values"] = self.values(debug)
|
115
|
-
params["default"] = self.default
|
116
|
-
|
117
|
-
if hasattr(self, "step"):
|
118
|
-
params["step"] = getattr(self, "step")
|
119
|
-
|
120
|
-
return hv.Dimension(name_tuple, unit=self.units, **params) # pylint: disable=no-member
|
121
|
-
|
122
|
-
def indices_to_samples(self, desires_num_samples, sample_values):
|
123
|
-
indices = [
|
124
|
-
int(i) for i in np.linspace(0, len(sample_values) - 1, desires_num_samples, dtype=int)
|
125
|
-
]
|
126
|
-
|
127
|
-
if len(indices) > len(sample_values):
|
128
|
-
return sample_values
|
129
|
-
|
130
|
-
return [sample_values[i] for i in indices]
|
131
|
-
|
132
|
-
def with_samples(self, samples: int) -> SweepBase:
|
133
|
-
output = deepcopy(self)
|
134
|
-
# TODO set up class properly. Slightly complicated due to slots
|
135
|
-
output.samples = samples # pylint: disable = attribute-defined-outside-init
|
136
|
-
if hasattr(output, "step"):
|
137
|
-
# hack TODO fix this
|
138
|
-
output.step = None # pylint: disable = attribute-defined-outside-init
|
139
|
-
return output
|
140
|
-
|
141
|
-
def with_sample_values(self, sample_values: int) -> SweepBase:
|
142
|
-
output = deepcopy(self)
|
143
|
-
# TODO set up class properly. Slightly complicated due to slots
|
144
|
-
try:
|
145
|
-
output.sample_values = sample_values # pylint: disable = attribute-defined-outside-init
|
146
|
-
except AttributeError:
|
147
|
-
output.objects = sample_values # pylint: disable = attribute-defined-outside-init
|
148
|
-
output.samples = len(sample_values) # pylint: disable = attribute-defined-outside-init
|
149
|
-
return output
|
150
|
-
|
151
|
-
def with_const(self, const_value: Any) -> Tuple[SweepBase, Any]:
|
152
|
-
"""Create a new instance of SweepBase with a constant value.
|
153
|
-
|
154
|
-
Args:
|
155
|
-
const_value (Any): The constant value to be associated with the new instance.
|
156
|
-
|
157
|
-
Returns:
|
158
|
-
Tuple[SweepBase, Any]: A tuple containing the new instance of SweepBase and the constant value.
|
159
|
-
"""
|
160
|
-
return (deepcopy(self), const_value)
|
161
|
-
|
162
|
-
def with_level(self, level: int = 1, max_level: int = 12) -> SweepBase:
|
163
|
-
assert level >= 1
|
164
|
-
# TODO work out if the order can be returned in level order always
|
165
|
-
samples = [0, 1, 2, 3, 5, 9, 17, 33, 65, 129, 257, 513, 1025, 2049]
|
166
|
-
out = self.with_sample_values(self.with_samples(samples[min(max_level, level)]).values())
|
167
|
-
return out
|
bencher/variables/time.py
DELETED
@@ -1,74 +0,0 @@
|
|
1
|
-
from datetime import datetime
|
2
|
-
from typing import List
|
3
|
-
|
4
|
-
from pandas import Timestamp
|
5
|
-
from param import Selector
|
6
|
-
from bencher.variables.sweep_base import SweepBase, shared_slots
|
7
|
-
|
8
|
-
|
9
|
-
class TimeBase(SweepBase, Selector):
|
10
|
-
"""A class to capture a time snapshot of benchmark values. Time is reprented as a continous value i.e a datetime which is converted into a np.datetime64. To represent time as a discrete value use the TimeEvent class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
|
11
|
-
|
12
|
-
__slots__ = shared_slots
|
13
|
-
|
14
|
-
def values(self, debug=False) -> List[str]:
|
15
|
-
"""return all the values for a parameter sweep. If debug is true return a reduced list"""
|
16
|
-
# print(self.sampling_str(debug))
|
17
|
-
return self.objects
|
18
|
-
|
19
|
-
|
20
|
-
class TimeSnapshot(TimeBase):
|
21
|
-
"""A class to capture a time snapshot of benchmark values. Time is reprented as a continous value i.e a datetime which is converted into a np.datetime64. To represent time as a discrete value use the TimeEvent class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
|
22
|
-
|
23
|
-
__slots__ = shared_slots
|
24
|
-
|
25
|
-
def __init__(
|
26
|
-
self,
|
27
|
-
datetime_src: datetime | str,
|
28
|
-
units: str = "time",
|
29
|
-
samples: int = None,
|
30
|
-
samples_debug: int = 2,
|
31
|
-
**params,
|
32
|
-
):
|
33
|
-
if isinstance(datetime_src, str):
|
34
|
-
TimeBase.__init__(self, [datetime_src], instantiate=True, **params)
|
35
|
-
else:
|
36
|
-
TimeBase.__init__(
|
37
|
-
self,
|
38
|
-
objects=[Timestamp(datetime_src)],
|
39
|
-
instantiate=True,
|
40
|
-
**params,
|
41
|
-
)
|
42
|
-
self.units = units
|
43
|
-
if samples is None:
|
44
|
-
self.samples = len(self.objects)
|
45
|
-
else:
|
46
|
-
self.samples = samples
|
47
|
-
self.samples_debug = min(self.samples, samples_debug)
|
48
|
-
|
49
|
-
|
50
|
-
class TimeEvent(TimeBase):
|
51
|
-
"""A class to represent a discrete event in time where the data was captured i.e a series of pull requests. Here time is discrete and can't be interpolated, to represent time as a continous value use the TimeSnapshot class. The distinction is because holoview and plotly code makes different assumptions about discrete vs continous variables"""
|
52
|
-
|
53
|
-
__slots__ = shared_slots
|
54
|
-
|
55
|
-
def __init__(
|
56
|
-
self,
|
57
|
-
time_event: str,
|
58
|
-
units: str = "event",
|
59
|
-
samples: int = None,
|
60
|
-
samples_debug: int = 2,
|
61
|
-
**params,
|
62
|
-
):
|
63
|
-
TimeBase.__init__(
|
64
|
-
self,
|
65
|
-
objects=[time_event],
|
66
|
-
instantiate=True,
|
67
|
-
**params,
|
68
|
-
)
|
69
|
-
self.units = units
|
70
|
-
if samples is None:
|
71
|
-
self.samples = len(self.objects)
|
72
|
-
else:
|
73
|
-
self.samples = samples
|
74
|
-
self.samples_debug = min(self.samples, samples_debug)
|