holmesgpt 0.14.1a0__py3-none-any.whl → 0.14.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of holmesgpt might be problematic. Click here for more details.

@@ -1,6 +1,27 @@
1
1
 
2
2
  # Prometheus/PromQL queries
3
- * ALWAYS call list_prometheus_rules to get the alert definition
3
+
4
+ ## Efficient Metric Discovery (when needed)
5
+ * When you need to discover metrics, use `get_metric_names` with filters - it's the fastest method
6
+ * Combine multiple patterns with regex OR (|) to reduce API calls:
7
+ - `{__name__=~"node_cpu.*|node_memory.*|node_disk.*"}` - get all node resource metrics in one call
8
+ - `{__name__=~"container.*|pod.*|kube.*"}` - get all Kubernetes-related metrics
9
+ - `{namespace=~"example1|example2|example3"}` - metrics from multiple namespaces
10
+ * Use `get_metric_metadata` after discovering names to get types/descriptions if needed
11
+ * Use `get_label_values` to discover pods, namespaces, jobs: e.g., get_label_values(label="pod")
12
+ * Only use `get_series` when you need full label sets (slower than other methods)
13
+
14
+ ## Retrying queries that return too much data
15
+ * When a Prometheus query returns too much data (e.g., truncation error), you MUST retry with a more specific query or less data points or topk/bottomk
16
+ * NEVER EVER EVER answer a question based on Prometheus data that was truncated as you might be missing important information and give the totally wrong answer
17
+ * Prefer telling the user you can't answer the question because of too much data rather than answering based on incomplete data
18
+ * You are also able to show graphs to the user (using the promql embed functionality mentioned below) so you can show users graphs and THEY can interpret the data themselves, even if you can't answer.
19
+ * Do NOT hestitate to try alternative queries and try to reduce the amount of data returned until you get a successful query
20
+ * Be extremely, extremely cautious when answering based on get_label_values because the existence of a label value says NOTHING about the metric value itself (is it high, low, or perhaps the label exists in Prometheus but its an older series not present right now)
21
+ * DO NOT give answers about metrics based on what 'is typically the case' or 'common knowledge' - if you can't see the actual metric value, you MUST NEVER EVER answer about it - just tell the user your limitations due to the size of the data
22
+
23
+ ## Alert Investigation & Query Execution
24
+ * When investigating a Prometheus alert, ALWAYS call list_prometheus_rules to get the alert definition
4
25
  * Use Prometheus to query metrics from the alert promql
5
26
  * Use prometheus to execute promql queries with the tools `execute_prometheus_instant_query` and `execute_prometheus_range_query`
6
27
  * To create queries, use 'start_timestamp' and 'end_timestamp' as graphs start and end times
@@ -16,7 +37,7 @@
16
37
  ** Avoid global averages like `sum(rate(<metric>_sum)) / sum(rate(<metric>_count))` because it hides data and is not generally informative
17
38
  * Timestamps MUST be in string date format. For example: '2025-03-15 10:10:08.610862+00:00'
18
39
  * Post processing will parse your response, re-run the query from the tool output and create a chart visible to the user
19
- * Only generate and execute a prometheus query after checking what metrics are available with the `list_available_metrics` tool
40
+ * When unsure about available metrics, use `get_metric_names` with appropriate filters (combine multiple patterns with | for efficiency). Then use `get_metric_metadata` if you need descriptions/types
20
41
  * Check that any node, service, pod, container, app, namespace, etc. mentioned in the query exist in the kubernetes cluster before making a query. Use any appropriate kubectl tool(s) for this
21
42
  * The toolcall will return no data to you. That is expected. You MUST however ensure that the query is successful.
22
43
 
@@ -25,24 +46,19 @@
25
46
  * ALWAYS use `topk()` or `bottomk()` to limit the number of series returned
26
47
  * Standard pattern for high-cardinality queries:
27
48
  - Use `topk(5, <your_query>)` to get the top 5 series
28
- - Example: `topk(5, rate(container_cpu_usage_seconds_total{namespace="default"}[5m]))`
49
+ - Example: `topk(5, rate(container_cpu_usage_seconds_total{namespace="example"}[5m]))`
29
50
  - This prevents context overflow and focuses on the most relevant data
30
51
  * To also capture the aggregate of remaining series as "other":
31
52
  ```
32
- topk(5, rate(container_cpu_usage_seconds_total{namespace="default"}[5m]))
33
- or
34
- label_replace(
35
- (sum(rate(container_cpu_usage_seconds_total{namespace="default"}[5m])) - sum(topk(5, rate(container_cpu_usage_seconds_total{namespace="default"}[5m])))),
36
- "pod", "other", "", ""
37
- )
53
+ topk(5, rate(container_cpu_usage_seconds_total{namespace="example"}[5m])) or label_replace((sum(rate(container_cpu_usage_seconds_total{namespace="example"}[5m])) - sum(topk(5, rate(container_cpu_usage_seconds_total{namespace="example"}[5m])))), "pod", "other", "", "")
38
54
  ```
39
55
  * Common high-cardinality scenarios requiring topk():
40
56
  - Pod-level metrics in namespaces with many pods
41
57
  - Container-level CPU/memory metrics
42
58
  - HTTP metrics with many endpoints or status codes
43
59
  - Any query returning more than 10 time series
44
- * For initial exploration, use instant queries with `count()` to check cardinality:
45
- - Example: `count(count by (pod) (container_cpu_usage_seconds_total{namespace="default"}))`
60
+ * For initial exploration, you may use instant queries with `count()` to check cardinality:
61
+ - Example: `count(count by (pod) (container_cpu_usage_seconds_total{namespace="example"}))`
46
62
  - If count > 10, use topk() in your range query
47
63
  * When doing queries, always extend the time range, to 15 min before and after the alert start time
48
64
  * ALWAYS embed the execution results into your answer
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: holmesgpt
3
- Version: 0.14.1a0
3
+ Version: 0.14.2
4
4
  Summary:
5
5
  Author: Natan Yellin
6
6
  Author-email: natan@robusta.dev
@@ -26,7 +26,7 @@ Requires-Dist: fastapi (>=0.116,<0.117)
26
26
  Requires-Dist: humanize (>=4.9.0,<5.0.0)
27
27
  Requires-Dist: jinja2 (>=3.1.2,<4.0.0)
28
28
  Requires-Dist: kubernetes (>=32.0.1,<33.0.0)
29
- Requires-Dist: litellm (>=1.75.4,<2.0.0)
29
+ Requires-Dist: litellm (==1.77.1)
30
30
  Requires-Dist: markdown (>=3.6,<4.0)
31
31
  Requires-Dist: markdownify (>=1.1.0,<2.0.0)
32
32
  Requires-Dist: mcp (==v1.12.2)
@@ -1,16 +1,16 @@
1
1
  holmes/.git_archival.json,sha256=PbwdO7rNhEJ4ALiO12DPPb81xNAIsVxCA0m8OrVoqsk,182
2
- holmes/__init__.py,sha256=OFoM3xT5ywcINPQEn7FPjCRqsbs5mD59bkMe-DZri1k,263
3
- holmes/clients/robusta_client.py,sha256=kSmKXBw9Y16i7XmpnpS90fbbLQ_T5FtMIZMyTPoL9Uk,1410
4
- holmes/common/env_vars.py,sha256=y61QXRmu80iAtUU7cp30wjCrs_rwHNRS-kZaSyuzJcI,3312
2
+ holmes/__init__.py,sha256=aObdUvtSLEMRLcbzR1BLUnoN1nK0-PV8tAXzjOfEEh8,257
3
+ holmes/clients/robusta_client.py,sha256=rWst1PANJaIsprp3jZ7RV5UpttM_YLBGQ8B5noZqvgg,1532
4
+ holmes/common/env_vars.py,sha256=3CKyDmPtEAfYFxWC5wEDq5ppn94BhzDbJA3k9Vtd_WU,3312
5
5
  holmes/common/openshift.py,sha256=akbQ0GpnmuzXOqTcotpTDQSDKIROypS9mgPOprUgkCw,407
6
- holmes/config.py,sha256=r51n38hEAAphE37WUklPVY1-ELaWsXs78nD-3LYbJJQ,21781
6
+ holmes/config.py,sha256=yu0kQox7tfeKc4kJLESH-eGa6w1-nNC9kxAOtHf_qhQ,21781
7
7
  holmes/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
8
  holmes/core/config.py,sha256=9QGIXeYff9FPWa91as2OkRO2SupHzfNQZWzfNC4Vl-8,113
9
9
  holmes/core/conversations.py,sha256=krkcIe5Sl4JIGp5CfQrR74JYLnxis8ifKu09mOA5fAI,21428
10
10
  holmes/core/investigation.py,sha256=HrRi1-myPF7ndOwwZ4Sv8iUbvPkrd5M02RPhZzln7NM,5900
11
11
  holmes/core/investigation_structured_output.py,sha256=sNxyqmsElQ-B22OlzTOrJtfrlipjyidcTU07idOBO7w,10570
12
12
  holmes/core/issue.py,sha256=dbctGv8KHAXC1SeOMkEP-BudJ50u7kA8jLN5FN_d808,2426
13
- holmes/core/llm.py,sha256=7XLeFBh70knopL8OEuCgAycF-rFb4-9qFZDAgkkZCtw,21009
13
+ holmes/core/llm.py,sha256=YHrbOlXrb6b18KTYCHrjUa4e83LPyZ2LY-cwSJ5z2IE,22495
14
14
  holmes/core/models.py,sha256=n3HTxSvm1-JstkRkL8KMZ1mz5zecMqmMzQe2ECmnQ1E,6082
15
15
  holmes/core/openai_formatting.py,sha256=wL0Fq6lDePIKR5viitQz9ZWCQZZkHZHmEUqPIsOoFns,4077
16
16
  holmes/core/performance_timing.py,sha256=MTbTiiX2jjPmW7PuNA2eYON40eWsHPryR1ap_KlwZ_E,2217
@@ -20,14 +20,14 @@ holmes/core/runbooks.py,sha256=Oj5ICmiGgaq57t4erPzQDvHQ0rMGj1nhiiYhl8peH3Q,939
20
20
  holmes/core/safeguards.py,sha256=XrKgmMoJxSROfoSOW6t6QEG2MFppzC20Nyn1HA5G4Go,4935
21
21
  holmes/core/supabase_dal.py,sha256=cZgvdbmphihzOZrA9bKtVnxyiGqK5XqMeCQC3_uf2fs,21732
22
22
  holmes/core/todo_tasks_formatter.py,sha256=USyJZcoX6zoxID1UV-abAKdaWFYLO6QJd-UKryJAurI,1487
23
- holmes/core/tool_calling_llm.py,sha256=fwxgaLek42t_g2sxhsZN_WyDYLv6Q79yE9O1AMYqFwk,42234
23
+ holmes/core/tool_calling_llm.py,sha256=WD5a_Rmhn6OOzyHUN4wIXctYS8ZdB7oKPYfWuDDzcb4,42769
24
24
  holmes/core/tools.py,sha256=YotCnCnmrNYh_SMqD1GFeDOmU_s8kucNJEVRLhfQOqw,31539
25
25
  holmes/core/tools_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
26
26
  holmes/core/tools_utils/data_types.py,sha256=vvY0Vx45xTmLhu-RYI4xVJkhPtdg-W8xhFpsnesOMU0,2534
27
27
  holmes/core/tools_utils/tool_context_window_limiter.py,sha256=OZBz6lNnEIlCRGVGn_De6fw3tPuxE4UHlE52Z8Ni568,1736
28
28
  holmes/core/tools_utils/tool_executor.py,sha256=O0oMWSpiOClEMVJhPHi2AaZK9GI_FHq0OeNcAEoPV30,2395
29
29
  holmes/core/tools_utils/toolset_utils.py,sha256=SvWzen8Fg_TB_6Idw1hK0nCPrJL40ueWVMfsv8Kh2RY,2363
30
- holmes/core/toolset_manager.py,sha256=jAONcxFJhi9WPdDh8zZiHU-_pMCV2jFVgX6XgPWvnSo,25686
30
+ holmes/core/toolset_manager.py,sha256=KZQuECzT5CnW7K9yPx-Mp1rmThws0x4c0MMbzdyxU14,25688
31
31
  holmes/core/tracing.py,sha256=o1vTLCbnFvBOVnQKqRaj4HDNYGYAd4ub2IgkV1E3qY4,9130
32
32
  holmes/core/transformers/__init__.py,sha256=kCwmx-IQ6BpGpMpnm563ecl5Ik1nx4lhKb2y3KAKF7I,600
33
33
  holmes/core/transformers/base.py,sha256=FHUocHIS_oUBLWMiibdAuKY0Lpz5xY2ICji6DbmP2Do,1500
@@ -45,7 +45,7 @@ holmes/plugins/prompts/__init__.py,sha256=sOUHbHFQ6tYX7XWLi-Ak87cOQB1E889X5X8kWJ
45
45
  holmes/plugins/prompts/_ai_safety.jinja2,sha256=IoVdOXHnkGwLaiuUzMczEdoahyrKhkdYvyDmz9Oewxw,2262
46
46
  holmes/plugins/prompts/_current_date_time.jinja2,sha256=KynAvkQFqf_SXjqVY77nB8z4RgN7gti4SBSq1H7moHs,354
47
47
  holmes/plugins/prompts/_default_log_prompt.jinja2,sha256=Tqw8CD2ZMStXIfMdYaoZT_d-FvQ_PMg6-knqag-YEgc,1478
48
- holmes/plugins/prompts/_fetch_logs.jinja2,sha256=-rM-bYRGOlQa0KlheCXR4b0UcED1F7nHnHgnsqbx_PM,3988
48
+ holmes/plugins/prompts/_fetch_logs.jinja2,sha256=vThEjf6auWO6ITD6oMEGA-O7jpGjz1k2iiBfS7GRwJM,4986
49
49
  holmes/plugins/prompts/_general_instructions.jinja2,sha256=0RB5TFGqhbQ-xNt2_oHXJjvMIBLThuRDusBbbEruy2w,5777
50
50
  holmes/plugins/prompts/_global_instructions.jinja2,sha256=d_c-BtDhU_Rmx637TPAyzlIIim8ZAxy7JK3V4GV8IWI,1359
51
51
  holmes/plugins/prompts/_permission_errors.jinja2,sha256=gIMQx-zaTnuEv7SkQVC_GvxsR5R85fLuDZnJIKWcm5A,480
@@ -149,18 +149,18 @@ holmes/plugins/toolsets/consts.py,sha256=vxzGJBF1XNAE9CDteUFIYNRmOagmJ-ktFEfVEU8
149
149
  holmes/plugins/toolsets/coralogix/api.py,sha256=25ZnTfAvh5ZHzDsjap8As87opjGbMSBMQSSqelw7Tm0,5178
150
150
  holmes/plugins/toolsets/coralogix/toolset_coralogix_logs.py,sha256=AbkYhWatgfJjdScNkaziRqg8KckcjfSHHQugO4bmE54,3929
151
151
  holmes/plugins/toolsets/coralogix/utils.py,sha256=z9AAgyDTaxVgeSwaYDXGthBBCn_865gq7j1XUbZ5M-o,6938
152
- holmes/plugins/toolsets/datadog/datadog_api.py,sha256=5r9ViF5ABbnBWW-IfyPMntv3cA68hFEQ8t2MamBx-Lk,6841
152
+ holmes/plugins/toolsets/datadog/datadog_api.py,sha256=w8fILwJhMw5jua8O7d8WF5kbQSgRjXonPpZIf-EikJU,22675
153
153
  holmes/plugins/toolsets/datadog/datadog_general_instructions.jinja2,sha256=Z0X7z_AlKtmw3kfDnz-aPJKOnSIX4bPPRz8gQZRCctk,8300
154
- holmes/plugins/toolsets/datadog/datadog_logs_instructions.jinja2,sha256=1hV6dTSK-XB8tYx2Ek9hgaCQLGKPbSFYJmo7owy9vBk,2024
154
+ holmes/plugins/toolsets/datadog/datadog_logs_instructions.jinja2,sha256=NuzQFdUE9fc7MJfchgf6j7jHMANwUFkgRdg1qff5fBE,2943
155
155
  holmes/plugins/toolsets/datadog/datadog_metrics_instructions.jinja2,sha256=_59DzoVsoQVh73SRYhMBsK7jgKYVpWnadfI1AD_eLVY,4231
156
156
  holmes/plugins/toolsets/datadog/datadog_rds_instructions.jinja2,sha256=lbI6lkcMjG1CVKeL0XDkq5zl-fRDVxZ_t_CjS-Uh_OM,3119
157
157
  holmes/plugins/toolsets/datadog/datadog_traces_formatter.py,sha256=uTtWTrsbvO9cZcUDskJE9p5sEscieXwhEpxvRKkaiEw,10275
158
158
  holmes/plugins/toolsets/datadog/instructions_datadog_traces.jinja2,sha256=9j3-46UNE35DE2xBDTCRt1EedgNdgRXuC1u-X3yB-9I,1487
159
- holmes/plugins/toolsets/datadog/toolset_datadog_general.py,sha256=yP1SC1cOWeBoDL7CBS7_sVjkZKu-TSyiBITdgyjtpmY,27415
160
- holmes/plugins/toolsets/datadog/toolset_datadog_logs.py,sha256=veuOSCOKbhfkLz_FqU6YXQh8vAG0NdWN-_sg0o2DJzI,10020
161
- holmes/plugins/toolsets/datadog/toolset_datadog_metrics.py,sha256=iAdFfvETowfa-pwaNbtXHCadnrPTs5vRp-faJeLKobc,24993
162
- holmes/plugins/toolsets/datadog/toolset_datadog_rds.py,sha256=DuZDMVkFL-98k21RdFRP971Ga3INWilH2VRmiVpEGjY,29095
163
- holmes/plugins/toolsets/datadog/toolset_datadog_traces.py,sha256=uJe3htIIMKnb7EhomETuyFEcAjHMG8YA7okjfPen9gE,26214
159
+ holmes/plugins/toolsets/datadog/toolset_datadog_general.py,sha256=MK398E5HduTdhUwojmIcXKflg-1btPueEJL0oiGbwfQ,34718
160
+ holmes/plugins/toolsets/datadog/toolset_datadog_logs.py,sha256=8shUARbV8CmUW2nYQmBVDzr_31ACmyTyDuOoMgmZ0qg,17491
161
+ holmes/plugins/toolsets/datadog/toolset_datadog_metrics.py,sha256=0KJJZDLBQW9OSS-jGVyGCBQKN0J6NbPHuTjF7U3N-NE,28203
162
+ holmes/plugins/toolsets/datadog/toolset_datadog_rds.py,sha256=-Aga-mLnSGvlRyDcUnzKN7PIIRa6KCJ9HgL0GZ0yMKQ,29139
163
+ holmes/plugins/toolsets/datadog/toolset_datadog_traces.py,sha256=F7pS2Tpk6k8uvOPFcbft13LQnlfviJ21uvWQcajdFLM,26289
164
164
  holmes/plugins/toolsets/docker.yaml,sha256=O0Q0z0kZS8_QBEhwrUfbXdGUn1nP1K9k0FlQd6EZVJ4,1559
165
165
  holmes/plugins/toolsets/git.py,sha256=-f_e4jBUeQ0L8z6G2mBu3u8CUMsTMKIZybz0AKg6Wws,32239
166
166
  holmes/plugins/toolsets/grafana/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -170,9 +170,9 @@ holmes/plugins/toolsets/grafana/grafana_api.py,sha256=nq7KWoUAfFxp1-3VqKadPNKbTi
170
170
  holmes/plugins/toolsets/grafana/grafana_tempo_api.py,sha256=bcCPEwOwm1Og9LYR6PlAtjGgQopvySNjf5nTwILuFt4,15697
171
171
  holmes/plugins/toolsets/grafana/loki_api.py,sha256=f7oTzfhJ1LojsPoAfsKt32ADWffLEywBJQWG9eyfb7I,2529
172
172
  holmes/plugins/toolsets/grafana/toolset_grafana.py,sha256=_A3DUOyd2624I75BknsZhHpK1mzcf7JfACL7_ET6sPM,4922
173
- holmes/plugins/toolsets/grafana/toolset_grafana_loki.py,sha256=yQk4WHY9cuys-Gz8waNSFR-yx49UuSYVWxWncNJ0aIA,3876
173
+ holmes/plugins/toolsets/grafana/toolset_grafana_loki.py,sha256=MK0mK5h8MZuULwAoQlng3UZS1xtxHzePwhEoJiroJSw,3912
174
174
  holmes/plugins/toolsets/grafana/toolset_grafana_tempo.jinja2,sha256=0HBYUXkGYWZbHwIvfQEF5oL9LFMYzjgcmL1U6RjgPSE,10417
175
- holmes/plugins/toolsets/grafana/toolset_grafana_tempo.py,sha256=5lmWIVc8c4iSGwpvhhhxGPe5-LtpGMzprSdR8GmiuxQ,38416
175
+ holmes/plugins/toolsets/grafana/toolset_grafana_tempo.py,sha256=4q9FCHZ2kuI4Kng_JOWipkHIUyfkH2zT5zSywnFie18,38419
176
176
  holmes/plugins/toolsets/grafana/trace_parser.py,sha256=8PjqPGDGo9uB2Z8WWWknMKdhcqlqZEVncQCCkl2F06A,7024
177
177
  holmes/plugins/toolsets/helm.yaml,sha256=-IPDChKMHcxGbzA0z9GKczRshL-mD24cHpBizfNM1jM,1604
178
178
  holmes/plugins/toolsets/internet/internet.py,sha256=cQi8R2rcttIZ49egSzi2y2UVt4tncqE8medxiXp8II8,7779
@@ -186,7 +186,7 @@ holmes/plugins/toolsets/kubernetes.yaml,sha256=hIyBrdhhMrvadu2EOja_uT1Hn7lzuXLdH
186
186
  holmes/plugins/toolsets/kubernetes_logs.py,sha256=b84d-yCrGq9ua4B_zeitUy9AqDcUdipRAY71IFe5C7s,32814
187
187
  holmes/plugins/toolsets/kubernetes_logs.yaml,sha256=3AhUKihYMSL57Tm_y5HgEbtyoer6Kpm7oAcRz1GxgDw,4532
188
188
  holmes/plugins/toolsets/logging_utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
189
- holmes/plugins/toolsets/logging_utils/logging_api.py,sha256=seW5DNSzREQx4nmkt9NEqN21j8jTPNSJyOkCrdcdWoQ,11615
189
+ holmes/plugins/toolsets/logging_utils/logging_api.py,sha256=p5iisG4kWWh275nKT4wJuJbXWQrbQSydeMDv8f9DPw4,11608
190
190
  holmes/plugins/toolsets/logging_utils/types.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
191
191
  holmes/plugins/toolsets/mcp/toolset_mcp.py,sha256=4E2-A8EAno5q1ZUNwyMPQdPY-ub5iIAyuEnCn7C0pg0,4914
192
192
  holmes/plugins/toolsets/newrelic.py,sha256=_bjzIAKbPMQcvv-Z0AV1r-T2fMHDWxnWz9zH_5-40Dg,7956
@@ -196,8 +196,8 @@ holmes/plugins/toolsets/opensearch/opensearch_logs.py,sha256=_j-JAhLWtxhBPafCvey
196
196
  holmes/plugins/toolsets/opensearch/opensearch_traces.py,sha256=FjDbkU-oI-spMdra0raSmiHZb6Cfbo_AsS_OKEt9coI,8876
197
197
  holmes/plugins/toolsets/opensearch/opensearch_traces_instructions.jinja2,sha256=Xn8AW4XCMYV1VkBbF8nNB9fUpKQ1Vbm88iFczj-LQXo,1035
198
198
  holmes/plugins/toolsets/opensearch/opensearch_utils.py,sha256=mh9Wp22tOdJYmA9IaFS7tD3aEENljyeuPOsF-lEe5C0,5097
199
- holmes/plugins/toolsets/prometheus/prometheus.py,sha256=NZcfYd7amva9oS0hQQjkplpeo-yl60pIaZN_24Ko-q8,45982
200
- holmes/plugins/toolsets/prometheus/prometheus_instructions.jinja2,sha256=aayd8daqQPbkWGa8h4j11-Veum0TGaJdFJKwRkPnwwg,4174
199
+ holmes/plugins/toolsets/prometheus/prometheus.py,sha256=H5sdiwk2nAWrnD23wR-8nkTuRLBOhrCZXc51EOgDqIQ,65832
200
+ holmes/plugins/toolsets/prometheus/prometheus_instructions.jinja2,sha256=taf5C-N9rdp1A7S__hETefcm2OaYHJLjs1ZbuqIsGtE,6383
201
201
  holmes/plugins/toolsets/prometheus/utils.py,sha256=ZenD354dP0sRmm0R-QBuAq1jyn40GjYf4wx15bXIYRc,775
202
202
  holmes/plugins/toolsets/rabbitmq/api.py,sha256=-BtqF7hQWtl_OamnQ521vYHhR8E2n2wcPNYxfI9r4kQ,14307
203
203
  holmes/plugins/toolsets/rabbitmq/rabbitmq_instructions.jinja2,sha256=qetmtJUMkx9LIihr2fSJ2EV9h2J-b-ZdUAvMtopXZYY,3105
@@ -237,8 +237,8 @@ holmes/utils/sentry_helper.py,sha256=_IbxqlqbsNb_ncvpZ-B5XxcauQphJStcwaVxRj18RpU
237
237
  holmes/utils/stream.py,sha256=L4vlu1xX5Ihtn-D0Mfml_HuQRfLhHFSkWNojcAJLi9g,3252
238
238
  holmes/utils/tags.py,sha256=SU4EZMBtLlIb7OlHsSpguFaypczRzOcuHYxDSanV3sQ,3364
239
239
  holmes/version.py,sha256=uDRPOvVaHreROj_9HPe81RVpTzHcG8ojpGTsnJIlQOM,5220
240
- holmesgpt-0.14.1a0.dist-info/LICENSE.txt,sha256=RdZMj8VXRQdVslr6PMYMbAEu5pOjOdjDqt3yAmWb9Ds,1072
241
- holmesgpt-0.14.1a0.dist-info/METADATA,sha256=ZptyUfUK3Xj1dz5suEzHJ15UUuIzju75ly057r0Y6Tc,16193
242
- holmesgpt-0.14.1a0.dist-info/WHEEL,sha256=kLuE8m1WYU0Ig0_YEGrXyTtiJvKPpLpDEiChiNyei5Y,88
243
- holmesgpt-0.14.1a0.dist-info/entry_points.txt,sha256=JdzEyZhpaYr7Boo4uy4UZgzY1VsAEbzMgGmHZtx9KFY,42
244
- holmesgpt-0.14.1a0.dist-info/RECORD,,
240
+ holmesgpt-0.14.2.dist-info/LICENSE.txt,sha256=RdZMj8VXRQdVslr6PMYMbAEu5pOjOdjDqt3yAmWb9Ds,1072
241
+ holmesgpt-0.14.2.dist-info/METADATA,sha256=_-DXRD2oFoAqxL5uMxMeds-RItenYjrE2aRKnmV0DHQ,16184
242
+ holmesgpt-0.14.2.dist-info/WHEEL,sha256=kLuE8m1WYU0Ig0_YEGrXyTtiJvKPpLpDEiChiNyei5Y,88
243
+ holmesgpt-0.14.2.dist-info/entry_points.txt,sha256=JdzEyZhpaYr7Boo4uy4UZgzY1VsAEbzMgGmHZtx9KFY,42
244
+ holmesgpt-0.14.2.dist-info/RECORD,,