hkjc 0.3.18__py3-none-any.whl → 0.3.19__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
hkjc/__init__.py CHANGED
@@ -4,10 +4,10 @@ This module re-exports commonly used symbols from the submodules.
4
4
  """
5
5
  from importlib.metadata import version as _version
6
6
 
7
- __all__ = ["live", "qpbanker",
7
+ __all__ = ["live", "features",
8
8
  "generate_all_qp_trades", "generate_all_pla_trades", "pareto_filter",
9
- "speedpro_energy", "speedmap", "harveille_model",
10
- "generate_historical_data"]
9
+ "speedpro_energy", "speedmap", "harveille_model",
10
+ "generate_historical_data"]
11
11
 
12
12
  try:
13
13
  __version__ = _version(__name__)
@@ -17,4 +17,4 @@ except Exception: # pragma: no cover - best-effort version resolution
17
17
  from .processing import generate_all_qp_trades, generate_all_pla_trades, generate_historical_data
18
18
  from .utils import pareto_filter
19
19
  from .speedpro import speedmap, speedpro_energy
20
- from . import harville_model, live
20
+ from . import harville_model, live, features
hkjc/features.py ADDED
@@ -0,0 +1,6 @@
1
+ """ Polars expressions to commonly-used analysis features, subject to frequent changes.
2
+ """
3
+ import polars as pl
4
+
5
+ rating_diff = (pl.col('Rtg').max().over('RaceId')-pl.col('Rtg')).alias('RtgDiff')
6
+ frontrunner_pct = (pl.col('FavoriteRunningStyle')=='FrontRunner').mean().over('RaceId').alias('FRPct')
hkjc/historical.py CHANGED
@@ -52,11 +52,13 @@ def _classify_running_style(df: pl.DataFrame, running_pos_col="RunningPosition")
52
52
  .alias("split_data").cast(pl.Int64, strict=False)
53
53
  ).unnest("split_data")
54
54
 
55
- df = df.with_columns(pl.col('FinishPosition').fill_null(pl.col('Position3')))
55
+ df = df.with_columns(
56
+ pl.col('FinishPosition').fill_null(pl.col('Position3')))
56
57
 
57
58
  df = df.with_columns([
58
59
  (pl.col("StartPosition")-pl.col("FinishPosition")).alias("PositionChange"),
59
- pl.mean_horizontal("StartPosition", "Position2").alias("AvgStartPosition"),
60
+ pl.mean_horizontal("StartPosition", "Position2").alias(
61
+ "AvgStartPosition"),
60
62
  ]).with_columns(pl.when(pl.col("StartPosition").is_null()).then(pl.lit("--"))
61
63
  .when((pl.col("AvgStartPosition") <= 3) & (pl.col("StartPosition") <= 3)).then(pl.lit("FrontRunner"))
62
64
  .when((pl.col("PositionChange") >= 1) & (pl.col("StartPosition") >= 6)).then(pl.lit("Closer"))
@@ -77,35 +79,7 @@ def _extract_horse_data(horse_no: str) -> pl.DataFrame:
77
79
  pl.col('Date') != '') # Remove empty rows
78
80
  horse_data = _classify_running_style(horse_data)
79
81
 
80
- # Extract horse profile info
81
- table = soup.find_all('table', class_='table_eng_text')
82
- profile_data = _parse_html_table(table[0], skip_header=True)
83
- profile_data = _parse_html_table(table[1], skip_header=True)
84
-
85
- try:
86
- current_rating = int(profile_data.filter(
87
- pl.col("column_0").str.starts_with("Current Rating"))['column_2'].item(0))
88
- season_start_rating = int(profile_data.filter(pl.col(
89
- "column_0").str.starts_with("Start of Season Rating"))['column_2'].item(0))
90
- except:
91
- current_rating, season_start_rating = 0, 0
92
-
93
- try:
94
- last_rating = int(profile_data.filter(
95
- pl.col("column_0").str.starts_with("Last Rating"))['column_2'].item(0))
96
- except:
97
- last_rating = 0
98
-
99
- horse_info = {
100
- 'HorseID': horse_no,
101
- 'CurrentRating': current_rating,
102
- 'SeasonStartRating': season_start_rating,
103
- 'LastRating': last_rating if current_rating == 0 else current_rating
104
- }
105
- horse_data = (horse_data.with_columns([
106
- pl.lit(value).alias(key) for key, value in horse_info.items()
107
- ])
108
- )
82
+ horse_data = horse_data.with_columns(pl.lit(horse_no).alias('HorseNo'))
109
83
 
110
84
  return horse_data
111
85
 
@@ -124,16 +98,16 @@ def _clean_horse_data(df: pl.DataFrame) -> pl.DataFrame:
124
98
  pl.col('Dr').cast(pl.Int64, strict=False),
125
99
  pl.col('Rtg').cast(pl.Int64, strict=False),
126
100
  pl.col('Dist').cast(pl.Int64, strict=False),
127
- pl.col('WinOdds').cast(pl.Float64, strict=False),
128
- pl.col('RaceIndex').cast(pl.Int64, strict=False)
101
+ pl.col('WinOdds').cast(pl.Float64, strict=False)
129
102
  ])
130
103
 
131
- df = df.with_columns(
104
+ df = (df.filter(~pl.col('FinishTime').str.starts_with('--'))
105
+ .with_columns(
132
106
  (
133
- pl.col("FinishTime").str.split_exact(".", 1).struct.field("field_0").cast(pl.Int64) * 60 +
134
- pl.col("FinishTime").str.split_exact(".", 1).struct.field("field_1").cast(pl.Int64)
135
- ).cast(pl.Float64).alias("FinishTime")
136
- )
107
+ pl.col("FinishTime").str.splitn(".", 2).struct.field("field_0").cast(pl.Int64) * 60 +
108
+ pl.col("FinishTime").str.splitn(".", 2).struct.field("field_1").cast(pl.Float64)
109
+ ).cast(pl.Float64).round(2).alias("FinishTime")
110
+ ))
137
111
 
138
112
  df = df.with_columns(
139
113
  pl.col('RCTrackCourse').str.split_exact(' / ', 2)
@@ -141,12 +115,22 @@ def _clean_horse_data(df: pl.DataFrame) -> pl.DataFrame:
141
115
  .alias('RCTrackCourse')
142
116
  ).unnest('RCTrackCourse')
143
117
 
118
+ df = df.with_columns(
119
+ pl.when(pl.col('Date').str.len_chars() <= 8)
120
+ .then(pl.col('Date').str.strptime(pl.Date, '%d/%m/%y', strict=False))
121
+ .otherwise(pl.col('Date').str.strptime(pl.Date, '%d/%m/%Y'))
122
+ ).with_columns(
123
+ pl.concat_str(pl.col('Date').dt.strftime('%Y%m%d'), pl.col(
124
+ 'Venue'), pl.col('RaceIndex')).alias('RaceId')
125
+ ).drop("VideoReplay")
144
126
  return df
145
127
 
128
+
146
129
  def get_horse_data(horse_no: str) -> pl.DataFrame:
147
130
  df = _extract_horse_data(horse_no)
148
131
  return _clean_horse_data(df)
149
132
 
133
+
150
134
  def _clean_race_data(df: pl.DataFrame) -> pl.DataFrame:
151
135
  """ Clean and convert horse data to suitable data types
152
136
  """
@@ -165,13 +149,14 @@ def _clean_race_data(df: pl.DataFrame) -> pl.DataFrame:
165
149
 
166
150
  df = df.with_columns(
167
151
  (
168
- pl.col("FinishTime").str.split_exact(":", 1).struct.field("field_0").cast(pl.Int64) * 60 +
169
- pl.col("FinishTime").str.split_exact(":", 1).struct.field("field_1").cast(pl.Int64)
170
- ).cast(pl.Float64).alias("FinishTime")
152
+ pl.col("FinishTime").str.splitn(":", 2).struct.field("field_0").cast(pl.Int64) * 60 +
153
+ pl.col("FinishTime").str.splitn(":", 2).struct.field("field_1").cast(pl.Float64)
154
+ ).cast(pl.Float64).round(2).alias("FinishTime")
171
155
  )
172
156
 
173
157
  return df
174
158
 
159
+
175
160
  def _extract_race_data(date: str, venue_code: str, race_number: int) -> pl.DataFrame:
176
161
  soup = _soupify_race_page(date, venue_code, race_number)
177
162
  table = soup.find('div', class_='race_tab').find('table')
@@ -211,5 +196,5 @@ def _extract_race_data(date: str, venue_code: str, race_number: int) -> pl.DataF
211
196
 
212
197
 
213
198
  def get_race_data(date: str, venue_code: str, race_number: int) -> pl.DataFrame:
214
- df = _extract_race_data(date,venue_code,race_number)
215
- return _clean_race_data(df)
199
+ df = _extract_race_data(date, venue_code, race_number)
200
+ return _clean_race_data(df)
hkjc/live.py CHANGED
@@ -7,8 +7,6 @@ import requests
7
7
  from cachetools.func import ttl_cache
8
8
  import numpy as np
9
9
 
10
- from .utils import _validate_date, _validate_venue_code
11
-
12
10
  HKJC_LIVEODDS_ENDPOINT = "https://info.cld.hkjc.com/graphql/base/"
13
11
 
14
12
  RACEMTG_PAYLOAD = {
@@ -245,7 +243,7 @@ query racing($date: String, $venueCode: String, $oddsTypes: [OddsType], $raceNo:
245
243
 
246
244
 
247
245
  @ttl_cache(maxsize=12, ttl=1000)
248
- def _fetch_live_races(date: str, venue_code: str) -> dict:
246
+ def _fetch_live_races(date: str=None, venue_code: str=None) -> dict:
249
247
  """Fetch live race data from HKJC GraphQL endpoint."""
250
248
  payload = RACEMTG_PAYLOAD.copy()
251
249
  payload["variables"] = payload["variables"].copy()
@@ -265,9 +263,10 @@ def _fetch_live_races(date: str, venue_code: str) -> dict:
265
263
  if r.status_code != 200:
266
264
  raise RuntimeError(f"Request failed: {r.status_code} - {r.text}")
267
265
 
268
- races = r.json()['data']['raceMeetings'][0]['races']
266
+ data = r.json()['data']['raceMeetings'][0]
267
+ races = data['races']
269
268
 
270
- race_info = {}
269
+ race_info = {'Date': data['date'], 'Venue': data['venueCode'], 'Races': {}}
271
270
  for race in races:
272
271
  race_num = race['no']
273
272
  race_name = race['raceName_en']
@@ -277,12 +276,15 @@ def _fetch_live_races(date: str, venue_code: str) -> dict:
277
276
  race_class = race['raceClass_en']
278
277
  race_course = race['raceCourse']['displayCode']
279
278
 
280
- runners = [{'Dr': runner['barrierDrawNumber'],
281
- 'Rtg' : int(runner['currentRating']),
282
- 'Wt' : int(runner['currentWeight']),
279
+ runners = [{'No': runner['no'],
280
+ 'Name': runner['name_en'],
281
+ 'Dr': runner['barrierDrawNumber'],
282
+ 'Rtg': int(runner['currentRating']),
283
+ 'Wt': int(runner['currentWeight']),
284
+ 'Handicap': int(runner['handicapWeight']),
283
285
  'HorseNo': runner['horse']['code']
284
- } for runner in race['runners']]
285
- race_info[race_num]={
286
+ } for runner in race['runners'] if runner['status'] != "Standby"]
287
+ race_info['Races'][race_num] = {
286
288
  'No': race_num,
287
289
  'Name': race_name,
288
290
  'Class': race_class,
@@ -290,13 +292,13 @@ def _fetch_live_races(date: str, venue_code: str) -> dict:
290
292
  'Dist': race_dist,
291
293
  'Going': race_going,
292
294
  'Track': race_track,
293
- 'Runners': runners
295
+ 'Runners': runners
294
296
  }
295
297
  return race_info
296
298
 
297
299
 
298
300
  @ttl_cache(maxsize=12, ttl=30)
299
- def _fetch_live_odds(date: str, venue_code: str, race_number: int, odds_type: Tuple[str] = ('PLA', 'QPL')) -> List[dict]:
301
+ def _fetch_live_odds(date: str, venue_code: str, race_number: int, odds_type: Tuple[str] = ('PLA', )) -> List[dict]:
300
302
  """Fetch live odds data from HKJC GraphQL endpoint."""
301
303
  payload = LIVEODDS_PAYLOAD.copy()
302
304
  payload["variables"] = payload["variables"].copy()
@@ -329,14 +331,14 @@ def _fetch_live_odds(date: str, venue_code: str, race_number: int, odds_type: Tu
329
331
  ]
330
332
 
331
333
 
332
- def live_odds(date: str, venue_code: str, race_number: int, odds_type: List[str] = ['PLA', 'QPL']) -> dict:
334
+ def live_odds(date: str, venue_code: str, race_number: int, odds_type: List[str] = ['WIN', 'PLA', 'QPL', 'QIN']) -> dict:
333
335
  """Fetch live odds as numpy arrays.
334
336
 
335
337
  Args:
336
338
  date (str): Date in 'YYYY-MM-DD' format.
337
339
  venue_code (str): Venue code, e.g., 'ST' for Shatin, 'HV' for Happy Valley.
338
340
  race_number (int): Race number.
339
- odds_type (List[str]): Types of odds to fetch. Default is ['PLA', 'QPL']. Currently the following types are supported:
341
+ odds_type (List[str]): Types of odds to fetch. Default is ['WIN', 'PLA', 'QPL', 'QIN']. Currently the following types are supported:
340
342
  - 'WIN': Win odds
341
343
  - 'PLA': Place odds
342
344
  - 'QIN': Quinella odds
@@ -348,11 +350,13 @@ def live_odds(date: str, venue_code: str, race_number: int, odds_type: List[str]
348
350
  If odds_type is 'WIN','PLA', returns a 1D array of place odds.
349
351
  If odds_type is 'QIN','QPL', returns a 2D array of quinella place odds.
350
352
  """
351
- _validate_date(date)
352
- _validate_venue_code(venue_code)
353
-
354
353
  race_info = _fetch_live_races(date, venue_code)
355
- N = len(race_info[race_number]['Runners'])
354
+ N = len(race_info['Races'][race_number]['Runners'])
355
+
356
+ if (race_info['Date'] != date) or (race_info['Venue'] != venue_code):
357
+ print(f"[WARNING] Requested {date} {venue_code} but server returned {race_info['Date']} {race_info['Venue']}.")
358
+ date = race_info['Date']
359
+ venue_code = race_info['Venue']
356
360
 
357
361
  data = _fetch_live_odds(date, venue_code, race_number,
358
362
  odds_type=tuple(odds_type))
hkjc/processing.py CHANGED
@@ -63,7 +63,12 @@ def generate_historical_data(start_date: str, end_date: str) -> pl.DataFrame:
63
63
  # Use horse track records
64
64
  dfs = [_extract_horse_data(horse_id) for horse_id in tqdm(horse_ids, desc='Processing horses ...', leave=False)]
65
65
  df = pl.concat(dfs)
66
- return _clean_horse_data(df)
66
+
67
+ try:
68
+ return _clean_horse_data(df).filter(pl.col('Date').is_between(start_dt, end_dt))
69
+ except:
70
+ print('Failed to clean data. Returning raw data for debug.')
71
+ return df
67
72
 
68
73
 
69
74
  # ==========================
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hkjc
3
- Version: 0.3.18
3
+ Version: 0.3.19
4
4
  Summary: Library for scrapping HKJC data and perform basic analysis
5
5
  Requires-Python: >=3.11
6
6
  Requires-Dist: beautifulsoup4>=4.14.2
@@ -0,0 +1,14 @@
1
+ hkjc/__init__.py,sha256=XSm9N6YbZ2SzyxjO9aR26ctB4Z1-VeBImuroSgncUfk,737
2
+ hkjc/features.py,sha256=1mcF9Pq2LsnQ8yIv2F8Uyg1HXz7LdNcPf9RDzFN3sbA,297
3
+ hkjc/harville_model.py,sha256=MZjPLS-1nbEhp1d4Syuq13DtraKnd7TlNqBmOOCwxgc,15976
4
+ hkjc/historical.py,sha256=Yujb4Q2cTkvVvvZxVaSoawbwwxfzq03lprG_s_4H7Dk,7682
5
+ hkjc/live.py,sha256=CfMeHRQfhKSmhQaexM99sdP0KRbIEqg2DIvNPc1gohk,10696
6
+ hkjc/processing.py,sha256=uNjM5eeH9Mj8Dg9-9K7z-7xeufaXJT42F49zUHzj0h0,6968
7
+ hkjc/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
+ hkjc/speedpro.py,sha256=Y2Z3GYGeePc4sM-ZnCHXCI1N7L-_j9nrMqS3CC5BBSo,2031
9
+ hkjc/utils.py,sha256=4CA_FPf_U3GvzoLkqBX0qDPZgrSvKJKvbP7VWqd5FiA,6323
10
+ hkjc/strategy/place_only.py,sha256=lHPjTSj8PzghxncNBg8FI4T4HJigekB9a3bV7l7VtPA,2079
11
+ hkjc/strategy/qpbanker.py,sha256=MQxjwsfhllKZroKS8w8Q3bi3HMjGc1DAyBIjNZAp3yQ,4805
12
+ hkjc-0.3.19.dist-info/METADATA,sha256=npklDb_gSAZHliXMNDZYOlRIuV_Klkzgw4ELdW9zzjc,480
13
+ hkjc-0.3.19.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
14
+ hkjc-0.3.19.dist-info/RECORD,,
hkjc/analysis.py DELETED
@@ -1,3 +0,0 @@
1
- # TODO:
2
-
3
- # Generate filtered live odds, fav run style, dr, current rating, season start rating, track record
@@ -1,14 +0,0 @@
1
- hkjc/__init__.py,sha256=5A9MzcITYJDcA2UbIBpkimZBYSqS4pgRuQJhTagOfpE,753
2
- hkjc/analysis.py,sha256=0042_NMIkQCl0J6B0P4TFfrBDCnm2B6jsCZKOEO30yI,108
3
- hkjc/harville_model.py,sha256=MZjPLS-1nbEhp1d4Syuq13DtraKnd7TlNqBmOOCwxgc,15976
4
- hkjc/historical.py,sha256=v9k_R47Na5en5ftrocjIHofkNAUthE_lp4CyLaCTsQE,8280
5
- hkjc/live.py,sha256=GqctH-BVdIL6Vi1g8XHe3p8fZBopCQf5KACLAR0meP0,10249
6
- hkjc/processing.py,sha256=H0chtW_FBMMhK3IzcjYjrryd3fAPYimanc2fWuGiB0M,6807
7
- hkjc/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
8
- hkjc/speedpro.py,sha256=Y2Z3GYGeePc4sM-ZnCHXCI1N7L-_j9nrMqS3CC5BBSo,2031
9
- hkjc/utils.py,sha256=4CA_FPf_U3GvzoLkqBX0qDPZgrSvKJKvbP7VWqd5FiA,6323
10
- hkjc/strategy/place_only.py,sha256=lHPjTSj8PzghxncNBg8FI4T4HJigekB9a3bV7l7VtPA,2079
11
- hkjc/strategy/qpbanker.py,sha256=MQxjwsfhllKZroKS8w8Q3bi3HMjGc1DAyBIjNZAp3yQ,4805
12
- hkjc-0.3.18.dist-info/METADATA,sha256=aoXp6Fvn3EkuXyv6p5LClSbZa5XS_bfcUxMKBJXcNvw,480
13
- hkjc-0.3.18.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
14
- hkjc-0.3.18.dist-info/RECORD,,
File without changes