hkjc 0.3.15__py3-none-any.whl → 0.3.16__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
hkjc/analysis.py ADDED
@@ -0,0 +1,3 @@
1
+ # TODO:
2
+
3
+ # Generate filtered live odds, fav run style, dr, current rating, season start rating, track record
hkjc/historical.py CHANGED
@@ -10,7 +10,7 @@ from cachetools.func import ttl_cache
10
10
  from .utils import _parse_html_table
11
11
 
12
12
  HKJC_RACE_URL_TEMPLATE = "https://racing.hkjc.com/racing/information/English/Racing/LocalResults.aspx?RaceDate={date}&Racecourse={venue_code}&RaceNo={race_number}"
13
- HKJC_HORSE_URL_TEMPLATE = "https://racing.hkjc.com/racing/information/English/Horse/Horse.aspx?HorseId={horse_id}"
13
+ HKJC_HORSE_URL_TEMPLATE = "https://racing.hkjc.com/racing/information/English/Horse/Horse.aspx?HorseNo={horse_no}"
14
14
 
15
15
 
16
16
  @ttl_cache(maxsize=100, ttl=3600)
@@ -30,10 +30,10 @@ def _soupify_race_page(date: str, venue_code: str, race_number: int) -> Beautifu
30
30
  return _soupify(url)
31
31
 
32
32
 
33
- def _soupify_horse_page(horse_id: str) -> BeautifulSoup:
33
+ def _soupify_horse_page(horse_no: str) -> BeautifulSoup:
34
34
  """Fetch and parse HKJC race results page and return BeautifulSoup object
35
35
  """
36
- url = HKJC_HORSE_URL_TEMPLATE.format(horse_id=horse_id)
36
+ url = HKJC_HORSE_URL_TEMPLATE.format(horse_no=horse_no)
37
37
  return _soupify(url)
38
38
 
39
39
 
@@ -50,6 +50,8 @@ def _classify_running_style(df: pl.DataFrame, running_pos_col="RunningPosition")
50
50
  .alias("split_data").cast(pl.Int64, strict=False)
51
51
  ).unnest("split_data")
52
52
 
53
+ df.with_columns(pl.col('FinishPosition').fill_null(pl.col('Position3')))
54
+
53
55
  df = df.with_columns([
54
56
  (pl.col("StartPosition")-pl.col("FinishPosition")).alias("PositionChange"),
55
57
  pl.mean_horizontal("StartPosition", "Position2",
@@ -59,16 +61,16 @@ def _classify_running_style(df: pl.DataFrame, running_pos_col="RunningPosition")
59
61
  .when((pl.col("PositionChange") >= 1) & (pl.col("StartPosition") >= 6)).then(pl.lit("Closer"))
60
62
  .otherwise(pl.lit("Pacer")).alias("RunningStyle"))
61
63
 
62
- recent_style = df['RunningStyle'][:10].mode()[0]
64
+ recent_style = df['RunningStyle'][:5].mode()[0]
63
65
  df = df.with_columns(pl.lit(recent_style).alias("FavoriteRunningStyle"))
64
66
 
65
67
  return df
66
68
 
67
69
 
68
- def _extract_horse_data(horse_id: str) -> pl.DataFrame:
70
+ def get_horse_data(horse_no: str) -> pl.DataFrame:
69
71
  """Extract horse info and history from horse page
70
72
  """
71
- soup = _soupify_horse_page(horse_id)
73
+ soup = _soupify_horse_page(horse_no)
72
74
  table = soup.find('table', class_='bigborder')
73
75
  horse_data = _parse_html_table(table).filter(
74
76
  pl.col('Date') != '') # Remove empty rows
@@ -78,35 +80,72 @@ def _extract_horse_data(horse_id: str) -> pl.DataFrame:
78
80
  table = soup.find_all('table', class_='table_eng_text')
79
81
  profile_data = _parse_html_table(table[0], skip_header=True)
80
82
  profile_data = _parse_html_table(table[1], skip_header=True)
81
- current_rating = profile_data.filter(pl.col("column_0").str.starts_with("Current Rating"))['column_2'].item(0)
82
- season_start_rating = profile_data.filter(pl.col("column_0").str.starts_with("Start of Season Rating"))['column_2'].item(0)
83
+
84
+ try:
85
+ current_rating = int(profile_data.filter(pl.col("column_0").str.starts_with("Current Rating"))['column_2'].item(0))
86
+ season_start_rating = int(profile_data.filter(pl.col("column_0").str.starts_with("Start of Season Rating"))['column_2'].item(0))
87
+ except:
88
+ current_rating, season_start_rating = 0, 0
89
+
90
+ try:
91
+ last_rating = int(profile_data.filter(pl.col("column_0").str.starts_with("Last Rating"))['column_2'].item(0))
92
+ except:
93
+ last_rating = 0
83
94
 
84
95
  horse_info = {
85
- 'HorseID': horse_id,
86
- 'CurrentRating': int(current_rating),
87
- 'SeasonStartRating': int(season_start_rating)
96
+ 'HorseID': horse_no,
97
+ 'CurrentRating': current_rating,
98
+ 'SeasonStartRating': season_start_rating,
99
+ 'LastRating' : last_rating if current_rating==0 else current_rating
88
100
  }
89
101
  horse_data = (horse_data.with_columns([
90
102
  pl.lit(value).alias(key) for key, value in horse_info.items()
91
103
  ])
92
104
  )
105
+
106
+ horse_data = horse_data.with_columns([
107
+ pl.col('Pla').cast(pl.Int64, strict=False),
108
+ pl.col('WinOdds').cast(pl.Int64, strict=False),
109
+ pl.col('ActWt').cast(pl.Int64, strict=False),
110
+ pl.col('DeclarHorseWt').cast(pl.Int64, strict=False),
111
+ pl.col('Dr').cast(pl.Int64, strict=False),
112
+ pl.col('Rtg').cast(pl.Int64, strict=False),
113
+ pl.col('RaceIndex').cast(pl.Int64, strict=False),
114
+ pl.col('Dist').cast(pl.Int64, strict=False)
115
+ ])
116
+
117
+ horse_data = horse_data.with_columns(
118
+ (
119
+ pl.col("FinishTime").str.split(":").list.get(0).cast(pl.Int64) * 60 +
120
+ pl.col("FinishTime").str.split(":").list.get(1).cast(pl.Float64)
121
+ ).cast(pl.Float64).alias("FinishTime")
122
+ )
123
+
124
+ horse_data = horse_data.with_columns(
125
+ pl.col('RCTrackCourse').str.split_exact(' / ', 2)
126
+ .struct.rename_fields(['Venue', 'Track', 'Course'])
127
+ .alias('RCTrackCourse')
128
+ ).unnest('RCTrackCourse')
129
+
93
130
  return horse_data
94
131
 
95
132
 
96
- def _extract_race_data(date: str, venue_code: str, race_number: int) -> pl.DataFrame:
133
+ def get_race_data(date: str, venue_code: str, race_number: int) -> pl.DataFrame:
97
134
  soup = _soupify_race_page(date, venue_code, race_number)
98
135
  table = soup.find('div', class_='race_tab').find('table')
99
136
  race_data = _parse_html_table(table)
100
137
 
101
138
  # Extract the relevant race information
139
+ race_id = race_data.columns[0].replace(f'RACE{race_number}','')
102
140
  race_class = race_data.item(1, 0).split('-')[0].strip()
103
141
  race_dist = race_data.item(1, 0).split('-')[1].strip().rstrip('M')
104
142
  race_name = race_data.item(2, 0).strip()
105
143
  going = race_data.item(1, 2).strip()
106
144
  course = race_data.item(2, 2).strip()
107
145
 
108
- race_info = {'RaceDate': date,
146
+ race_info = {'Date': date,
109
147
  'Venue': venue_code,
148
+ 'RaceIndex': int(race_id),
110
149
  'RaceNumber': race_number,
111
150
  'RaceClass': race_class,
112
151
  'RaceDistance': race_dist,
@@ -120,25 +159,10 @@ def _extract_race_data(date: str, venue_code: str, race_number: int) -> pl.DataF
120
159
  .with_columns([
121
160
  pl.lit(value).alias(key) for key, value in race_info.items()
122
161
  ])
162
+ .with_columns(
163
+ pl.col("Horse").str.extract(r"\((.*?)\)")
164
+ .alias("HorseID")
165
+ )
123
166
  )
124
-
125
- # Extract horse IDs from links
126
- horse_ids = []
127
- rows = table.find_all('tr')[1:] # Skip header row
128
- for row in rows:
129
- horse_id = 'UNKNOWN' # Horse link not found
130
- links = row.find_all('a')
131
- for link in links:
132
- if 'href' in link.attrs and 'HorseId=' in link['href']:
133
- horse_id = link['href'].split('HorseId=')[1]
134
- break
135
- horse_ids.append(horse_id)
136
-
137
- race_data = race_data.with_columns(pl.Series('HorseID', horse_ids))
138
-
139
- # Join with horse data
140
- horse_data_list = [_extract_horse_data(horse_id) for horse_id in horse_ids]
141
- horse_data_df = pl.concat(horse_data_list).unique(subset=['HorseID'])
142
- race_data = race_data.join(horse_data_df, on='HorseID', how='left')
143
167
 
144
168
  return race_data
hkjc/processing.py CHANGED
@@ -6,7 +6,7 @@ from typing import Tuple, List, Union
6
6
  from .live_odds import live_odds
7
7
  from .strategy import qpbanker, place_only
8
8
  from .harville_model import fit_harville_to_odds
9
- from .historical import _extract_race_data
9
+ from .historical import get_race_data, get_horse_data
10
10
  from .utils import _validate_date
11
11
 
12
12
  import polars as pl
@@ -14,7 +14,6 @@ import numpy as np
14
14
  from itertools import combinations
15
15
  from tqdm import tqdm
16
16
  from datetime import datetime as dt
17
- from joblib import delayed, Parallel
18
17
 
19
18
 
20
19
  def _all_subsets(lst): return [list(x) for r in range(
@@ -30,11 +29,12 @@ incidents = ['DISQ', 'DNF', 'FE', 'ML', 'PU', 'TNP', 'TO',
30
29
 
31
30
  def _historical_process_single_date_venue(date: str, venue_code: str) -> List[pl.DataFrame]:
32
31
  dfs = []
33
- iter_date = tqdm(range(1, 12), desc=f"Processing {date} {venue_code} ...", leave=False)
32
+ iter_date = tqdm(
33
+ range(1, 12), desc=f"Processing {date} {venue_code} ...", leave=False)
34
34
  for race_number in iter_date:
35
35
  try:
36
- dfs.append(_extract_race_data(date.strftime('%Y/%m/%d'),
37
- venue_code, race_number))
36
+ dfs.append(get_race_data(date.strftime('%Y/%m/%d'),
37
+ venue_code, race_number))
38
38
  except:
39
39
  if race_number == 1:
40
40
  iter_date.close()
@@ -56,13 +56,21 @@ def generate_historical_data(start_date: str, end_date: str) -> pl.DataFrame:
56
56
  dfs += _historical_process_single_date_venue(date, venue_code)
57
57
 
58
58
  if dfs == []:
59
- raise ValueError("Failed to obtain any race data. This could be due to invalid date range, or server requests limit. Please try again later.")
60
-
61
- df = (pl.concat(dfs)
62
- .filter(~pl.col('Pla').is_in(incidents))
63
- .with_columns(
64
- pl.col('Pla').str.split(' ').list.first().alias('Pla')
65
- )
59
+ raise ValueError(
60
+ "Failed to obtain any race data. This could be due to invalid date range, or server requests limit. Please try again later.")
61
+
62
+ horse_ids = pl.concat(dfs)['HorseID'].unique()
63
+
64
+ # Use horse track records
65
+ dfs = [get_horse_data(horse_id) for horse_id in horse_ids]
66
+ df = (
67
+ pl.concat(dfs).with_columns(
68
+ pl.col('Date').str.strptime(pl.Date, '%m/%d/%y')
69
+ ).filter(pl.col('Date').is_between(start_dt, end_dt))
70
+ .filter(~pl.col('Pla').is_in(incidents))
71
+ .with_columns(
72
+ pl.col('Pla').str.split(' ').list.first().alias('Pla')
73
+ )
66
74
  )
67
75
 
68
76
  df = df.with_columns([
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hkjc
3
- Version: 0.3.15
3
+ Version: 0.3.16
4
4
  Summary: Library for scrapping HKJC data and perform basic analysis
5
5
  Requires-Python: >=3.11
6
6
  Requires-Dist: beautifulsoup4>=4.14.2
@@ -1,13 +1,14 @@
1
1
  hkjc/__init__.py,sha256=TI7PVhmoWSvYX-xdTEdaT3jfY99LiYQFRQZaIwBhJd8,785
2
+ hkjc/analysis.py,sha256=0042_NMIkQCl0J6B0P4TFfrBDCnm2B6jsCZKOEO30yI,108
2
3
  hkjc/harville_model.py,sha256=MZjPLS-1nbEhp1d4Syuq13DtraKnd7TlNqBmOOCwxgc,15976
3
- hkjc/historical.py,sha256=FRECc4pmozjFKkFeWN0vTzECF9QOS7URyJoCfTt5hlw,5805
4
+ hkjc/historical.py,sha256=R_7z0yqLDj57G5JgvuPYDxKLBoqlhfpRnpTER6aeluM,6678
4
5
  hkjc/live_odds.py,sha256=G4ELBBp1d2prxye9kKzu2pwtS4vSfRPOmEuT7-Nd-3A,4741
5
- hkjc/processing.py,sha256=XeVrF5KKkU3Oy-vqPvMgM22QHVTCVCuml2IsIGdRbYw,7483
6
+ hkjc/processing.py,sha256=KZFrGuCdCEJ5OI54PnrWhy-c9qx7mcWm12chc3HuDO8,7764
6
7
  hkjc/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
7
8
  hkjc/speedpro.py,sha256=Y2Z3GYGeePc4sM-ZnCHXCI1N7L-_j9nrMqS3CC5BBSo,2031
8
9
  hkjc/utils.py,sha256=4CA_FPf_U3GvzoLkqBX0qDPZgrSvKJKvbP7VWqd5FiA,6323
9
10
  hkjc/strategy/place_only.py,sha256=lHPjTSj8PzghxncNBg8FI4T4HJigekB9a3bV7l7VtPA,2079
10
11
  hkjc/strategy/qpbanker.py,sha256=MQxjwsfhllKZroKS8w8Q3bi3HMjGc1DAyBIjNZAp3yQ,4805
11
- hkjc-0.3.15.dist-info/METADATA,sha256=2nQL1EImJ0hXnWFdGnpORIknMdaaFham-Pw9cgjUiO4,481
12
- hkjc-0.3.15.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
13
- hkjc-0.3.15.dist-info/RECORD,,
12
+ hkjc-0.3.16.dist-info/METADATA,sha256=yusLSNb82ebKoie5iUxlO5XE9mBBfPiIBHmRepLXA9c,481
13
+ hkjc-0.3.16.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
14
+ hkjc-0.3.16.dist-info/RECORD,,
File without changes