hjxdl 0.3.55__py3-none-any.whl → 0.3.56__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
hdl/_version.py CHANGED
@@ -28,7 +28,7 @@ version_tuple: VERSION_TUPLE
28
28
  commit_id: COMMIT_ID
29
29
  __commit_id__: COMMIT_ID
30
30
 
31
- __version__ = version = '0.3.55'
32
- __version_tuple__ = version_tuple = (0, 3, 55)
31
+ __version__ = version = '0.3.56'
32
+ __version_tuple__ = version_tuple = (0, 3, 56)
33
33
 
34
- __commit_id__ = commit_id = 'g9915d44d3'
34
+ __commit_id__ = commit_id = 'g5d6407784'
@@ -3,7 +3,6 @@ import typing as t
3
3
 
4
4
  from openai import OpenAI
5
5
 
6
-
7
6
  class OpenAIWrapper(object):
8
7
  def __init__(
9
8
  self,
@@ -15,29 +14,6 @@ class OpenAIWrapper(object):
15
14
  ):
16
15
  """
17
16
  Initializes the client configuration for the class.
18
-
19
- Args:
20
- client_conf (dict, optional): A dictionary containing client configuration. If None,
21
- client configuration will be loaded from the specified directory.
22
- client_conf_dir (str, optional): The directory from which to load client configuration
23
- if `client_conf` is None. Must be provided in that case.
24
- load_conf (bool, optional): A flag indicating whether to load the client
25
- configuration from the directory. Defaults to True.
26
- *args: Variable length argument list for client initialization.
27
- **kwargs: Arbitrary keyword arguments for client initialization.
28
-
29
- Raises:
30
- AssertionError: If `client_conf` is None and `client_conf_dir` is also None.
31
-
32
- Note:
33
- The method will create a client for each configuration found in `client_conf`,
34
- initializing the client with the specified `base_url` and `api_key`.
35
- Examples:
36
- >>> llm = OpenAIWrapper(
37
- >>> client_conf_dir="/some/path/model_conf.yaml",
38
- >>> # load_conf=False
39
- >>> )
40
- )
41
17
  """
42
18
  self.client_conf = {}
43
19
  if client_conf is None:
@@ -48,8 +24,7 @@ class OpenAIWrapper(object):
48
24
  else:
49
25
  self.client_conf = client_conf
50
26
 
51
- # self.clients = {}
52
- for _, conf in self.client_conf.items():
27
+ for cid, conf in self.client_conf.items():
53
28
  conf["client"] = OpenAI(
54
29
  base_url=conf["host"],
55
30
  api_key=conf.get("api_key", "dummy_key"),
@@ -58,6 +33,8 @@ class OpenAIWrapper(object):
58
33
  )
59
34
  if "client_type" not in conf:
60
35
  conf["client_type"] = "chat"
36
+ if "model" not in conf:
37
+ conf["model"] = None
61
38
 
62
39
  def add_client(
63
40
  self,
@@ -68,31 +45,6 @@ class OpenAIWrapper(object):
68
45
  api_key: str = "dummy_key",
69
46
  **kwargs
70
47
  ):
71
- """
72
- Add a new client configuration to the client manager.
73
-
74
- This method stores the configuration details for a new client identified by the
75
- provided client ID. It constructs the host URL based on the input parameters
76
- and initializes an OpenAI client instance.
77
-
78
- Args:
79
- client_id (str): Unique identifier for the client.
80
- host (str): Hostname or IP address of the client.
81
- port (int, optional): Port number for the client connection. Defaults to None.
82
- model (str, optional): Model to use for the client. Defaults to "default_model".
83
- api_key (str, optional): API key for authentication. Defaults to "dummy_key".
84
- **kwargs: Additional keyword arguments passed to the OpenAI client.
85
-
86
- Raises:
87
- ValueError: If both host and port are not valid for constructing a URL.
88
- Examples:
89
- >>> llm.add_client(
90
- >>> client_id="rone",
91
- >>> host="127.0.0.1",
92
- >>> port=22299,
93
- >>> model="ictrek/rone:1.5b32k",
94
- >>> )
95
- """
96
48
  self.client_conf[client_id] = {}
97
49
  if not host.startswith('http') and port:
98
50
  host = f"http://{host}:{port}/v1"
@@ -106,36 +58,18 @@ class OpenAIWrapper(object):
106
58
  )
107
59
 
108
60
  def load_clients(self):
109
- """
110
- Loads client configuration from a YAML file and updates the 'host' field
111
- for each client entry, ensuring the correct URL format.
112
-
113
- This method reads the client configuration from the specified path,
114
- updates the 'host' field to include the appropriate port and the
115
- 'http' protocol if not already specified, and stores the updated
116
- configuration in the `client_conf` attribute.
117
-
118
- Attributes:
119
- client_conf_path (str): The file path to the client configuration YAML file.
120
- client_conf (dict): The updated client configuration after processing.
121
-
122
- Returns:
123
- None
124
- """
125
61
  with open(self.client_conf_path, 'r') as file:
126
62
  data = yaml.safe_load(file)
127
-
128
- # 更新 host 字段
129
63
  for _, value in data.items():
130
64
  host = value.get('host', '')
131
65
  port = value.get('port', '')
132
- if not host.startswith('http') and port: # 确保有 port 才处理
66
+ if not host.startswith('http') and port:
133
67
  value['host'] = f"http://{host}:{port}/v1"
134
68
  self.client_conf = data
135
69
 
136
70
  def get_resp(
137
71
  self,
138
- prompt,
72
+ prompt: str,
139
73
  client_id: str = None,
140
74
  history: list = None,
141
75
  sys_info: str = None,
@@ -144,7 +78,7 @@ class OpenAIWrapper(object):
144
78
  image_keys: tuple = ("image_url", "url"),
145
79
  videos: list = None,
146
80
  video_keys: tuple = ("video_url", "url"),
147
- model: str=None,
81
+ model: str = None,
148
82
  tools: list = None,
149
83
  tool_choice: str = "auto",
150
84
  stream: bool = True,
@@ -152,442 +86,95 @@ class OpenAIWrapper(object):
152
86
  **kwargs: t.Any,
153
87
  ):
154
88
  """
155
- 与上层保持完全兼容:内部改用 responses.create
156
- 但返回值/流式 chunk 仍然伪装成 chat.completions 的结构。
89
+ Generates a response from the model using responses.create with input=.
90
+ Supports optional image input if `images` is provided.
91
+ Also supports external tools via `tools` + `tool_choice`.
157
92
  """
158
- if not model:
159
- model = self.client_conf[client_id]['model']
93
+ if client_id is None:
94
+ raise ValueError("client_id must be provided")
95
+ conf = self.client_conf[client_id]
96
+ client = conf["client"]
97
+ if model is None:
98
+ model = conf.get("model")
99
+ if model is None:
100
+ raise ValueError("model must be specified either in client_conf or via parameter")
160
101
 
161
- client = self.client_conf[client_id]['client']
162
- if response_model:
163
- import instructor
164
- client = instructor.from_openai(client)
102
+ # Build input list
103
+ input_items: list[t.Any] = []
165
104
 
166
- # ===== 构造 messages(保持你原有逻辑)=====
167
- messages = []
168
105
  if sys_info:
169
- messages.append({"role": "system", "content": sys_info})
106
+ input_items.append({"role": "system", "content": sys_info})
170
107
  if history:
171
- messages.extend(history)
172
-
173
- # 规范化 media key(三元组)
174
- def _triple_keys(keys):
175
- if isinstance(keys, str):
176
- return (keys,)*3
177
- if len(keys) == 2:
178
- return (keys[0],) + tuple(keys)
179
- if len(keys) == 1:
180
- return (keys[0],)*3
181
- return keys
182
-
183
- image_keys = _triple_keys(image_keys)
184
- video_keys = _triple_keys(video_keys)
185
-
186
- content = [{"type": "text", "text": prompt}]
187
- if videos:
188
- if isinstance(videos, str):
189
- videos = [videos]
190
- for v in videos:
191
- content.append({
192
- "type": video_keys[0],
193
- video_keys[1]: {video_keys[2]: v}
194
- })
108
+ input_items.extend(history)
195
109
 
110
+ # Build user message
196
111
  if images:
197
112
  if isinstance(images, str):
198
113
  images = [images]
114
+ multimodal_content = [
115
+ {"type": "input_text", "text": prompt}
116
+ ]
199
117
  for img in images:
200
- content.append({
201
- "type": image_keys[0],
202
- image_keys[1]: {image_keys[2]: img}
118
+ multimodal_content.append({
119
+ "type": "input_image",
120
+ "image_url": img
203
121
  })
122
+ user_item = {"role": "user", "content": multimodal_content}
123
+ else:
124
+ user_item = {"role": "user", "content": prompt}
204
125
 
205
- if (not images) and (not videos):
206
- content = prompt
126
+ input_items.append(user_item)
207
127
 
208
- messages.append({"role": "user", "content": content})
209
128
  if assis_info:
210
- messages.append({"role": "assistant", "content": assis_info})
129
+ input_items.append({"role": "assistant", "content": assis_info})
130
+
131
+ # Prepare call parameters
132
+ call_params = {
133
+ "model": model,
134
+ "input": input_items,
135
+ **kwargs
136
+ }
137
+ if tools:
138
+ call_params["tools"] = tools
139
+ call_params["tool_choice"] = tool_choice
211
140
 
212
- # ===== Responses API 调用 =====
213
- # 注意:Responses 同时支持 messages 形状;tools 也直接传 tools / tool_choice。
141
+ # Call Responses API
214
142
  if stream:
215
- # --- 流式:返回一个生成器,伪装成 chat.completions 的 chunk 结构 ---
216
- # 你的上层 `for chunk in resp:` 会收到具有
217
- # chunk.choices[0].delta.content / .tool_calls 的对象
218
143
  resp_stream = client.responses.create(
219
- model=model,
220
- messages=messages,
221
- tools=tools if tools else None,
222
- tool_choice=tool_choice if tools else None,
223
144
  stream=True,
224
- **kwargs
145
+ **call_params
225
146
  )
226
-
227
- # 适配层:把 Responses 的事件流,转成 Chat Completions 风格的 chunk
228
- from types import SimpleNamespace
229
- def _wrap_delta_text(text):
230
- # -> chunk.choices[0].delta.content
231
- delta = SimpleNamespace(content=text)
232
- choice = SimpleNamespace(delta=delta)
233
- return SimpleNamespace(choices=[choice])
234
-
235
- def _wrap_delta_tool_call(name, arguments_fragment):
236
- # -> chunk.choices[0].delta.tool_calls[0].function.{name, arguments}
237
- func = SimpleNamespace(name=name, arguments=arguments_fragment)
238
- tool_call = SimpleNamespace(function=func)
239
- delta = SimpleNamespace(content=None, tool_calls=[tool_call])
240
- choice = SimpleNamespace(delta=delta)
241
- return SimpleNamespace(choices=[choice])
242
-
243
- def _generator():
244
- # SDK 的 Responses 流每个 event 有 event.type
245
- # 我们尽量覆盖主流事件名;未知事件直接忽略
246
- tool_args_acc = {} # 累积每个工具参数(按 id 聚合)
247
- tool_name_cache = {}
248
-
249
- for event in resp_stream:
250
- et = getattr(event, "type", None)
251
-
252
- # 文本增量
253
- if et == "response.output_text.delta":
254
- delta_text = getattr(event, "delta", None)
255
- if delta_text:
256
- yield _wrap_delta_text(delta_text)
257
-
258
- # 文本结束(可忽略,上层会基于yield的终止判断)
259
- elif et == "response.output_text.done":
260
- pass
261
-
262
- # 工具调用参数增量
263
- elif et in ("response.tool_call.delta", "response.function_call.delta"):
264
- # 常见字段:event.id, event.name, event.delta / event.arguments_delta
265
- call_id = getattr(event, "id", None)
266
- name = getattr(event, "name", None) or tool_name_cache.get(call_id)
267
- args_delta = getattr(event, "arguments_delta", None) or getattr(event, "delta", "")
268
-
269
- if call_id:
270
- tool_name_cache.setdefault(call_id, name or "")
271
- tool_args_acc.setdefault(call_id, "")
272
- tool_args_acc[call_id] += (args_delta or "")
273
-
274
- # 也把这一小段增量向上抛(让你上层能尽快看到 tool_calls)
275
- yield _wrap_delta_tool_call(name or "", args_delta or "")
276
-
277
- # 工具调用完成(把完整参数再抛一次,便于上层一次性拿到)
278
- elif et in ("response.tool_call.done", "response.function_call.done"):
279
- call_id = getattr(event, "id", None)
280
- full_name = tool_name_cache.get(call_id, "")
281
- full_args = tool_args_acc.get(call_id, "")
282
- yield _wrap_delta_tool_call(full_name, full_args)
283
-
284
- # 其它事件(如 response.completed / response.error 等)
285
- else:
286
- # 可以按需扩展,这里静默忽略
287
- pass
288
-
289
- return _generator()
290
-
147
+ return resp_stream
291
148
  else:
292
- # --- 非流式:把 Responses 同步结果适配成 chat.completions 风格 ---
293
149
  resp = client.responses.create(
294
- model=model,
295
- messages=messages,
296
- tools=tools if tools else None,
297
- tool_choice=tool_choice if tools else None,
298
150
  stream=False,
299
- **kwargs
151
+ **call_params
300
152
  )
301
-
302
- # 从 Responses 里抽取文本 & 工具调用
303
- # 尽量兼容:优先用 output_text;否则从 output 列表里聚合
304
- text_out = getattr(resp, "output_text", None)
305
- outputs = getattr(resp, "output", None)
306
-
307
- if text_out is None and outputs:
308
- # 聚合 message/output_text
309
- parts = []
310
- for item in outputs:
311
- if getattr(item, "type", "") in ("message",):
312
- # item.content 里通常还有若干块(output_text 等)
313
- content_parts = getattr(item, "content", []) or []
314
- for c in content_parts:
315
- if getattr(c, "type", "") in ("output_text",):
316
- parts.append(getattr(c, "text", ""))
317
- text_out = "".join(parts) if parts else None
318
-
319
- # 抽取工具调用(如果有)
320
- tool_calls_wrapped = []
321
- if outputs:
322
- for item in outputs:
323
- if getattr(item, "type", "") in ("tool_call", "function_call"):
324
- name = getattr(item, "name", "")
325
- arguments = getattr(item, "arguments", "")
326
- from types import SimpleNamespace
327
- func = SimpleNamespace(name=name, arguments=arguments)
328
- tool_calls_wrapped.append(SimpleNamespace(function=func))
329
-
330
- # 伪造 chat.completions 的返回结构
153
+ # Wrap to mimic chat.completions interface
331
154
  from types import SimpleNamespace
332
- finish_reason = "tool_calls" if tool_calls_wrapped else "stop"
333
- message = SimpleNamespace(
334
- content=text_out or "",
335
- tool_calls=tool_calls_wrapped if tool_calls_wrapped else None
336
- )
337
- choice = SimpleNamespace(
338
- message=message,
339
- finish_reason=finish_reason
340
- )
155
+ text_out = getattr(resp, "output_text", "")
156
+ message = SimpleNamespace(content=text_out, tool_calls=None)
157
+ choice = SimpleNamespace(message=message, finish_reason="stop")
341
158
  fake_resp = SimpleNamespace(choices=[choice])
342
159
  return fake_resp
343
160
 
344
- def get_resp_legacy(
345
- self,
346
- prompt,
347
- client_id: str = None,
348
- history: list = None,
349
- sys_info: str = None,
350
- assis_info: str = None,
351
- images: list = None,
352
- image_keys: tuple = ("image_url", "url"),
353
- videos: list = None,
354
- video_keys: tuple = ("video_url", "url"),
355
- model: str=None,
356
- tools: list = None,
357
- tool_choice: str = "auto",
358
- stream: bool = True,
359
- response_model = None,
360
- **kwargs: t.Any,
361
- ):
362
- """
363
- Generates a response from a chat model based on the given prompt and additional context.
364
-
365
- Args:
366
- prompt (str): The main text prompt to send to the chat model.
367
- client_id (str, optional): Identifier for the client configuration. Defaults to None.
368
- history (list, optional): A list of previous messages to provide context for the conversation. Each message should be a dictionary with "role" and "content". Defaults to None.
369
- sys_info (str, optional): System-level information to set the context of the chat. Defaults to None.
370
- assis_info (str, optional): Information from the assistant to be included in the conversation. Defaults to None.
371
- images (list, optional): A list of images to include in the message content. Defaults to None.
372
- image_keys (tuple, optional): Keys to format the image data. Must be of length 1 or 2. Defaults to ("image_url", "url").
373
- model (str, optional): The model to use for generating the response. If not provided, it defaults to the one in client configuration for the given client_id.
374
- tools (list, optional): List of tools to be available during the chat. Defaults to None.
375
- stream (bool, optional): Whether to stream the response. Defaults to True.
376
- response_model (optional): Specifies the response model to use. Defaults to None.
377
- **kwargs (Any): Additional configuration parameters.
378
-
379
- Returns:
380
- Response: The response object from the chat model.
381
- """
382
- if not model:
383
- model = self.client_conf[client_id]['model']
384
-
385
- client = self.client_conf[client_id]['client']
386
- if response_model:
387
- import instructor #TODO 有些模型支持这个 instructor 的结构化输出,但实际上它调用的还是openai api的功能,以后适时删除或补全
388
- client = instructor.from_openai(client)
389
-
390
- messages = []
391
-
392
- if sys_info:
393
- messages.append({
394
- "role": "system",
395
- "content": sys_info
396
- })
397
-
398
- if history:
399
- messages.extend(history)
400
- # history 需要符合以下格式,其中system不是必须
401
- # history = [
402
- # {"role": "system", "content": "You are a helpful assistant."},
403
- # {"role": "user", "content": "message 1 content."},
404
- # {"role": "assistant", "content": "message 2 content"},
405
- # {"role": "user", "content": "message 3 content"},
406
- # {"role": "assistant", "content": "message 4 content."},
407
- # {"role": "user", "content": "message 5 content."}
408
- # ]
409
-
410
- if not model:
411
- model = self.client_conf[client_id]["model"]
412
- # Adjust the image_keys to be a tuple of length 3 based on its current length
413
- if isinstance(image_keys, str):
414
- image_keys = (image_keys,) * 3
415
- elif len(image_keys) == 2:
416
- image_keys = (image_keys[0],) + tuple(image_keys)
417
- elif len(image_keys) == 1:
418
- image_keys = (image_keys[0],) * 3
419
-
420
- if isinstance(video_keys, str):
421
- video_keys = (video_keys,) * 3
422
- elif len(video_keys) == 2:
423
- video_keys = (video_keys[0],) + tuple(video_keys)
424
- elif len(video_keys) == 1:
425
- video_keys = (video_keys[0],) * 3
426
-
427
- content = [{
428
- "type": "text",
429
- "text": prompt
430
- }]
431
-
432
- if videos:
433
- if isinstance(videos, str):
434
- images = [videos]
435
- for video in videos:
436
- content.append({
437
- "type": video_keys[0],
438
- video_keys[1]: {
439
- video_keys[2]: video
440
- }
441
- })
442
-
443
-
444
- if images:
445
- if isinstance(images, str):
446
- images = [images]
447
- for img in images:
448
- content.append({
449
- "type": image_keys[0],
450
- image_keys[1]: {
451
- image_keys[2]: img
452
- }
453
- })
454
- if (not images) and (not videos):
455
- content = prompt
456
-
457
- # Add the user's input as a message
458
- messages.append({
459
- "role": "user",
460
- "content": content
461
- })
462
-
463
- if assis_info:
464
- messages.append({
465
- "role": "assistant",
466
- "content": assis_info
467
- })
468
-
469
- if tools:
470
- resp = client.chat.completions.create(
471
- model=model,
472
- messages=messages,
473
- tools=tools,
474
- tool_choice=tool_choice,
475
- stream=stream,
476
- **kwargs
477
- )
478
- else:
479
- resp = client.chat.completions.create(
480
- model=model,
481
- messages=messages,
482
- stream=stream,
483
- **kwargs
484
- )
485
- return resp
486
-
487
161
  def invoke(
488
162
  self,
489
- prompt,
163
+ prompt: str,
490
164
  **kwargs
491
165
  ):
492
- """
493
- Invoke the API to get a response based on the provided prompt.
494
-
495
- Args:
496
- prompt (str): The input prompt to be processed.
497
- **kwargs: Additional keyword arguments to customize the API request.
498
-
499
- Returns:
500
- dict: A dictionary containing the type of response and its contents.
501
- The possible keys are:
502
- - 'type' (str): Indicates the type of response ('text' or 'tool_calls').
503
- - 'contents' (str, optional): The text content if the response type is 'text'.
504
- - 'tool_params' (dict, optional): The parameters of the tool called if the response type is 'tool_calls'.
505
-
506
- Examples:
507
- >>> llm.invoke(
508
- >>> client_id="glm_4_flash",
509
- >>> prompt="深圳天气怎么样?",
510
- >>> tools=[TOOL_DICT['get_weather']],
511
- >>> )
512
- {'type': 'tool_calls',
513
- 'tool_parmas': Function(arguments='{"location": "Shenzhen"}', name='get_weather')}
514
- """
515
166
  answer_dict = {}
516
-
517
- resp = self.get_resp(
518
- prompt,
519
- stream=False,
520
- **kwargs
521
- )
522
- if resp.choices[0].finish_reason == "stop":
523
- answer_dict["type"] = "text"
524
- answer_dict["contents"] = resp.choices[0].message.content
525
- elif resp.choices[0].finish_reason == "tool_calls":
526
- answer_dict["type"] = "tool_calls"
527
- answer_dict["tool_params"] = resp.choices[0].message.tool_calls[0].function
528
-
167
+ resp = self.get_resp(prompt=prompt, stream=False, **kwargs)
168
+ answer_dict["type"] = "text"
169
+ answer_dict["contents"] = resp.choices[0].message.content
529
170
  return answer_dict
530
171
 
531
- def stream(self, prompt, **kwargs):
532
- """
533
- Streams responses based on the provided prompt, yielding chunks of data.
534
-
535
- This function calls the `get_resp` method with the prompt and additional keyword arguments,
536
- streaming the response in chunks. It processes each chunk to yield either tool call parameters
537
- or textual content. If an error occurs while processing the chunks, it yields an error message.
538
-
539
- Args:
540
- prompt (str): The input prompt to generate responses for.
541
- **kwargs: Additional keyword arguments to be passed to the `get_resp` method.
542
-
543
- Yields:
544
- dict: A dictionary with the following possible keys:
545
- - type (str): Indicates the type of the response ('tool_calls', 'text', or 'error').
546
- - tool_params (dict, optional): Parameters of the tool call if the type is 'tool_calls'.
547
- - content (str, optional): The generated text content if the type is 'text'.
548
- - message (str, optional): An error message if the type is 'error'.
549
-
550
- Examplse:
551
- >>> resp = llm.stream(
552
- >>> client_id="r1", #此模型可以进行cot
553
- >>> prompt=prompt,
554
- >>> # tools=[TOOL_DICT['get_weather']],
555
- >>> )
556
- >>> for i in resp:
557
- >>> if i['type'] == 'text' and i['content']:
558
- >>> print(i['content'], flush=True, end="")
559
- """
560
- resp = self.get_resp(prompt=prompt, stream=True, **kwargs)
561
-
562
- for chunk in resp:
563
- try:
564
- choice = chunk.choices[0]
565
-
566
- # 如果返回了 tool_calls
567
- if hasattr(choice.delta, 'tool_calls') and choice.delta.tool_calls:
568
- tool_calls = choice.delta.tool_calls
569
- if tool_calls: # 防止为空
570
- yield {
571
- "type": "tool_calls",
572
- "tool_params": tool_calls[0].function
573
- }
574
- return # 直接返回,结束流式输出
575
-
576
- # 返回文本内容
577
- elif hasattr(choice.delta, 'content'):
578
- yield {
579
- "type": "text",
580
- "content": choice.delta.content
581
- }
582
-
583
- except (AttributeError, IndexError) as e:
584
- # 防止意外的结构异常
585
- yield {
586
- "type": "error",
587
- "message": f"Stream chunk error: {str(e)}"
588
- }
589
- return
590
-
172
+ def stream(self, prompt: str, **kwargs):
173
+ resp_stream = self.get_resp(prompt=prompt, stream=True, **kwargs)
174
+ for event in resp_stream:
175
+ delta = getattr(event, "delta", None)
176
+ if delta and hasattr(delta, "content"):
177
+ yield {"type": "text", "content": delta.content}
591
178
  return
592
179
 
593
180
  def embedding(
@@ -596,28 +183,13 @@ class OpenAIWrapper(object):
596
183
  texts: list[str],
597
184
  model: str = None,
598
185
  **kwargs
599
- ):
600
- """
601
- Generates embeddings for a list of texts using a specified model.
602
-
603
- Args:
604
- client_id (str): The ID of the client to use for generating embeddings.
605
- texts (list[str]): A list of texts for which to generate embeddings.
606
- model (str, optional): The model to use for generating embeddings.
607
- If not provided, the model specified in the client configuration will be used.
608
- **kwargs: Additional keyword arguments to be passed to the client embedding creation method.
609
-
610
- Returns:
611
- list: A list of embeddings corresponding to the input texts.
612
- """
613
- if not model:
186
+ ) -> list:
187
+ if model is None:
614
188
  model = self.client_conf[client_id]['model']
615
-
616
189
  client = self.client_conf[client_id]['client']
617
190
  response = client.embeddings.create(
618
191
  input=texts,
619
192
  model=model,
620
193
  **kwargs
621
194
  )
622
-
623
195
  return [i.embedding for i in response.data]
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hjxdl
3
- Version: 0.3.55
3
+ Version: 0.3.56
4
4
  Summary: A collection of functions for Jupyter notebooks
5
5
  Home-page: https://github.com/huluxiaohuowa/hdl
6
6
  Author: Jianxing Hu
@@ -1,5 +1,5 @@
1
1
  hdl/__init__.py,sha256=GffnD0jLJdhkd-vo989v40N90sQbofkayRBwxc6TVhQ,72
2
- hdl/_version.py,sha256=J32R-NeGJqzLh_7eUPBcs_wpve_PO9WxTbxII1hs3gE,714
2
+ hdl/_version.py,sha256=2Ln2Sf-BSjJoFUL4Jj83SaeT5iusbHd-apGtpKFocvQ,714
3
3
  hdl/args/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  hdl/args/loss_args.py,sha256=s7YzSdd7IjD24rZvvOrxLLFqMZQb9YylxKeyelSdrTk,70
5
5
  hdl/controllers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -136,7 +136,7 @@ hdl/utils/llm/chatgr.py,sha256=5F5PJHe8vz3iCfi4TT54DCLRi1UeJshECdVtgvvvao0,3696
136
136
  hdl/utils/llm/embs.py,sha256=Tf0FOYrOFZp7qQpEPiSCXzlgyHH0X9HVTUtsup74a9E,7174
137
137
  hdl/utils/llm/extract.py,sha256=2sK_WJzmYIc8iuWaM9DA6Nw3_6q1O4lJ5pKpcZo-bBA,6512
138
138
  hdl/utils/llm/llama_chat.py,sha256=watcHGOaz-bv3x-yDucYlGk5f8FiqfFhwWogrl334fk,4387
139
- hdl/utils/llm/llm_wrapper.py,sha256=QTe27eJRNjoUdvQva6RQm5XSQEY5WNf3PkvJsEKa-yE,24817
139
+ hdl/utils/llm/llm_wrapper.py,sha256=qebQkq70nGwCozqVvCfPegqnKMO7lyhdFobB8CJHXyk,6186
140
140
  hdl/utils/llm/ollama.py,sha256=uEdLsNAc6b56r37hNiE3nrd6oZ2lmQ0gYbVvOc9YVIM,1389
141
141
  hdl/utils/llm/vis.py,sha256=jRa5l1LHaWtohtdIKVpOH_I4yyXWTbyaLGglFHsV_0Q,28826
142
142
  hdl/utils/llm/visrag.py,sha256=0i-VrxqgiV-J7R3VPshu9oc7-rKjFJOldYik3HDXj6M,10176
@@ -146,8 +146,8 @@ hdl/utils/vis_tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSu
146
146
  hdl/utils/vis_tools/scene_detect.py,sha256=L6TFMT15QHJuOIFcLFVI_RSSSjyTVZhBEqbeUez2auU,6608
147
147
  hdl/utils/weather/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
148
148
  hdl/utils/weather/weather.py,sha256=k11o6wM15kF8b9NMlEfrg68ak-SfSYLN3nOOflFUv-I,4381
149
- hjxdl-0.3.55.dist-info/licenses/LICENSE,sha256=lkMiSbeZHBQLB9LJEkS9-L3Z-LBC4yGnKrzHSG8RkPM,2599
150
- hjxdl-0.3.55.dist-info/METADATA,sha256=RZpIrw445VbIpV_I1RWc5RFZR6mrC9g4LaQm0jEpMp4,1332
151
- hjxdl-0.3.55.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
152
- hjxdl-0.3.55.dist-info/top_level.txt,sha256=-kxwTM5JPhylp06z3zAVO3w6_h7wtBfBo2zgM6YZoTk,4
153
- hjxdl-0.3.55.dist-info/RECORD,,
149
+ hjxdl-0.3.56.dist-info/licenses/LICENSE,sha256=lkMiSbeZHBQLB9LJEkS9-L3Z-LBC4yGnKrzHSG8RkPM,2599
150
+ hjxdl-0.3.56.dist-info/METADATA,sha256=dYCo8TjnxT5zrnB_MyMXTkQ-T9ocPhpJmnXQuBBRtqg,1332
151
+ hjxdl-0.3.56.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
152
+ hjxdl-0.3.56.dist-info/top_level.txt,sha256=-kxwTM5JPhylp06z3zAVO3w6_h7wtBfBo2zgM6YZoTk,4
153
+ hjxdl-0.3.56.dist-info/RECORD,,
File without changes