hjxdl 0.1.13__py3-none-any.whl → 0.1.15__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hdl/_version.py +2 -2
- hdl/datasets/city_code.json +2576 -0
- hdl/datasets/defined_BaseFeatures.fdef +236 -0
- hdl/datasets/las.tsv +0 -0
- hdl/datasets/route_template.json +113 -0
- hdl/datasets/vocab.txt +591 -0
- hdl/ju/__init__.py +0 -0
- hdl/ju/setup.py +55 -0
- hdl/jupyfuncs/__init__.py +0 -0
- hdl/jupyfuncs/chem/__init__.py +0 -0
- hdl/jupyfuncs/chem/mol.py +548 -0
- hdl/jupyfuncs/chem/norm.py +268 -0
- hdl/jupyfuncs/chem/pdb_ext.py +94 -0
- hdl/jupyfuncs/chem/scaffold.py +25 -0
- hdl/jupyfuncs/chem/shape.py +241 -0
- hdl/jupyfuncs/chem/tokenizers.py +2 -0
- hdl/jupyfuncs/dbtools/__init__.py +0 -0
- hdl/jupyfuncs/dbtools/pg.py +42 -0
- hdl/jupyfuncs/dbtools/query_info.py +150 -0
- hdl/jupyfuncs/dl/__init__.py +0 -0
- hdl/jupyfuncs/dl/cp.py +54 -0
- hdl/jupyfuncs/dl/dataframe.py +38 -0
- hdl/jupyfuncs/dl/fp.py +49 -0
- hdl/jupyfuncs/dl/list.py +20 -0
- hdl/jupyfuncs/dl/model_utils.py +97 -0
- hdl/jupyfuncs/dl/tensor.py +159 -0
- hdl/jupyfuncs/dl/uncs.py +112 -0
- hdl/jupyfuncs/llm/__init__.py +0 -0
- hdl/jupyfuncs/llm/extract.py +123 -0
- hdl/jupyfuncs/llm/openapi.py +94 -0
- hdl/jupyfuncs/network/__init__.py +0 -0
- hdl/jupyfuncs/network/proxy.py +20 -0
- hdl/jupyfuncs/path/__init__.py +0 -0
- hdl/jupyfuncs/path/glob.py +285 -0
- hdl/jupyfuncs/path/strings.py +65 -0
- hdl/jupyfuncs/show/__init__.py +0 -0
- hdl/jupyfuncs/show/pbar.py +50 -0
- hdl/jupyfuncs/show/plot.py +259 -0
- hdl/jupyfuncs/utils/__init__.py +0 -0
- hdl/jupyfuncs/utils/wrappers.py +8 -0
- hdl/utils/weather/__init__.py +0 -0
- hdl/utils/weather/weather.py +68 -0
- {hjxdl-0.1.13.dist-info → hjxdl-0.1.15.dist-info}/METADATA +1 -1
- {hjxdl-0.1.13.dist-info → hjxdl-0.1.15.dist-info}/RECORD +46 -5
- {hjxdl-0.1.13.dist-info → hjxdl-0.1.15.dist-info}/WHEEL +1 -1
- {hjxdl-0.1.13.dist-info → hjxdl-0.1.15.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,259 @@
|
|
1
|
+
from os import path as osp
|
2
|
+
import typing as t
|
3
|
+
from typing_extensions import Literal
|
4
|
+
|
5
|
+
import seaborn as sn
|
6
|
+
import sklearn
|
7
|
+
import matplotlib.pyplot as plt
|
8
|
+
import matplotlib
|
9
|
+
import numpy as np
|
10
|
+
import pandas as pd
|
11
|
+
|
12
|
+
from ..path.glob import get_num_lines
|
13
|
+
from ..path.strings import splitted_strs_from_line
|
14
|
+
|
15
|
+
cm = matplotlib.cm.get_cmap('tab20')
|
16
|
+
colors = cm.colors
|
17
|
+
LABEL = Literal[
|
18
|
+
'training_size',
|
19
|
+
'episode_id',
|
20
|
+
]
|
21
|
+
|
22
|
+
|
23
|
+
def accuracies_heat(y_true, y_pred, num_tasks):
|
24
|
+
assert len(y_true) == len(y_pred)
|
25
|
+
cm = sklearn.metrics.confusion_matrix(
|
26
|
+
y_true, y_pred, normalize='true'
|
27
|
+
)
|
28
|
+
df_cm = pd.DataFrame(
|
29
|
+
cm, range(num_tasks), range(num_tasks)
|
30
|
+
)
|
31
|
+
plt.figure(figsize=(10, 10))
|
32
|
+
sn.set(font_scale=1.4)
|
33
|
+
sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, fmt='.2f')
|
34
|
+
|
35
|
+
|
36
|
+
def get_metrics_curves(
|
37
|
+
base_dir,
|
38
|
+
ckpts,
|
39
|
+
num_points,
|
40
|
+
title="Metric Curve",
|
41
|
+
metric='accuracy',
|
42
|
+
log_file='metrics.log',
|
43
|
+
label: LABEL = 'training_size',
|
44
|
+
save_dir: str = None,
|
45
|
+
figsize=(10, 6)
|
46
|
+
):
|
47
|
+
if not save_dir:
|
48
|
+
save_dir = osp.join(base_dir, 'metrics_curves.png')
|
49
|
+
data_dict = {}
|
50
|
+
for ckpt in ckpts:
|
51
|
+
log = osp.join(
|
52
|
+
base_dir,
|
53
|
+
ckpt,
|
54
|
+
log_file
|
55
|
+
)
|
56
|
+
if not osp.exists(log):
|
57
|
+
print(f"WARNING: no log file for {ckpt}")
|
58
|
+
continue
|
59
|
+
data_dict[ckpt] = []
|
60
|
+
data_idx = 0
|
61
|
+
for line_id in range(get_num_lines(log)):
|
62
|
+
line = splitted_strs_from_line(log, line_id)
|
63
|
+
if len(line) == 3 and line[1].strip() == metric:
|
64
|
+
if label == 'episode_id':
|
65
|
+
x = data_idx
|
66
|
+
elif label == 'training_size':
|
67
|
+
x = int(line[0].strip())
|
68
|
+
data_dict[ckpt].append(
|
69
|
+
[
|
70
|
+
x,
|
71
|
+
float(line[2].strip())
|
72
|
+
]
|
73
|
+
)
|
74
|
+
data_idx += 1
|
75
|
+
if line_id >= num_points - 1:
|
76
|
+
break
|
77
|
+
plt.figure(figsize=figsize, dpi=100)
|
78
|
+
# plt.style.use('ggplot')
|
79
|
+
plt.title(title)
|
80
|
+
for i, (ckpt, points) in enumerate(data_dict.items()):
|
81
|
+
points_array = np.array(points).T
|
82
|
+
plt.plot(points_array[0], points_array[1], label=ckpt, color=colors[i])
|
83
|
+
lg = plt.legend(bbox_to_anchor=(1.2, 1.0), loc='upper right')
|
84
|
+
# plt.legend(loc='lower right')
|
85
|
+
plt.xlabel(
|
86
|
+
label
|
87
|
+
)
|
88
|
+
plt.ylabel(metric)
|
89
|
+
plt.grid(True)
|
90
|
+
plt.savefig(
|
91
|
+
save_dir,
|
92
|
+
format='png',
|
93
|
+
bbox_extra_artists=(lg,),
|
94
|
+
bbox_inches='tight'
|
95
|
+
)
|
96
|
+
plt.show()
|
97
|
+
|
98
|
+
|
99
|
+
def get_means_vars(
|
100
|
+
log_file: str,
|
101
|
+
indices: t.List,
|
102
|
+
mode: str,
|
103
|
+
nears_each: int,
|
104
|
+
) -> t.List[t.List[int]]:
|
105
|
+
|
106
|
+
mean_s, var_s = [], []
|
107
|
+
num_points = len(indices)
|
108
|
+
|
109
|
+
nears_lists = []
|
110
|
+
if mode == 'id':
|
111
|
+
|
112
|
+
for index in indices:
|
113
|
+
nears = []
|
114
|
+
nears.extend(list(range(
|
115
|
+
index - nears_each, index + 1 + nears_each
|
116
|
+
)))
|
117
|
+
nears_lists.append(nears)
|
118
|
+
|
119
|
+
for nears in nears_lists:
|
120
|
+
mean_s.append(np.mean([
|
121
|
+
float(splitted_strs_from_line(log_file, line_id)[2])
|
122
|
+
for line_id in nears
|
123
|
+
]))
|
124
|
+
var_s.append((np.std([
|
125
|
+
float(splitted_strs_from_line(log_file, line_id)[2])
|
126
|
+
for line_id in nears
|
127
|
+
])))
|
128
|
+
|
129
|
+
elif mode == 'value':
|
130
|
+
datas = [
|
131
|
+
splitted_strs_from_line(log_file, line_id)
|
132
|
+
for line_id in range(get_num_lines(log_file))
|
133
|
+
]
|
134
|
+
training_sizes = [[int(data[0]) for data in datas]]
|
135
|
+
values = np.array([float(data[2]) for data in datas])
|
136
|
+
|
137
|
+
training_sizes = np.repeat(training_sizes, num_points, 0).T
|
138
|
+
diffs = training_sizes - indices
|
139
|
+
|
140
|
+
true_indices = np.argmin(np.abs(diffs), 0)
|
141
|
+
|
142
|
+
true_indices_list = [
|
143
|
+
list(range(
|
144
|
+
index - nears_each, index + 1 + nears_each
|
145
|
+
))
|
146
|
+
for index in true_indices
|
147
|
+
]
|
148
|
+
mean_s = [
|
149
|
+
np.mean(values[indices])
|
150
|
+
for indices in true_indices_list
|
151
|
+
]
|
152
|
+
var_s = [
|
153
|
+
np.std(values[indices])
|
154
|
+
for indices in true_indices_list
|
155
|
+
]
|
156
|
+
var_s = np.array(var_s) / np.sqrt(num_points)
|
157
|
+
|
158
|
+
return mean_s, var_s
|
159
|
+
|
160
|
+
|
161
|
+
def get_metrics_bars(
|
162
|
+
base_dir,
|
163
|
+
ckpts,
|
164
|
+
title="Metric Bars",
|
165
|
+
training_sizes: t.List = [],
|
166
|
+
episide_ids: t.List = [],
|
167
|
+
nears_each: int = 5,
|
168
|
+
pretrained_num: int = 0,
|
169
|
+
x_diff: bool = False,
|
170
|
+
metric='accuracy',
|
171
|
+
log_file='metrics.log',
|
172
|
+
label: LABEL = 'training_size',
|
173
|
+
save_dir: str = None,
|
174
|
+
figsize=(10, 6),
|
175
|
+
bar_ratio=0.8,
|
176
|
+
minimum=0.0,
|
177
|
+
maximum=1.0
|
178
|
+
):
|
179
|
+
|
180
|
+
if not save_dir:
|
181
|
+
save_dir = osp.join(base_dir, 'metrics_bars.png')
|
182
|
+
|
183
|
+
x_labels, num_points = [], 0
|
184
|
+
if label == 'training_size':
|
185
|
+
num_points = len(training_sizes)
|
186
|
+
x_labels = training_sizes
|
187
|
+
mode = 'value'
|
188
|
+
elif label == 'episode_id':
|
189
|
+
num_points = len(episide_ids)
|
190
|
+
x_labels = episide_ids
|
191
|
+
mode = 'id'
|
192
|
+
|
193
|
+
x = np.arange(num_points)
|
194
|
+
num_strategies = len(ckpts)
|
195
|
+
total_width = bar_ratio
|
196
|
+
width = total_width / num_strategies
|
197
|
+
x = x - (total_width - width) / 2
|
198
|
+
|
199
|
+
if not save_dir:
|
200
|
+
save_dir = osp.join(base_dir, 'metrics.png')
|
201
|
+
|
202
|
+
data_dict = {}
|
203
|
+
for ckpt in ckpts:
|
204
|
+
|
205
|
+
log = osp.join(
|
206
|
+
base_dir,
|
207
|
+
ckpt,
|
208
|
+
log_file
|
209
|
+
)
|
210
|
+
if not osp.exists(log):
|
211
|
+
print(f"WARNING: no log file for {ckpt}")
|
212
|
+
continue
|
213
|
+
|
214
|
+
# print(x_labels)
|
215
|
+
mean_s, var_s = get_means_vars(
|
216
|
+
log_file=log,
|
217
|
+
indices=x_labels,
|
218
|
+
mode=mode,
|
219
|
+
nears_each=nears_each
|
220
|
+
)
|
221
|
+
data_dict[ckpt] = (mean_s, var_s)
|
222
|
+
|
223
|
+
if x_diff:
|
224
|
+
x_labels = np.array(x_labels, dtype=np.int) - pretrained_num
|
225
|
+
|
226
|
+
plt.figure(figsize=figsize, dpi=100)
|
227
|
+
plt.title(title)
|
228
|
+
ax = plt.gca()
|
229
|
+
ax.set_ylim([minimum, maximum])
|
230
|
+
|
231
|
+
for point_idx, (ckpt, datas) in enumerate(data_dict.items()):
|
232
|
+
mean_s, var_s = datas
|
233
|
+
plt.bar(
|
234
|
+
x + width * point_idx,
|
235
|
+
mean_s,
|
236
|
+
width=width,
|
237
|
+
yerr=var_s,
|
238
|
+
tick_label=x_labels,
|
239
|
+
label=ckpt,
|
240
|
+
color=colors[point_idx]
|
241
|
+
)
|
242
|
+
|
243
|
+
lg = plt.legend(bbox_to_anchor=(1.2, 1.0), loc='upper right')
|
244
|
+
# plt.legend(loc='lower right')
|
245
|
+
plt.xlabel(
|
246
|
+
label
|
247
|
+
)
|
248
|
+
plt.ylabel(metric)
|
249
|
+
plt.grid(True)
|
250
|
+
|
251
|
+
plt.savefig(
|
252
|
+
save_dir,
|
253
|
+
format='png',
|
254
|
+
bbox_extra_artists=(lg,),
|
255
|
+
bbox_inches='tight'
|
256
|
+
)
|
257
|
+
plt.show()
|
258
|
+
|
259
|
+
|
File without changes
|
File without changes
|
@@ -0,0 +1,68 @@
|
|
1
|
+
import requests
|
2
|
+
from pathlib import Path
|
3
|
+
import os
|
4
|
+
import json
|
5
|
+
from bs4 import BeautifulSoup
|
6
|
+
|
7
|
+
|
8
|
+
def get_city_codes():
|
9
|
+
# with open('../../city.json', 'r', encoding='utf-8') as f:
|
10
|
+
# code_dic = eval(f.read())
|
11
|
+
# return code_dic
|
12
|
+
code_file = Path(__file__).resolve().parent.parent.parent \
|
13
|
+
/ "datasets" \
|
14
|
+
/ "city_code.json"
|
15
|
+
with code_file.open() as f:
|
16
|
+
code = json.load(f)
|
17
|
+
return code
|
18
|
+
|
19
|
+
|
20
|
+
def get_html(code):
|
21
|
+
weather_url = f'http://www.weather.com.cn/weather/{code}.shtml'
|
22
|
+
header = {
|
23
|
+
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/94.0.4606.81 Safari/537.36"}
|
24
|
+
print(weather_url)
|
25
|
+
resp = requests.get(url=weather_url, headers=header)
|
26
|
+
resp.encoding = 'utf-8'
|
27
|
+
return resp.text
|
28
|
+
|
29
|
+
|
30
|
+
def get_page_data(html):
|
31
|
+
soup = BeautifulSoup(html, 'html.parser')
|
32
|
+
weather_info = soup.find('div', id='7d')
|
33
|
+
seven_weather = weather_info.find('ul')
|
34
|
+
weather_list = seven_weather.find_all('li')
|
35
|
+
for weather in weather_list:
|
36
|
+
print('=' * 60)
|
37
|
+
print(weather.find('h1').get_text())
|
38
|
+
print('天气状况:', weather.find('p', class_='wea').get_text())
|
39
|
+
# 判断标签'p','tem'下是否有标签'span',以此判断是否有最高温
|
40
|
+
if weather.find('p', class_='tem').find('span'):
|
41
|
+
temp_high = weather.find('p', class_='tem').find('span').get_text()
|
42
|
+
else:
|
43
|
+
temp_high = '' # 最高温
|
44
|
+
temp_low = weather.find('p', class_='tem').find('i').get_text() # 最低温
|
45
|
+
print(f'天气温度:{temp_low}/{temp_high}')
|
46
|
+
win_list_tag = weather.find('p', class_='win').find('em').find_all('span')
|
47
|
+
win_list = []
|
48
|
+
for win in win_list_tag:
|
49
|
+
win_list.append(win.get('title'))
|
50
|
+
print('风向:', '-'.join(win_list))
|
51
|
+
print('风力:', weather.find('p', class_='win').find('i').get_text())
|
52
|
+
|
53
|
+
|
54
|
+
def main():
|
55
|
+
code_dic = get_city_codes()
|
56
|
+
print('=' * 60)
|
57
|
+
print('\t' * 5, '天气预报查询系统')
|
58
|
+
print('=' * 60)
|
59
|
+
city = input("请输入您要查询的城市:")
|
60
|
+
if city in code_dic:
|
61
|
+
html = get_html(code_dic[city]['AREAID'])
|
62
|
+
get_page_data(html)
|
63
|
+
else:
|
64
|
+
print('你要查询的地方不存在')
|
65
|
+
|
66
|
+
|
67
|
+
if __name__ == '__main__':
|
68
|
+
main()
|
@@ -1,5 +1,5 @@
|
|
1
1
|
hdl/__init__.py,sha256=5sZZNySv08wwfzJcSDssGTqUn9wlmDsR6R4XB8J8mFM,70
|
2
|
-
hdl/_version.py,sha256=
|
2
|
+
hdl/_version.py,sha256=ZKlmJ822TJ49YEqc2wCAMbrp81vFvzcFa9OTia84voM,413
|
3
3
|
hdl/args/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
4
4
|
hdl/args/loss_args.py,sha256=s7YzSdd7IjD24rZvvOrxLLFqMZQb9YylxKeyelSdrTk,70
|
5
5
|
hdl/controllers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
@@ -38,6 +38,11 @@ hdl/data/dataset/samplers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJW
|
|
38
38
|
hdl/data/dataset/samplers/chiral.py,sha256=ZS83kg5e2gdHVGgIuCjCepDwk2SKqWDgJawH37oXy78,463
|
39
39
|
hdl/data/dataset/seq/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
40
40
|
hdl/data/dataset/seq/rxn_dataset.py,sha256=jfXFlR3ITAf0KwUfIevzUZHnLBnFYrL69Cc81EMv0x0,1668
|
41
|
+
hdl/datasets/city_code.json,sha256=qnTL6ldpGnQanDXN3oitx12E6oiayaCHTh2Zi9RyQjM,60816
|
42
|
+
hdl/datasets/defined_BaseFeatures.fdef,sha256=5QhCEcu6fjSTXaTcZZ8-LSgf72_aJj_ykoDk82ZwVBI,7383
|
43
|
+
hdl/datasets/las.tsv,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
44
|
+
hdl/datasets/route_template.json,sha256=2qhkbtEZUrUod6PXCWXxAgQmU-jAC0yLcWGBBk2IwgE,3757
|
45
|
+
hdl/datasets/vocab.txt,sha256=cXdB1JDs2rY6C9BupRRY7w21xK4KN9SrxPxkN9CUXXQ,3524
|
41
46
|
hdl/features/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
42
47
|
hdl/features/fp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
43
48
|
hdl/features/fp/features_generators.py,sha256=HbyS97i2I2mOcANdJMohs2okA1LlZmkG4ZIIX6Y9fr4,9017
|
@@ -45,6 +50,40 @@ hdl/features/graph/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuF
|
|
45
50
|
hdl/features/graph/featurization.py,sha256=QLbj33JsgO-OWarIC2HXQP7eMu8pd-GWmppZQj_tQ_k,10902
|
46
51
|
hdl/features/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
47
52
|
hdl/features/utils/utils.py,sha256=aL4UAALblaw1w0AjK7MX8nSj9zwTmrp9CTLwJUX8ZtE,4225
|
53
|
+
hdl/ju/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
54
|
+
hdl/ju/setup.py,sha256=MB3rndQYt9QC-bdyGt81HYR0Rdr0l8DbAHktIuFMYU0,1725
|
55
|
+
hdl/jupyfuncs/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
56
|
+
hdl/jupyfuncs/chem/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
57
|
+
hdl/jupyfuncs/chem/mol.py,sha256=FDb2L61JL6xkNK7bxXWVjAT-r-st7iMyQNoFezBvTUE,15294
|
58
|
+
hdl/jupyfuncs/chem/norm.py,sha256=NRjSP8P7f3Yhy1LmSpaV93qYgYis_qVG7HT0vOWeW1U,10186
|
59
|
+
hdl/jupyfuncs/chem/pdb_ext.py,sha256=VgkU34Y3na5Ri0QwW2Hh-QiE4j9DgVwMB49DL3JgAcQ,2710
|
60
|
+
hdl/jupyfuncs/chem/scaffold.py,sha256=hWhmsrtdjM_ihStFvTz7XIs27coOMDOvdGh5vAk-UsA,1025
|
61
|
+
hdl/jupyfuncs/chem/shape.py,sha256=FQmLxEkUOaWqlYi1CPm-8Ze5w_oOrmoeAzOx4UdYRtI,5807
|
62
|
+
hdl/jupyfuncs/chem/tokenizers.py,sha256=UtpgQdDCL3FF1gSYcMLWZZcwcJQSp2RXdG0fRYZDGmU,133
|
63
|
+
hdl/jupyfuncs/dbtools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
64
|
+
hdl/jupyfuncs/dbtools/pg.py,sha256=B4t1WAfGCmJsaQIm59M5xYdRPfGP-vrNS2SA8rMzlbM,943
|
65
|
+
hdl/jupyfuncs/dbtools/query_info.py,sha256=CorUpyopY-FO3mRXlCIjxD09_6nXaAMJR0NHvfqjcIw,4327
|
66
|
+
hdl/jupyfuncs/dl/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
67
|
+
hdl/jupyfuncs/dl/cp.py,sha256=NHBkWBQ0eP6qEUXMwsVv5bI0p24CEsqFhwSJtKmmzGo,1816
|
68
|
+
hdl/jupyfuncs/dl/dataframe.py,sha256=Cqlkcv20QplZ4tGQdW9k-3CaoTaaqoyaWQ0mr96n3V0,1023
|
69
|
+
hdl/jupyfuncs/dl/fp.py,sha256=VYiW6-Q8lY2fDK9DU5_r6EmAyY5-VVv680-57h_MKPA,1025
|
70
|
+
hdl/jupyfuncs/dl/list.py,sha256=WcVoDoJU7LYAG0bp_3zcZF2pW9NfQ4LIIXvGGu32vzs,756
|
71
|
+
hdl/jupyfuncs/dl/model_utils.py,sha256=Xnt-a5MjE5NWghIu9Yss8zQ9JYhrv_Rbo5OPNC0MX80,2934
|
72
|
+
hdl/jupyfuncs/dl/tensor.py,sha256=vOUyi8Ymc_JKiqywLJUph5jiKPHoq2cUo73YJnf0voQ,4495
|
73
|
+
hdl/jupyfuncs/dl/uncs.py,sha256=j4YQE4BrBmZqOk9J_C9UKxbzrvt5pLPUZCCSIdi2FBk,2780
|
74
|
+
hdl/jupyfuncs/llm/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
75
|
+
hdl/jupyfuncs/llm/extract.py,sha256=UjPhrgbuU7_2u3620lcjXQPHF2l22o_AEmAaH8UXIZA,4531
|
76
|
+
hdl/jupyfuncs/llm/openapi.py,sha256=pNBW0Jzt0JAZP8ZexgoQZVF118jrhKnBYheClcMu9bU,2687
|
77
|
+
hdl/jupyfuncs/network/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
78
|
+
hdl/jupyfuncs/network/proxy.py,sha256=foZm3gGFTPLeMNRfWs4QKNUEmlhtNTr_1GQvn0IgDVw,545
|
79
|
+
hdl/jupyfuncs/path/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
80
|
+
hdl/jupyfuncs/path/glob.py,sha256=fl0YDLDS9QI2WgDlBzDGlALbvkmPGcXp4UnbbQ17BOM,8300
|
81
|
+
hdl/jupyfuncs/path/strings.py,sha256=eZCXElh7pT0xwy6ZBqSu3frq3Xx8CN5TMuQzsxb0Sbw,2009
|
82
|
+
hdl/jupyfuncs/show/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
83
|
+
hdl/jupyfuncs/show/pbar.py,sha256=QzyHV9XEyk9U5oyonxLSwYb5pD09iVUw_atVlzxYBNQ,1005
|
84
|
+
hdl/jupyfuncs/show/plot.py,sha256=kH4UwTiRtjhTJJlR4gj6-mDgQxIH9PQCHVg1_54nIR8,6717
|
85
|
+
hdl/jupyfuncs/utils/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
86
|
+
hdl/jupyfuncs/utils/wrappers.py,sha256=N8rwRFnHX9j2sR_-l-y-B2nmk39NFuu4YTntOvF3pMo,266
|
48
87
|
hdl/layers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
49
88
|
hdl/layers/general/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
50
89
|
hdl/layers/general/gp.py,sha256=no1P6i2nCa539b0I5S6hd2mC8CeW0Ds726GM0swwlzc,525
|
@@ -89,7 +128,9 @@ hdl/utils/llm/embs.py,sha256=Tf0FOYrOFZp7qQpEPiSCXzlgyHH0X9HVTUtsup74a9E,7174
|
|
89
128
|
hdl/utils/llm/extract.py,sha256=2sK_WJzmYIc8iuWaM9DA6Nw3_6q1O4lJ5pKpcZo-bBA,6512
|
90
129
|
hdl/utils/schedulers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
91
130
|
hdl/utils/schedulers/norm_lr.py,sha256=bDwCmdEK-WkgxQMFBiMuchv8Mm7C0-GZJ6usm-PQk14,4461
|
92
|
-
|
93
|
-
|
94
|
-
hjxdl-0.1.
|
95
|
-
hjxdl-0.1.
|
131
|
+
hdl/utils/weather/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
132
|
+
hdl/utils/weather/weather.py,sha256=H4f5wOojY28u_vtGkbPk_Nhe65R1Q9OZUPfVBY5AVAQ,2313
|
133
|
+
hjxdl-0.1.15.dist-info/METADATA,sha256=w7Iq4P0m1_G0ZDIzBCKGxm1dtHllYZklxQge8dM5SvE,543
|
134
|
+
hjxdl-0.1.15.dist-info/WHEEL,sha256=Mdi9PDNwEZptOjTlUcAth7XJDFtKrHYaQMPulZeBCiQ,91
|
135
|
+
hjxdl-0.1.15.dist-info/top_level.txt,sha256=-kxwTM5JPhylp06z3zAVO3w6_h7wtBfBo2zgM6YZoTk,4
|
136
|
+
hjxdl-0.1.15.dist-info/RECORD,,
|
File without changes
|