hjxdl 0.0.19__py3-none-any.whl → 0.0.20__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
hdl/_version.py CHANGED
@@ -12,5 +12,5 @@ __version__: str
12
12
  __version_tuple__: VERSION_TUPLE
13
13
  version_tuple: VERSION_TUPLE
14
14
 
15
- __version__ = version = '0.0.19'
16
- __version_tuple__ = version_tuple = (0, 0, 19)
15
+ __version__ = version = '0.0.20'
16
+ __version_tuple__ = version_tuple = (0, 0, 20)
@@ -9,8 +9,8 @@ from hdl.models.utils import load_model, save_model
9
9
  from hdl.data.dataset.seq.rxn_dataset import RXNCSVDataset
10
10
  from hdl.data.dataset.loaders.rxn_loader import RXNLoader
11
11
  from hdl.metric_loss.loss import mtmc_loss
12
- from jupyfuncs.pbar import tnrange, tqdm
13
- from jupyfuncs.glob import makedirs
12
+ from jupyfuncs.show.pbar import tnrange, tqdm
13
+ from jupyfuncs.path.glob import makedirs
14
14
  # from hdl.optims.nadam import Nadam
15
15
  from torch.optim import Adam
16
16
  # from .trainer_base import TorchTrainer
@@ -10,7 +10,7 @@ import pandas as pd
10
10
 
11
11
 
12
12
  # from jupyfuncs.glob import makedirs
13
- from jupyfuncs.pbar import tnrange, tqdm
13
+ from jupyfuncs.show.pbar import tnrange, tqdm
14
14
  # from hdl.data.dataset.graph.gin import MoleculeDataset
15
15
  from hdl.data.dataset.graph.gin import MoleculeDatasetWrapper
16
16
  # from hdl.metric_loss.loss import get_lossfunc
@@ -4,7 +4,7 @@ from os import path as osp
4
4
  import torch
5
5
  from torch.utils.tensorboard import SummaryWriter
6
6
 
7
- from jupyfuncs.glob import makedirs
7
+ from jupyfuncs.path.glob import makedirs
8
8
 
9
9
  from hdl.models.optim_dict import OPTIM_DICT
10
10
  from hdl.models.model_dict import MODEL_DICT
@@ -15,9 +15,9 @@ from hdl.models.optim_dict import OPTIM_DICT
15
15
  from hdl.features.fp.features_generators import FP_BITS_DICT
16
16
  from hdl.data.dataset.fp.fp_dataset import FPDataset
17
17
  from hdl.data.dataset.loaders.general import Loader
18
- from jupyfuncs.pbar import tnrange, tqdm
19
- from jupyfuncs.glob import makedirs
20
- from jupyfuncs.tensor import get_valid_indices
18
+ from jupyfuncs.show.pbar import tnrange, tqdm
19
+ from jupyfuncs.path.glob import makedirs
20
+ from jupyfuncs.dl.tensor import get_valid_indices
21
21
  from hdl.metric_loss.loss import mtmc_loss
22
22
  from hdl.controllers.train.trainer_base import IterativeTrainer
23
23
 
@@ -4,8 +4,8 @@ import typing as t
4
4
  import torch.utils.data as tud
5
5
  import pandas as pd
6
6
 
7
- from jupyfuncs.dataframe import rm_index
8
- from jupyfuncs.tensor import (
7
+ from jupyfuncs.dl.dataframe import rm_index
8
+ from jupyfuncs.dl.tensor import (
9
9
  label_to_onehot,
10
10
  label_to_tensor
11
11
  )
@@ -19,7 +19,7 @@ try:
19
19
  except ImportError:
20
20
  Chem = None
21
21
 
22
- from jupyfuncs.pbar import tqdm
22
+ from jupyfuncs.show.pbar import tqdm
23
23
 
24
24
 
25
25
  x_map = {
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: hjxdl
3
- Version: 0.0.19
3
+ Version: 0.0.20
4
4
  Summary: A collection of functions for Jupyter notebooks
5
5
  Home-page: https://github.com/huluxiaohuowa/hdl
6
6
  Author: Jianxing Hu
@@ -1,5 +1,5 @@
1
1
  hdl/__init__.py,sha256=5sZZNySv08wwfzJcSDssGTqUn9wlmDsR6R4XB8J8mFM,70
2
- hdl/_version.py,sha256=CYabGzkNwriz1Zjt5kNvBOZD6wtqQ_twYh4s5xzmT-I,413
2
+ hdl/_version.py,sha256=CeW8_Z_-lpRPNPKjv3PmZwQh9PD5whFP8sBq-ZzGcMA,413
3
3
  hdl/args/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
4
4
  hdl/args/loss_args.py,sha256=s7YzSdd7IjD24rZvvOrxLLFqMZQb9YylxKeyelSdrTk,70
5
5
  hdl/controllers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -11,22 +11,22 @@ hdl/controllers/explain/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG
11
11
  hdl/controllers/explain/shapley.py,sha256=6dPc_ICPgvllT8YtFxe9Ds-TVccsXr2M0lP4zKxGHQA,12436
12
12
  hdl/controllers/explain/subgraphx.py,sha256=2lxdmKlveyxWpYf2AdTvjm_C578WH-_z1fqhiHOzYXQ,38202
13
13
  hdl/controllers/train/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
14
- hdl/controllers/train/rxn_train.py,sha256=G1MTRrcP-g9ohzl7tbGM1tYd9HAdcM-3_wHQtRYg4LE,4876
14
+ hdl/controllers/train/rxn_train.py,sha256=9RAqvbAWQoitO0SVmAAVpbNbY6k1Q3pGnT4UgrqI7Q4,4886
15
15
  hdl/controllers/train/train.py,sha256=K7UjerhMFks9gQINQtUNXfGBN-XejmJZs0Mqzd7k5rU,1637
16
- hdl/controllers/train/train_ginet.py,sha256=KFGIMwCF62HuuFCQcz5Vr394Lf0kkgOT9x_0pvMyVmU,8561
17
- hdl/controllers/train/trainer_base.py,sha256=SZpa-4aV9ptKf4wgKVTNqqy4yJnLPOaEUX56LE28u74,4012
18
- hdl/controllers/train/trainer_iterative.py,sha256=ydUJWuAvvfjosGBa4MvBeqqoNB6tlB4WWprBOXu9vG4,11803
16
+ hdl/controllers/train/train_ginet.py,sha256=A1mnT3Htyyl9UjDoWL5JSKOSAF2OMthJqeqRoc2htwE,8566
17
+ hdl/controllers/train/trainer_base.py,sha256=SS_JXGnxF31zJDqR3lxIePVKs8ZVjmbGeEc4CSB804M,4017
18
+ hdl/controllers/train/trainer_iterative.py,sha256=McXsYSEuiz75YcXU_3w6-W7UszKOrmNWFuOqJdXFjXQ,11816
19
19
  hdl/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
20
20
  hdl/data/to_mols.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
21
21
  hdl/data/dataset/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
22
- hdl/data/dataset/base_dataset.py,sha256=qPLCCpIV-9dRqXf3MuyjCHt5QAxB2v1lUMtyo3IJ0V8,2664
22
+ hdl/data/dataset/base_dataset.py,sha256=z5Hyq2V8vjdVKa4RR7Umv7QzNhDJhpZ4sczGZ0ys2Zw,2670
23
23
  hdl/data/dataset/utils.py,sha256=tAh-a05Ireu6TiY89HHZ3WcLOz_Th8Cz0-lwlslklAM,1071
24
24
  hdl/data/dataset/fp/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
25
25
  hdl/data/dataset/fp/fp_dataset.py,sha256=ei7M7xRL81hzX4r7ybxupkGE0Oj2dTXxCTgDYEWgtVQ,4033
26
26
  hdl/data/dataset/graph/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
27
27
  hdl/data/dataset/graph/chiral.py,sha256=Tyz9-iBWoKESrYcnK6K0rif3A1SFcNMm9hbLfCmCVUA,1985
28
28
  hdl/data/dataset/graph/gin.py,sha256=To-wvp-u-VXK6w3W3CohqcSCEfMZ7grqZQzr9KiEZQM,8848
29
- hdl/data/dataset/graph/molnet.py,sha256=8VsKO3CDXwmq-3tlOFQLVIpxwoftAxI4WS9YtnOcI4Y,12806
29
+ hdl/data/dataset/graph/molnet.py,sha256=G-3nzaSuqiZntD7ockznC4GMqJ4hfzfB2UEZOw35IJQ,12811
30
30
  hdl/data/dataset/loaders/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
31
31
  hdl/data/dataset/loaders/chiral_graph.py,sha256=efPpN5ovUqUhIPcPnL0zADD-zxaG8HRGD4KPwA_vbS8,2239
32
32
  hdl/data/dataset/loaders/general.py,sha256=eObFlDsIfoiqJkeZHpJ4-cFuFCUfDbc2tfZe1z8qm70,532
@@ -88,7 +88,7 @@ hdl/utils/llm/chat.py,sha256=H2c8assJlSdZQKIfPkYrVZHqv66TsdsxtaLXv0kNe1w,11565
88
88
  hdl/utils/llm/embs.py,sha256=sC8tga7HgDwPI2m7TDWKp9kkxEIMxEyMtgmEhfRi4vI,6362
89
89
  hdl/utils/schedulers/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
90
90
  hdl/utils/schedulers/norm_lr.py,sha256=bDwCmdEK-WkgxQMFBiMuchv8Mm7C0-GZJ6usm-PQk14,4461
91
- hjxdl-0.0.19.dist-info/METADATA,sha256=W1TN19HaXAt3kP6BvCpHWNam7w9lhe3LlVql4QCh5jw,543
92
- hjxdl-0.0.19.dist-info/WHEEL,sha256=Z4pYXqR_rTB7OWNDYFOm1qRk0RX6GFP2o8LgvP453Hk,91
93
- hjxdl-0.0.19.dist-info/top_level.txt,sha256=-kxwTM5JPhylp06z3zAVO3w6_h7wtBfBo2zgM6YZoTk,4
94
- hjxdl-0.0.19.dist-info/RECORD,,
91
+ hjxdl-0.0.20.dist-info/METADATA,sha256=Txo-uy0Qb-eDOCnbIEKoszwnivkPQS2J-FBPq54D9E4,543
92
+ hjxdl-0.0.20.dist-info/WHEEL,sha256=pd56usn78UTvq1xeX_ZwFhoK6jE5u5wzu4TTBIG5cQ0,91
93
+ hjxdl-0.0.20.dist-info/top_level.txt,sha256=-kxwTM5JPhylp06z3zAVO3w6_h7wtBfBo2zgM6YZoTk,4
94
+ hjxdl-0.0.20.dist-info/RECORD,,
@@ -1,5 +1,5 @@
1
1
  Wheel-Version: 1.0
2
- Generator: setuptools (70.3.0)
2
+ Generator: setuptools (71.0.0)
3
3
  Root-Is-Purelib: true
4
4
  Tag: py3-none-any
5
5