hindsight-api 0.0.13__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (48) hide show
  1. hindsight_api/__init__.py +38 -0
  2. hindsight_api/api/__init__.py +105 -0
  3. hindsight_api/api/http.py +1872 -0
  4. hindsight_api/api/mcp.py +157 -0
  5. hindsight_api/engine/__init__.py +47 -0
  6. hindsight_api/engine/cross_encoder.py +97 -0
  7. hindsight_api/engine/db_utils.py +93 -0
  8. hindsight_api/engine/embeddings.py +113 -0
  9. hindsight_api/engine/entity_resolver.py +575 -0
  10. hindsight_api/engine/llm_wrapper.py +269 -0
  11. hindsight_api/engine/memory_engine.py +3095 -0
  12. hindsight_api/engine/query_analyzer.py +519 -0
  13. hindsight_api/engine/response_models.py +222 -0
  14. hindsight_api/engine/retain/__init__.py +50 -0
  15. hindsight_api/engine/retain/bank_utils.py +423 -0
  16. hindsight_api/engine/retain/chunk_storage.py +82 -0
  17. hindsight_api/engine/retain/deduplication.py +104 -0
  18. hindsight_api/engine/retain/embedding_processing.py +62 -0
  19. hindsight_api/engine/retain/embedding_utils.py +54 -0
  20. hindsight_api/engine/retain/entity_processing.py +90 -0
  21. hindsight_api/engine/retain/fact_extraction.py +1027 -0
  22. hindsight_api/engine/retain/fact_storage.py +176 -0
  23. hindsight_api/engine/retain/link_creation.py +121 -0
  24. hindsight_api/engine/retain/link_utils.py +651 -0
  25. hindsight_api/engine/retain/orchestrator.py +405 -0
  26. hindsight_api/engine/retain/types.py +206 -0
  27. hindsight_api/engine/search/__init__.py +15 -0
  28. hindsight_api/engine/search/fusion.py +122 -0
  29. hindsight_api/engine/search/observation_utils.py +132 -0
  30. hindsight_api/engine/search/reranking.py +103 -0
  31. hindsight_api/engine/search/retrieval.py +503 -0
  32. hindsight_api/engine/search/scoring.py +161 -0
  33. hindsight_api/engine/search/temporal_extraction.py +64 -0
  34. hindsight_api/engine/search/think_utils.py +255 -0
  35. hindsight_api/engine/search/trace.py +215 -0
  36. hindsight_api/engine/search/tracer.py +447 -0
  37. hindsight_api/engine/search/types.py +160 -0
  38. hindsight_api/engine/task_backend.py +223 -0
  39. hindsight_api/engine/utils.py +203 -0
  40. hindsight_api/metrics.py +227 -0
  41. hindsight_api/migrations.py +163 -0
  42. hindsight_api/models.py +309 -0
  43. hindsight_api/pg0.py +425 -0
  44. hindsight_api/web/__init__.py +12 -0
  45. hindsight_api/web/server.py +143 -0
  46. hindsight_api-0.0.13.dist-info/METADATA +41 -0
  47. hindsight_api-0.0.13.dist-info/RECORD +48 -0
  48. hindsight_api-0.0.13.dist-info/WHEEL +4 -0
@@ -0,0 +1,222 @@
1
+ """
2
+ Core response models for Hindsight memory system.
3
+
4
+ These models define the structure of data returned by the core MemoryEngine class.
5
+ API response models should be kept separate and convert from these core models to maintain
6
+ API stability even if internal models change.
7
+ """
8
+
9
+ from typing import Optional, List, Dict, Any
10
+ from pydantic import BaseModel, Field, ConfigDict
11
+
12
+
13
+ class PersonalityTraits(BaseModel):
14
+ """
15
+ Personality traits for a bank using the Big Five model.
16
+
17
+ All traits are scored 0.0-1.0 where higher values indicate stronger presence of the trait.
18
+ """
19
+ openness: float = Field(description="Openness to experience (0.0-1.0)")
20
+ conscientiousness: float = Field(description="Conscientiousness and organization (0.0-1.0)")
21
+ extraversion: float = Field(description="Extraversion and sociability (0.0-1.0)")
22
+ agreeableness: float = Field(description="Agreeableness and cooperation (0.0-1.0)")
23
+ neuroticism: float = Field(description="Emotional sensitivity and neuroticism (0.0-1.0)")
24
+ bias_strength: float = Field(description="How strongly personality influences thinking (0.0-1.0)")
25
+
26
+ model_config = ConfigDict(json_schema_extra={
27
+ "example": {
28
+ "openness": 0.8,
29
+ "conscientiousness": 0.6,
30
+ "extraversion": 0.4,
31
+ "agreeableness": 0.7,
32
+ "neuroticism": 0.3,
33
+ "bias_strength": 0.5
34
+ }
35
+ })
36
+
37
+
38
+ class MemoryFact(BaseModel):
39
+ """
40
+ A single memory fact returned by search or think operations.
41
+
42
+ This represents a unit of information stored in the memory system,
43
+ including both the content and metadata.
44
+ """
45
+ model_config = ConfigDict(json_schema_extra={
46
+ "example": {
47
+ "id": "123e4567-e89b-12d3-a456-426614174000",
48
+ "text": "Alice works at Google on the AI team",
49
+ "fact_type": "world",
50
+ "entities": ["Alice", "Google"],
51
+ "context": "work info",
52
+ "occurred_start": "2024-01-15T10:30:00Z",
53
+ "occurred_end": "2024-01-15T10:30:00Z",
54
+ "mentioned_at": "2024-01-15T10:30:00Z",
55
+ "document_id": "session_abc123",
56
+ "metadata": {"source": "slack"},
57
+ "chunk_id": "bank123_session_abc123_0",
58
+ "activation": 0.95
59
+ }
60
+ })
61
+
62
+ id: str = Field(description="Unique identifier for the memory fact")
63
+ text: str = Field(description="The actual text content of the memory")
64
+ fact_type: str = Field(description="Type of fact: 'world', 'bank', 'opinion', or 'observation'")
65
+ entities: Optional[List[str]] = Field(None, description="Entity names mentioned in this fact")
66
+ context: Optional[str] = Field(None, description="Additional context for the memory")
67
+ occurred_start: Optional[str] = Field(None, description="ISO format date when the event started occurring")
68
+ occurred_end: Optional[str] = Field(None, description="ISO format date when the event ended occurring")
69
+ mentioned_at: Optional[str] = Field(None, description="ISO format date when the fact was mentioned/learned")
70
+ document_id: Optional[str] = Field(None, description="ID of the document this memory belongs to")
71
+ metadata: Optional[Dict[str, str]] = Field(None, description="User-defined metadata")
72
+ chunk_id: Optional[str] = Field(None, description="ID of the chunk this fact was extracted from (format: bank_id_document_id_chunk_index)")
73
+
74
+ # Internal metrics (used by system but may not be exposed in API)
75
+ activation: Optional[float] = Field(None, description="Internal activation score")
76
+
77
+
78
+ class ChunkInfo(BaseModel):
79
+ """Information about a chunk."""
80
+ chunk_text: str = Field(description="The raw chunk text")
81
+ chunk_index: int = Field(description="Index of the chunk within the document")
82
+ truncated: bool = Field(default=False, description="Whether the chunk was truncated due to token limits")
83
+
84
+
85
+ class RecallResult(BaseModel):
86
+ """
87
+ Result from a recall operation.
88
+
89
+ Contains a list of matching memory facts and optional trace information
90
+ for debugging and transparency.
91
+ """
92
+ model_config = ConfigDict(json_schema_extra={
93
+ "example": {
94
+ "results": [
95
+ {
96
+ "id": "123e4567-e89b-12d3-a456-426614174000",
97
+ "text": "Alice works at Google on the AI team",
98
+ "fact_type": "world",
99
+ "context": "work info",
100
+ "occurred_start": "2024-01-15T10:30:00Z",
101
+ "occurred_end": "2024-01-15T10:30:00Z",
102
+ "activation": 0.95
103
+ }
104
+ ],
105
+ "trace": {
106
+ "query": "What did Alice say about machine learning?",
107
+ "num_results": 1
108
+ }
109
+ }
110
+ })
111
+
112
+ results: List[MemoryFact] = Field(description="List of memory facts matching the query")
113
+ trace: Optional[Dict[str, Any]] = Field(None, description="Trace information for debugging")
114
+ entities: Optional[Dict[str, "EntityState"]] = Field(
115
+ None,
116
+ description="Entity states for entities mentioned in results (keyed by canonical name)"
117
+ )
118
+ chunks: Optional[Dict[str, ChunkInfo]] = Field(
119
+ None,
120
+ description="Chunks for facts, keyed by '{document_id}_{chunk_index}'"
121
+ )
122
+
123
+
124
+ class ReflectResult(BaseModel):
125
+ """
126
+ Result from a reflect operation.
127
+
128
+ Contains the formulated answer, the facts it was based on (organized by type),
129
+ and any new opinions that were formed during the reflection process.
130
+ """
131
+ model_config = ConfigDict(json_schema_extra={
132
+ "example": {
133
+ "text": "Based on my knowledge, machine learning is being actively used in healthcare...",
134
+ "based_on": {
135
+ "world": [
136
+ {
137
+ "id": "123e4567-e89b-12d3-a456-426614174000",
138
+ "text": "Machine learning is used in medical diagnosis",
139
+ "fact_type": "world",
140
+ "context": "healthcare",
141
+ "occurred_start": "2024-01-15T10:30:00Z",
142
+ "occurred_end": "2024-01-15T10:30:00Z"
143
+ }
144
+ ],
145
+ "agent": [],
146
+ "opinion": []
147
+ },
148
+ "new_opinions": [
149
+ "Machine learning has great potential in healthcare"
150
+ ]
151
+ }
152
+ })
153
+
154
+ text: str = Field(description="The formulated answer text")
155
+ based_on: Dict[str, List[MemoryFact]] = Field(
156
+ description="Facts used to formulate the answer, organized by type (world, agent, opinion)"
157
+ )
158
+ new_opinions: List[str] = Field(
159
+ default_factory=list,
160
+ description="List of newly formed opinions during reflection"
161
+ )
162
+
163
+
164
+ class Opinion(BaseModel):
165
+ """
166
+ An opinion with confidence score.
167
+
168
+ Opinions represent the bank's formed perspectives on topics,
169
+ with a confidence level indicating strength of belief.
170
+ """
171
+ model_config = ConfigDict(json_schema_extra={
172
+ "example": {
173
+ "text": "Machine learning has great potential in healthcare",
174
+ "confidence": 0.85
175
+ }
176
+ })
177
+
178
+ text: str = Field(description="The opinion text")
179
+ confidence: float = Field(description="Confidence score between 0.0 and 1.0")
180
+
181
+
182
+ class EntityObservation(BaseModel):
183
+ """
184
+ An observation about an entity.
185
+
186
+ Observations are objective facts synthesized from multiple memory facts
187
+ about an entity, without personality influence.
188
+ """
189
+ model_config = ConfigDict(json_schema_extra={
190
+ "example": {
191
+ "text": "John is detail-oriented and works at Google",
192
+ "mentioned_at": "2024-01-15T10:30:00Z"
193
+ }
194
+ })
195
+
196
+ text: str = Field(description="The observation text")
197
+ mentioned_at: Optional[str] = Field(None, description="ISO format date when this observation was created")
198
+
199
+
200
+ class EntityState(BaseModel):
201
+ """
202
+ Current mental model of an entity.
203
+
204
+ Contains observations synthesized from facts about the entity.
205
+ """
206
+ model_config = ConfigDict(json_schema_extra={
207
+ "example": {
208
+ "entity_id": "123e4567-e89b-12d3-a456-426614174000",
209
+ "canonical_name": "John",
210
+ "observations": [
211
+ {"text": "John is detail-oriented", "mentioned_at": "2024-01-15T10:30:00Z"},
212
+ {"text": "John works at Google on the AI team", "mentioned_at": "2024-01-14T09:00:00Z"}
213
+ ]
214
+ }
215
+ })
216
+
217
+ entity_id: str = Field(description="Unique identifier for the entity")
218
+ canonical_name: str = Field(description="Canonical name of the entity")
219
+ observations: List[EntityObservation] = Field(
220
+ default_factory=list,
221
+ description="List of observations about this entity"
222
+ )
@@ -0,0 +1,50 @@
1
+ """
2
+ Retain pipeline modules for storing memories.
3
+
4
+ This package contains modular components for the retain operation:
5
+ - types: Type definitions for retain pipeline
6
+ - fact_extraction: Extract facts from content
7
+ - embedding_processing: Augment texts and generate embeddings
8
+ - deduplication: Check for duplicate facts
9
+ - entity_processing: Process and resolve entities
10
+ - link_creation: Create temporal, semantic, entity, and causal links
11
+ - chunk_storage: Handle chunk storage
12
+ - fact_storage: Handle fact insertion into database
13
+ """
14
+
15
+ from .types import (
16
+ RetainContent,
17
+ ExtractedFact,
18
+ ProcessedFact,
19
+ ChunkMetadata,
20
+ EntityRef,
21
+ CausalRelation,
22
+ RetainBatch
23
+ )
24
+
25
+ from . import fact_extraction
26
+ from . import embedding_processing
27
+ from . import deduplication
28
+ from . import entity_processing
29
+ from . import link_creation
30
+ from . import chunk_storage
31
+ from . import fact_storage
32
+
33
+ __all__ = [
34
+ # Types
35
+ "RetainContent",
36
+ "ExtractedFact",
37
+ "ProcessedFact",
38
+ "ChunkMetadata",
39
+ "EntityRef",
40
+ "CausalRelation",
41
+ "RetainBatch",
42
+ # Modules
43
+ "fact_extraction",
44
+ "embedding_processing",
45
+ "deduplication",
46
+ "entity_processing",
47
+ "link_creation",
48
+ "chunk_storage",
49
+ "fact_storage",
50
+ ]
@@ -0,0 +1,423 @@
1
+ """
2
+ bank profile utilities for personality and background management.
3
+ """
4
+
5
+ import json
6
+ import logging
7
+ import re
8
+ from typing import Dict, Optional, TypedDict
9
+ from pydantic import BaseModel, Field
10
+ from ..db_utils import acquire_with_retry
11
+ from ..response_models import PersonalityTraits
12
+
13
+ logger = logging.getLogger(__name__)
14
+
15
+ DEFAULT_PERSONALITY = {
16
+ "openness": 0.5,
17
+ "conscientiousness": 0.5,
18
+ "extraversion": 0.5,
19
+ "agreeableness": 0.5,
20
+ "neuroticism": 0.5,
21
+ "bias_strength": 0.5,
22
+ }
23
+
24
+
25
+ class BankProfile(TypedDict):
26
+ """Type for bank profile data."""
27
+ name: str
28
+ personality: PersonalityTraits
29
+ background: str
30
+
31
+
32
+ class BackgroundMergeResponse(BaseModel):
33
+ """LLM response for background merge with personality inference."""
34
+ background: str = Field(description="Merged background in first person perspective")
35
+ personality: PersonalityTraits = Field(description="Inferred Big Five personality traits")
36
+
37
+
38
+ async def get_bank_profile(pool, bank_id: str) -> BankProfile:
39
+ """
40
+ Get bank profile (name, personality + background).
41
+ Auto-creates bank with default values if not exists.
42
+
43
+ Args:
44
+ pool: Database connection pool
45
+ bank_id: bank IDentifier
46
+
47
+ Returns:
48
+ BankProfile with name, typed PersonalityTraits, and background
49
+ """
50
+ async with acquire_with_retry(pool) as conn:
51
+ # Try to get existing bank
52
+ row = await conn.fetchrow(
53
+ """
54
+ SELECT name, personality, background
55
+ FROM banks WHERE bank_id = $1
56
+ """,
57
+ bank_id
58
+ )
59
+
60
+ if row:
61
+ # asyncpg returns JSONB as a string, so parse it
62
+ personality_data = row["personality"]
63
+ if isinstance(personality_data, str):
64
+ personality_data = json.loads(personality_data)
65
+
66
+ return BankProfile(
67
+ name=row["name"],
68
+ personality=PersonalityTraits(**personality_data),
69
+ background=row["background"]
70
+ )
71
+
72
+ # Bank doesn't exist, create with defaults
73
+ await conn.execute(
74
+ """
75
+ INSERT INTO banks (bank_id, name, personality, background)
76
+ VALUES ($1, $2, $3::jsonb, $4)
77
+ ON CONFLICT (bank_id) DO NOTHING
78
+ """,
79
+ bank_id,
80
+ bank_id, # Default name is the bank_id
81
+ json.dumps(DEFAULT_PERSONALITY),
82
+ ""
83
+ )
84
+
85
+ return BankProfile(
86
+ name=bank_id,
87
+ personality=PersonalityTraits(**DEFAULT_PERSONALITY),
88
+ background=""
89
+ )
90
+
91
+
92
+ async def update_bank_personality(
93
+ pool,
94
+ bank_id: str,
95
+ personality: Dict[str, float]
96
+ ) -> None:
97
+ """
98
+ Update bank personality traits.
99
+
100
+ Args:
101
+ pool: Database connection pool
102
+ bank_id: bank IDentifier
103
+ personality: Dict with Big Five traits + bias_strength (all 0-1)
104
+ """
105
+ # Ensure bank exists first
106
+ await get_bank_profile(pool, bank_id)
107
+
108
+ async with acquire_with_retry(pool) as conn:
109
+ await conn.execute(
110
+ """
111
+ UPDATE banks
112
+ SET personality = $2::jsonb,
113
+ updated_at = NOW()
114
+ WHERE bank_id = $1
115
+ """,
116
+ bank_id,
117
+ json.dumps(personality)
118
+ )
119
+
120
+
121
+ async def merge_bank_background(
122
+ pool,
123
+ llm_config,
124
+ bank_id: str,
125
+ new_info: str,
126
+ update_personality: bool = True
127
+ ) -> dict:
128
+ """
129
+ Merge new background information with existing background using LLM.
130
+ Normalizes to first person ("I") and resolves conflicts.
131
+ Optionally infers personality traits from the merged background.
132
+
133
+ Args:
134
+ pool: Database connection pool
135
+ llm_config: LLM configuration for background merging
136
+ bank_id: bank IDentifier
137
+ new_info: New background information to add/merge
138
+ update_personality: If True, infer Big Five traits from background (default: True)
139
+
140
+ Returns:
141
+ Dict with 'background' (str) and optionally 'personality' (dict) keys
142
+ """
143
+ # Get current profile
144
+ profile = await get_bank_profile(pool, bank_id)
145
+ current_background = profile["background"]
146
+
147
+ # Use LLM to merge backgrounds and optionally infer personality
148
+ result = await _llm_merge_background(
149
+ llm_config,
150
+ current_background,
151
+ new_info,
152
+ infer_personality=update_personality
153
+ )
154
+
155
+ merged_background = result["background"]
156
+ inferred_personality = result.get("personality")
157
+
158
+ # Update in database
159
+ async with acquire_with_retry(pool) as conn:
160
+ if inferred_personality:
161
+ # Update both background and personality
162
+ await conn.execute(
163
+ """
164
+ UPDATE banks
165
+ SET background = $2,
166
+ personality = $3::jsonb,
167
+ updated_at = NOW()
168
+ WHERE bank_id = $1
169
+ """,
170
+ bank_id,
171
+ merged_background,
172
+ json.dumps(inferred_personality)
173
+ )
174
+ else:
175
+ # Update only background
176
+ await conn.execute(
177
+ """
178
+ UPDATE banks
179
+ SET background = $2,
180
+ updated_at = NOW()
181
+ WHERE bank_id = $1
182
+ """,
183
+ bank_id,
184
+ merged_background
185
+ )
186
+
187
+ response = {"background": merged_background}
188
+ if inferred_personality:
189
+ response["personality"] = inferred_personality
190
+
191
+ return response
192
+
193
+
194
+ async def _llm_merge_background(
195
+ llm_config,
196
+ current: str,
197
+ new_info: str,
198
+ infer_personality: bool = False
199
+ ) -> dict:
200
+ """
201
+ Use LLM to intelligently merge background information.
202
+ Optionally infer Big Five personality traits from the merged background.
203
+
204
+ Args:
205
+ llm_config: LLM configuration to use
206
+ current: Current background text
207
+ new_info: New information to merge
208
+ infer_personality: If True, also infer personality traits
209
+
210
+ Returns:
211
+ Dict with 'background' (str) and optionally 'personality' (dict) keys
212
+ """
213
+ if infer_personality:
214
+ prompt = f"""You are helping maintain a memory bank's background/profile and infer their personality. You MUST respond with ONLY valid JSON.
215
+
216
+ Current background: {current if current else "(empty)"}
217
+
218
+ New information to add: {new_info}
219
+
220
+ Instructions:
221
+ 1. Merge the new information with the current background
222
+ 2. If there are conflicts (e.g., different birthplaces), the NEW information overwrites the old
223
+ 3. Keep additions that don't conflict
224
+ 4. Output in FIRST PERSON ("I") perspective
225
+ 5. Be concise - keep merged background under 500 characters
226
+ 6. Infer Big Five personality traits from the merged background:
227
+ - Openness: 0.0-1.0 (creativity, curiosity, openness to new ideas)
228
+ - Conscientiousness: 0.0-1.0 (organization, discipline, goal-directed)
229
+ - Extraversion: 0.0-1.0 (sociability, assertiveness, energy from others)
230
+ - Agreeableness: 0.0-1.0 (cooperation, empathy, consideration)
231
+ - Neuroticism: 0.0-1.0 (emotional sensitivity, anxiety, stress response)
232
+ - Bias Strength: 0.0-1.0 (how much personality influences opinions)
233
+
234
+ CRITICAL: You MUST respond with ONLY a valid JSON object. No markdown, no code blocks, no explanations. Just the JSON.
235
+
236
+ Format:
237
+ {{
238
+ "background": "the merged background text in first person",
239
+ "personality": {{
240
+ "openness": 0.7,
241
+ "conscientiousness": 0.6,
242
+ "extraversion": 0.5,
243
+ "agreeableness": 0.8,
244
+ "neuroticism": 0.4,
245
+ "bias_strength": 0.6
246
+ }}
247
+ }}
248
+
249
+ Trait inference examples:
250
+ - "creative artist" → openness: 0.8+, bias_strength: 0.6
251
+ - "organized engineer" → conscientiousness: 0.8+, openness: 0.5-0.6
252
+ - "startup founder" → openness: 0.8+, extraversion: 0.7+, neuroticism: 0.3-0.4
253
+ - "risk-averse analyst" → openness: 0.3-0.4, conscientiousness: 0.8+, neuroticism: 0.6+
254
+ - "rational and diligent" → conscientiousness: 0.7+, openness: 0.6+
255
+ - "passionate and dramatic" → extraversion: 0.7+, neuroticism: 0.6+, openness: 0.7+"""
256
+ else:
257
+ prompt = f"""You are helping maintain a memory bank's background/profile.
258
+
259
+ Current background: {current if current else "(empty)"}
260
+
261
+ New information to add: {new_info}
262
+
263
+ Instructions:
264
+ 1. Merge the new information with the current background
265
+ 2. If there are conflicts (e.g., different birthplaces), the NEW information overwrites the old
266
+ 3. Keep additions that don't conflict
267
+ 4. Output in FIRST PERSON ("I") perspective
268
+ 5. Be concise - keep it under 500 characters
269
+ 6. Return ONLY the merged background text, no explanations
270
+
271
+ Merged background:"""
272
+
273
+ try:
274
+ # Prepare messages
275
+ messages = [{"role": "user", "content": prompt}]
276
+
277
+ if infer_personality:
278
+ # Use structured output with Pydantic model for personality inference
279
+ try:
280
+ parsed = await llm_config.call(
281
+ messages=messages,
282
+ response_format=BackgroundMergeResponse,
283
+ scope="bank_background",
284
+ temperature=0.3,
285
+ max_tokens=8192
286
+ )
287
+ logger.info(f"Successfully got structured response: background={parsed.background[:100]}")
288
+
289
+ # Convert Pydantic model to dict format
290
+ return {
291
+ "background": parsed.background,
292
+ "personality": parsed.personality.model_dump()
293
+ }
294
+ except Exception as e:
295
+ logger.warning(f"Structured output failed, falling back to manual parsing: {e}")
296
+ # Fall through to manual parsing below
297
+
298
+ # Manual parsing fallback or non-personality merge
299
+ content = await llm_config.call(
300
+ messages=messages,
301
+ scope="bank_background",
302
+ temperature=0.3,
303
+ max_tokens=8192
304
+ )
305
+
306
+ logger.info(f"LLM response for background merge (first 500 chars): {content[:500]}")
307
+
308
+ if infer_personality:
309
+ # Parse JSON response - try multiple extraction methods
310
+ result = None
311
+
312
+ # Method 1: Direct parse
313
+ try:
314
+ result = json.loads(content)
315
+ logger.info("Successfully parsed JSON directly")
316
+ except json.JSONDecodeError:
317
+ pass
318
+
319
+ # Method 2: Extract from markdown code blocks
320
+ if result is None:
321
+ # Remove markdown code blocks
322
+ code_block_match = re.search(r'```(?:json)?\s*(\{.*?\})\s*```', content, re.DOTALL)
323
+ if code_block_match:
324
+ try:
325
+ result = json.loads(code_block_match.group(1))
326
+ logger.info("Successfully extracted JSON from markdown code block")
327
+ except json.JSONDecodeError:
328
+ pass
329
+
330
+ # Method 3: Find nested JSON structure
331
+ if result is None:
332
+ # Look for JSON object with nested structure
333
+ json_match = re.search(r'\{[^{}]*"background"[^{}]*"personality"[^{}]*\{[^{}]*\}[^{}]*\}', content, re.DOTALL)
334
+ if json_match:
335
+ try:
336
+ result = json.loads(json_match.group())
337
+ logger.info("Successfully extracted JSON using nested pattern")
338
+ except json.JSONDecodeError:
339
+ pass
340
+
341
+ # All parsing methods failed - use fallback
342
+ if result is None:
343
+ logger.warning(f"Failed to extract JSON from LLM response. Raw content: {content[:200]}")
344
+ # Fallback: use new_info as background with default personality
345
+ return {
346
+ "background": new_info if new_info else current if current else "",
347
+ "personality": DEFAULT_PERSONALITY.copy()
348
+ }
349
+
350
+ # Validate personality values
351
+ personality = result.get("personality", {})
352
+ for key in ["openness", "conscientiousness", "extraversion",
353
+ "agreeableness", "neuroticism", "bias_strength"]:
354
+ if key not in personality:
355
+ personality[key] = 0.5 # Default to neutral
356
+ else:
357
+ # Clamp to [0, 1]
358
+ personality[key] = max(0.0, min(1.0, float(personality[key])))
359
+
360
+ result["personality"] = personality
361
+
362
+ # Ensure background exists
363
+ if "background" not in result or not result["background"]:
364
+ result["background"] = new_info if new_info else ""
365
+
366
+ return result
367
+ else:
368
+ # Just background merge
369
+ merged = content
370
+ if not merged or merged.lower() in ["(empty)", "none", "n/a"]:
371
+ merged = new_info if new_info else ""
372
+ return {"background": merged}
373
+
374
+ except Exception as e:
375
+ logger.error(f"Error merging background with LLM: {e}")
376
+ # Fallback: just append new info
377
+ if current:
378
+ merged = f"{current} {new_info}".strip()
379
+ else:
380
+ merged = new_info
381
+
382
+ result = {"background": merged}
383
+ if infer_personality:
384
+ result["personality"] = DEFAULT_PERSONALITY.copy()
385
+ return result
386
+
387
+
388
+ async def list_banks(pool) -> list:
389
+ """
390
+ List all banks in the system.
391
+
392
+ Args:
393
+ pool: Database connection pool
394
+
395
+ Returns:
396
+ List of dicts with bank_id, name, personality, background, created_at, updated_at
397
+ """
398
+ async with acquire_with_retry(pool) as conn:
399
+ rows = await conn.fetch(
400
+ """
401
+ SELECT bank_id, name, personality, background, created_at, updated_at
402
+ FROM banks
403
+ ORDER BY updated_at DESC
404
+ """
405
+ )
406
+
407
+ result = []
408
+ for row in rows:
409
+ # asyncpg returns JSONB as a string, so parse it
410
+ personality_data = row["personality"]
411
+ if isinstance(personality_data, str):
412
+ personality_data = json.loads(personality_data)
413
+
414
+ result.append({
415
+ "bank_id": row["bank_id"],
416
+ "name": row["name"],
417
+ "personality": personality_data,
418
+ "background": row["background"],
419
+ "created_at": row["created_at"].isoformat() if row["created_at"] else None,
420
+ "updated_at": row["updated_at"].isoformat() if row["updated_at"] else None,
421
+ })
422
+
423
+ return result