hikyuu 2.7.3__py3-none-manylinux2014_aarch64.whl → 2.7.5__py3-none-manylinux2014_aarch64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hikyuu/__init__.py +3 -1
- hikyuu/__init__.pyi +11 -10
- hikyuu/analysis/__init__.pyi +1 -0
- hikyuu/analysis/analysis.pyi +2 -1
- hikyuu/core.pyi +3 -2
- hikyuu/cpp/core310.pyi +80 -46
- hikyuu/cpp/core310.so +0 -0
- hikyuu/cpp/core311.pyi +80 -46
- hikyuu/cpp/core311.so +0 -0
- hikyuu/cpp/core312.pyi +80 -46
- hikyuu/cpp/core312.so +0 -0
- hikyuu/cpp/core313.pyi +80 -46
- hikyuu/cpp/core313.so +0 -0
- hikyuu/cpp/libhikyuu.so +0 -0
- hikyuu/cpp/libmimalloc.so +0 -0
- hikyuu/cpp/libmimalloc.so.3 +0 -0
- hikyuu/cpp/libmimalloc.so.3.1 +0 -0
- hikyuu/data/clickhouse_upgrade/0002.sql +9 -0
- hikyuu/data/common_mysql.py +1 -1
- hikyuu/data/em_block_to_mysql.py +16 -4
- hikyuu/data/em_block_to_sqlite.py +16 -4
- hikyuu/data/hku_config_template.py +1 -1
- hikyuu/data/mysql_upgrade/0030.sql +3 -0
- hikyuu/data/pytdx_to_h5.py +2 -2
- hikyuu/data/pytdx_to_mysql.py +5 -5
- hikyuu/data/sqlite_upgrade/0030.sql +5 -0
- hikyuu/draw/__init__.pyi +1 -1
- hikyuu/draw/drawplot/__init__.pyi +1 -1
- hikyuu/draw/drawplot/bokeh_draw.pyi +6 -5
- hikyuu/draw/drawplot/echarts_draw.pyi +6 -5
- hikyuu/draw/drawplot/matplotlib_draw.py +19 -11
- hikyuu/draw/drawplot/matplotlib_draw.pyi +6 -5
- hikyuu/examples/notebook/001-overview.ipynb +112 -78
- hikyuu/examples/notebook/004-IndicatorOverview.ipynb +52 -65
- hikyuu/examples/notebook/006-TradeManager.ipynb +402 -291
- hikyuu/examples/notebook/008-Pickle.ipynb +25 -17
- hikyuu/examples/notebook/009-RealData.ipynb +36 -38
- hikyuu/examples/notebook/Demo/Demo2.ipynb +146 -116
- hikyuu/extend.pyi +3 -2
- hikyuu/gui/data/UseTdxImportToH5Thread.py +4 -2
- hikyuu/gui/start_qmt.py +1 -1
- hikyuu/hub.pyi +6 -6
- hikyuu/include/hikyuu/Block.h +9 -9
- hikyuu/include/hikyuu/HistoryFinanceInfo.h +3 -3
- hikyuu/include/hikyuu/KData.h +51 -28
- hikyuu/include/hikyuu/KDataImp.h +12 -7
- hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +13 -7
- hikyuu/include/hikyuu/KDataSharedBufferImp.h +8 -6
- hikyuu/include/hikyuu/KQuery.h +11 -11
- hikyuu/include/hikyuu/KRecord.h +1 -1
- hikyuu/include/hikyuu/MarketInfo.h +10 -10
- hikyuu/include/hikyuu/Stock.h +30 -30
- hikyuu/include/hikyuu/StockManager.h +11 -10
- hikyuu/include/hikyuu/StockTypeInfo.h +9 -9
- hikyuu/include/hikyuu/StockWeight.h +9 -9
- hikyuu/include/hikyuu/TimeLineRecord.h +1 -1
- hikyuu/include/hikyuu/TransRecord.h +1 -1
- hikyuu/include/hikyuu/data_driver/BlockInfoDriver.h +6 -0
- hikyuu/include/hikyuu/data_driver/KDataDriver.h +4 -3
- hikyuu/include/hikyuu/indicator/IndParam.h +1 -1
- hikyuu/include/hikyuu/indicator/Indicator.h +56 -27
- hikyuu/include/hikyuu/indicator/Indicator2InImp.h +0 -4
- hikyuu/include/hikyuu/indicator/IndicatorImp.h +146 -73
- hikyuu/include/hikyuu/indicator/crt/CONTEXT.h +11 -1
- hikyuu/include/hikyuu/indicator/crt/IC.h +19 -14
- hikyuu/include/hikyuu/indicator/crt/ICIR.h +4 -7
- hikyuu/include/hikyuu/indicator/imp/IAbs.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IAcos.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IAd.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/IAdvance.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/IAma.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/IAsin.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IAtan.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IAtr.h +2 -3
- hikyuu/include/hikyuu/indicator/imp/IBackset.h +2 -4
- hikyuu/include/hikyuu/indicator/imp/IBlockSetNum.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/ICeil.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IContext.h +0 -3
- hikyuu/include/hikyuu/indicator/imp/ICorr.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/ICos.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ICost.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/ICount.h +2 -1
- hikyuu/include/hikyuu/indicator/imp/ICval.h +1 -4
- hikyuu/include/hikyuu/indicator/imp/ICycle.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/IDecline.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/IDevsq.h +4 -1
- hikyuu/include/hikyuu/indicator/imp/IDiff.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IDma.h +2 -0
- hikyuu/include/hikyuu/indicator/imp/IDropna.h +0 -4
- hikyuu/include/hikyuu/indicator/imp/IEma.h +3 -1
- hikyuu/include/hikyuu/indicator/imp/IEvery.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IExist.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IExp.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IFilter.h +4 -5
- hikyuu/include/hikyuu/indicator/imp/IFinance.h +1 -2
- hikyuu/include/hikyuu/indicator/imp/IFloor.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IHhvbars.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IHighLine.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IHsl.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/IIc.h +3 -6
- hikyuu/include/hikyuu/indicator/imp/IInBlock.h +1 -2
- hikyuu/include/hikyuu/indicator/imp/IIntpart.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IIsInf.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IIsInfa.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IIsLastBar.h +0 -1
- hikyuu/include/hikyuu/indicator/imp/IIsNa.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IJumpDown.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IJumpUp.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IKData.h +1 -2
- hikyuu/include/hikyuu/indicator/imp/ILiuTongPan.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/ILn.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ILog.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ILowLine.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/ILowLineBars.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IMa.h +6 -1
- hikyuu/include/hikyuu/indicator/imp/IMacd.h +2 -0
- hikyuu/include/hikyuu/indicator/imp/INot.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IPow.h +3 -1
- hikyuu/include/hikyuu/indicator/imp/IQuantileTrunc.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IRecover.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/IRef.h +3 -1
- hikyuu/include/hikyuu/indicator/imp/IResult.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IReverse.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IRoc.h +6 -1
- hikyuu/include/hikyuu/indicator/imp/IRocp.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IRocr.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IRocr100.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IRound.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IRoundDown.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IRoundUp.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ISaftyLoss.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ISign.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ISin.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ISlope.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/ISma.h +2 -0
- hikyuu/include/hikyuu/indicator/imp/ISpearman.h +3 -0
- hikyuu/include/hikyuu/indicator/imp/ISqrt.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/IStdev.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IStdp.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/ISum.h +6 -1
- hikyuu/include/hikyuu/indicator/imp/ITan.h +1 -0
- hikyuu/include/hikyuu/indicator/imp/ITime.h +1 -2
- hikyuu/include/hikyuu/indicator/imp/ITimeLine.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/ITr.h +1 -2
- hikyuu/include/hikyuu/indicator/imp/IVar.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IVarp.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IVigor.h +0 -2
- hikyuu/include/hikyuu/indicator/imp/IWma.h +5 -1
- hikyuu/include/hikyuu/indicator/imp/IZongGuBen.h +1 -2
- hikyuu/include/hikyuu/indicator_talib/imp/TaAdosc.h +0 -2
- hikyuu/include/hikyuu/indicator_talib/imp/TaSar.h +0 -2
- hikyuu/include/hikyuu/indicator_talib/imp/TaSarext.h +0 -4
- hikyuu/include/hikyuu/indicator_talib/imp/TaStoch.h +0 -3
- hikyuu/include/hikyuu/indicator_talib/imp/TaStochf.h +0 -2
- hikyuu/include/hikyuu/indicator_talib/imp/TaUltosc.h +0 -2
- hikyuu/include/hikyuu/indicator_talib/imp/ta_defines.h +2 -4
- hikyuu/include/hikyuu/indicator_talib/imp/ta_imp.h +70 -90
- hikyuu/include/hikyuu/plugin/hkuextra.h +2 -0
- hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +2 -0
- hikyuu/include/hikyuu/python/pybind_utils.h +22 -5
- hikyuu/include/hikyuu/trade_manage/TradeCostBase.h +5 -3
- hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +9 -2
- hikyuu/include/hikyuu/trade_sys/allocatefunds/AllocateFundsBase.h +8 -3
- hikyuu/include/hikyuu/trade_sys/condition/ConditionBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/environment/EnvironmentBase.h +6 -2
- hikyuu/include/hikyuu/trade_sys/moneymanager/MoneyManagerBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +23 -19
- hikyuu/include/hikyuu/trade_sys/multifactor/NormalizeBase.h +6 -3
- hikyuu/include/hikyuu/trade_sys/multifactor/ScoresFilterBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/multifactor/crt/MF_EqualWeight.h +3 -3
- hikyuu/include/hikyuu/trade_sys/multifactor/crt/MF_ICIRWeight.h +4 -4
- hikyuu/include/hikyuu/trade_sys/multifactor/crt/MF_ICWeight.h +4 -4
- hikyuu/include/hikyuu/trade_sys/multifactor/crt/MF_Weight.h +4 -4
- hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +5 -2
- hikyuu/include/hikyuu/trade_sys/profitgoal/ProfitGoalBase.h +4 -2
- hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +12 -2
- hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor.h +1 -1
- hikyuu/include/hikyuu/trade_sys/selector/crt/SE_MultiFactor2.h +1 -1
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector.h +1 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/MultiFactorSelector2.h +1 -0
- hikyuu/include/hikyuu/trade_sys/selector/imp/optimal/OptimalSelectorBase.h +0 -2
- hikyuu/include/hikyuu/trade_sys/selector/imp/optimal/PerformanceOptimalSelector.h +0 -4
- hikyuu/include/hikyuu/trade_sys/signal/SignalBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/slippage/SlippageBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/stoploss/StoplossBase.h +5 -2
- hikyuu/include/hikyuu/trade_sys/system/System.h +5 -2
- hikyuu/include/hikyuu/utilities/LruCache.h +299 -0
- hikyuu/include/hikyuu/utilities/arithmetic.h +2 -2
- hikyuu/include/hikyuu/utilities/omp_macro.h +25 -0
- hikyuu/include/hikyuu/utilities/plugin/PluginManager.h +5 -0
- hikyuu/include/hikyuu/utilities/thread/GlobalStealThreadPool.h +72 -19
- hikyuu/include/hikyuu/utilities/thread/GlobalThreadPool.h +0 -4
- hikyuu/include/hikyuu/utilities/thread/ThreadPool.h +0 -4
- hikyuu/include/hikyuu/utilities/thread/algorithm.h +286 -0
- hikyuu/include/hikyuu/version.h +4 -4
- hikyuu/plugin/libbacktest.so +0 -0
- hikyuu/plugin/libcheckdata.so +0 -0
- hikyuu/plugin/libclickhousedriver.so +0 -0
- hikyuu/plugin/libdataserver.so +0 -0
- hikyuu/plugin/libdataserver_parquet.so +0 -0
- hikyuu/plugin/libdevice.so +0 -0
- hikyuu/plugin/libextind.so +0 -0
- hikyuu/plugin/libhkuextra.so +0 -0
- hikyuu/plugin/libimport2ch.so +0 -0
- hikyuu/plugin/libimport2hdf5.so +0 -0
- hikyuu/plugin/libimport2mysql.so +0 -0
- hikyuu/plugin/libtmreport.so +0 -0
- hikyuu/test/Indicator.py +1 -2
- hikyuu/trade_manage/__init__.pyi +5 -4
- hikyuu/trade_manage/trade.pyi +5 -4
- hikyuu/util/__init__.pyi +1 -1
- hikyuu/util/singleton.pyi +1 -1
- {hikyuu-2.7.3.dist-info → hikyuu-2.7.5.dist-info}/METADATA +1 -1
- {hikyuu-2.7.3.dist-info → hikyuu-2.7.5.dist-info}/RECORD +217 -209
- {hikyuu-2.7.3.dist-info → hikyuu-2.7.5.dist-info}/WHEEL +0 -0
- {hikyuu-2.7.3.dist-info → hikyuu-2.7.5.dist-info}/entry_points.txt +0 -0
- {hikyuu-2.7.3.dist-info → hikyuu-2.7.5.dist-info}/top_level.txt +0 -0
|
@@ -5,34 +5,42 @@
|
|
|
5
5
|
"execution_count": 1,
|
|
6
6
|
"metadata": {},
|
|
7
7
|
"outputs": [
|
|
8
|
+
{
|
|
9
|
+
"name": "stdout",
|
|
10
|
+
"output_type": "stream",
|
|
11
|
+
"text": [
|
|
12
|
+
"Initialize hikyuu_2.7.3_202601230127_RELEASE_macosx_arm64 ...\n",
|
|
13
|
+
"2026-01-23 01:30:12.536 [HKU-I] - current python version: 3.12.7 (main.cpp:74)\n"
|
|
14
|
+
]
|
|
15
|
+
},
|
|
8
16
|
{
|
|
9
17
|
"name": "stderr",
|
|
10
18
|
"output_type": "stream",
|
|
11
19
|
"text": [
|
|
12
|
-
"
|
|
20
|
+
"2026-01-23 01:30:14,069 [INFO] runing in interactive session [<module>] (/Users/fasiondog/workspace/hikyuu/hikyuu/__init__.py:145) [hikyuu::hku_info]\n",
|
|
21
|
+
"2026-01-23 01:30:14,069 [INFO] running in jupyter [<module>] (/Users/fasiondog/workspace/hikyuu/hikyuu/__init__.py:152) [hikyuu::hku_info]\n"
|
|
13
22
|
]
|
|
14
23
|
},
|
|
15
24
|
{
|
|
16
25
|
"name": "stdout",
|
|
17
26
|
"output_type": "stream",
|
|
18
27
|
"text": [
|
|
19
|
-
"
|
|
20
|
-
"
|
|
21
|
-
"
|
|
22
|
-
"
|
|
23
|
-
"
|
|
24
|
-
"
|
|
25
|
-
"
|
|
26
|
-
"
|
|
27
|
-
"
|
|
28
|
-
"
|
|
29
|
-
"CPU times: total:
|
|
30
|
-
"Wall time:
|
|
28
|
+
"2026-01-23 01:30:14.073 [HKU-I] - 插件路径: /Users/fasiondog/workspace/hku_plugin/hikyuu_plugin (StockManager.cpp:113)\n",
|
|
29
|
+
"2026-01-23 01:30:15.220 [HKU-I] - Using CLICKHOUSE BaseInfoDriver (BaseInfoDriver.cpp:57)\n",
|
|
30
|
+
"2026-01-23 01:30:15.241 [HKU-I] - 加载市场信息…… (StockManager.cpp:755)\n",
|
|
31
|
+
"2026-01-23 01:30:15.249 [HKU-I] - 加载证券类型信息…… (StockManager.cpp:773)\n",
|
|
32
|
+
"2026-01-23 01:30:15.255 [HKU-I] - 加载证券信息…… (StockManager.cpp:653)\n",
|
|
33
|
+
"2026-01-23 01:30:15.342 [HKU-I] - 加载权息数据…… (StockManager.cpp:792)\n",
|
|
34
|
+
"2026-01-23 01:30:15.501 [HKU-I] - 加载板块信息…… (StockManager.cpp:182)\n",
|
|
35
|
+
"2026-01-23 01:30:15.690 [HKU-I] - 加载K线数据…… (StockManager.cpp:186)\n",
|
|
36
|
+
"2026-01-23 01:30:15.691 [HKU-I] - 预加载 day K线数据至缓存 (最大数量: 100000)! (StockManager.cpp:237)\n",
|
|
37
|
+
"2026-01-23 01:30:15.691 [HKU-I] - 0.46 秒数据加载完毕. (StockManager.cpp:193)\n",
|
|
38
|
+
"CPU times: user 1.33 s, sys: 236 ms, total: 1.57 s\n",
|
|
39
|
+
"Wall time: 11.8 s\n"
|
|
31
40
|
]
|
|
32
41
|
}
|
|
33
42
|
],
|
|
34
43
|
"source": [
|
|
35
|
-
"%matplotlib inline\n",
|
|
36
44
|
"%time from hikyuu.interactive import *"
|
|
37
45
|
]
|
|
38
46
|
},
|
|
@@ -82,7 +90,7 @@
|
|
|
82
90
|
"outputs": [
|
|
83
91
|
{
|
|
84
92
|
"data": {
|
|
85
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAAMTCAYAAACi5UTxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdi0lEQVR4nOzdeXhU5eH28TsQyTASBmVcIHAAxYa4ICQCLggoLsCPqlhcG1HrgoFIDbYUcUFRoVTf4oJGsbgVxLVVSyuuKGrFJRHQGiMIOBCxMqITIA6Q5Lx/PJ0tmSyTbSbJ93Ndc5E5z5kzz5mNuefZkmzbtgUAAAAAAOqtQ7wrAAAAAABAa0OYBgAAAAAgRoRpAAAAAABiRJgGAAAAACBGhGkAAAAAAGJEmAYAAAAAIEaEaQAAAAAAYkSYBgAAzW7Pnj3au3dvvKsBAECTIUwDAJBAvv32W916663asGFDnfvu27dPTz75ZKPv8/vvv9c999wj27YlSR6PR3/605/qffs333xT5eXlkqRBgwYF67Rq1Spt3LhRkvTEE0+oX79+ja5rPGzZskV5eXny+XwR21977TVdf/31kqTPP/9cH374YTyqBwCIE8I0AAAJ5Ntvv9Vtt91WrzC9evVqXXHFFfrtb38rSdq6dauSkpLqdRk+fHjwOB6PR3l5eaqoqJAkbdy4UbNmzYq4ry1btuill17STTfdpDPOOEMZGRnas2eP9u3bp2uvvTYYKsvLy1VZWalNmzbpnHPO0T/+8Q9J0ocffqhTTjmlSR6jaPbs2aO7775bn332WcT2W2+9td6PSVJSkjZv3lzt2Pfcc49WrFihLl26RGz/+uuv9dRTT0mSPv30U51yyimaPXu2Kisrg/vs3r1bf/rTn7R+/fqmP2kAQFwRpgEAQatWrdKECRNkWZb2228/paamKisrKyJgjBo1Sn379q3xGHWV79u3T4ceeqimT58e3Pboo4/qmGOOkcPhUK9evTRr1qxqXYL9fr9mzZoly7KUkpKio446KmqrbElJiS6++GJ1795dTqdTI0aM0EcffVRtv3//+98aNWqUunTpogMOOEAXX3yxtm3bVm2/+tQt/L4vuugiXXbZZTWef1M6+eST9eijj+r+++/XDTfcoEMPPVRFRUXVLocccohuvfXWiG2BEFiTyspKXXHFFTr++OPlcrl04okn6pFHHlHHjh3129/+VgsXLtTOnTu13377aenSpXrxxRf1/fffB29/4403asKECfrtb38r27a1YsUKnX766c32WFx33XVaunSpfvGLX1QrO+SQQ6I+LuGXJ554Iupxf/jhBz3yyCO6/fbb1bFjx4gyp9OpPXv2SJIuueQSvfXWW1qyZImKi4uD++y///7yer2aMGGCysrKmvCMAQDxlhzvCgAAEsPDDz+sa665RsOHD9fs2bPVvXt3ffvtt/rHP/6hHTt21BqQY/HCCy/o+++/V05OjiTpvvvu029/+1tdeeWVuv322/Xuu+9q3rx52rFjhx566KHg7S6++GK98soruuWWW5Senq7Fixfr0ksvVadOnXThhRdKknw+n04++WRVVFRo/vz5cjgcuvPOOzV69GgVFhbqiCOOkCR99NFHOvXUUzVs2DA99thj+vbbb3XzzTfrs88+U2Fhofbbb7+Y6vbee+/pySef1JIlS/Tzzz/r0ksvbZLHqj4uueQSbd68WevWrVNSUpIGDBhQbZ/k5GQdcsgh1coef/xxXX755cHrgfP+61//qqSkJJ144om64oordOSRR6pbt24Rtz399NM1dOhQnX/++fr666/1xz/+UatWrVJpaak++eQTnXHGGerUqZO++OILeb1effvtt7riiit0xRVXRBzn/fff17Bhwxr1GLz11lt6+OGHtWbNGqWkpEQ9/2iPS7jvvvsu6vb58+crIyNDEydOlMfjkWVZwbL9999ffr9fknntpaam6t5779V7772n0tLS4HndeeedevHFFzV79mzdddddDT1NAECisQEAsG27Z8+edp8+fex9+/bVut/IkSPtPn36NLh8+PDh9plnnmnbtm2Xlpbaqamp9rnnnhuxz6RJk+wOHTrYHo/Htm3bXrlypS3Jvu+++4L77N271+7fv7/dv3//4LbZs2fbSUlJ9tq1a4Pb1q9fb3fo0MG+6qqrIurYu3dve/fu3cFtjz76qC3JXrp0aUx1s23bdrlc9jHHHGMvX77clmRfeumlNZ5/XT7++GNbkv3KK6/EdLvKysoay9LS0uz8/Pxq23/66Se7qKjIfv75521J9ueff24XFRXZb7zxhp2UlFTra6Fnz572U089ZT/44IP26NGj7dGjR9tHHnmkLck+8sgjg9ueeOIJ+9xzz7WHDx9ub9q0yd60aZP95ptv2pLsd955x/b7/TGdZzQjRoywJ0yYELVs9uzZdlpaWp3HCLzGNm3aFNy2ceNG2+Fw2O+99569e/duu2fPnvZVV11l33777fbVV19tDx061JZkp6am2pLsDh062D169LCHDRtmP/HEExHHX7x4se10Ou3//ve/jTpXAEDioJs3AECSGdvZ3NatW6f33ntPU6dOlWQmcNq5c6euvPLKiP0uueQSVVZW6rXXXpNkWrM7duwY0X16v/320wUXXKANGzbo66+/Du43ZMgQDRw4MLhf//79dcIJJ+iVV16RJHm9Xq1atUoXXXSRnE5ncL8LL7xQ++23X3C/+tZNkt5++22tW7dO//d//9fYhyho7NixUcf0OhwOSdKuXbt00003BS/hk2Oddtppuummm+q8D5fLpQEDBqhPnz6SpPT0dA0YMECWZcm2bT388MP67rvvIi7btm3TQw89pP/+978aNWqUcnJy9MYbb+i2227Tjh075HA4dPDBB+vKK6/UG2+8oaOOOkovvviiKioq1LdvX/Xt21cdOnRQUlKShg4dGrUlORZfffWVVq1apauvvrpRx6nKtm1dffXVGjNmjA477DDNnz9fFRUV+vWvf63Vq1erY8eOysrKkiQ9++yz2rhxo/x+v7799lutXr1akyZNijhedna2JOnpp59u0noCAOKHbt4AAEnSBRdcoEWLFumcc87Rfffdp8MOO6zGfW3b1q5du6KWBSaxiuaBBx5Qnz59gqFz7dq1kswM0OGOOeYYSQqOPV27dq0OP/xwpaam1rhf7969VVRUVK0bcWC/999/X7t379a6detk23a1++zcubMOP/zwiPusT92i7dMUHnnkkYhJwgI6dDC/g1dUVGjDhg3avXu3li9friuvvLJaV+yGOuKII3Tddddp5syZys3NrVZ+yCGH6MEHH1SPHj20d+9e3XXXXbrjjjv0wAMP6M9//rP69u2rqVOn6t1335XP51O/fv0ixt1v3rxZhxxySPCHgcZ4/fXXlZKSohEjRjT6WOEqKir00UcfqbS0VP/4xz9UUVGhpUuXauTIkRo5cqQkMwFZfn6+BgwYUG0YxL59+4Ld5iWpU6dOGjFihF5//XVNmzatSesKAIgPwjQAQJKZsbiyslKLFy/Wq6++quzsbN14443q379/tX09Hk+1YBsu0NIZzufzaenSpbrpppuCgTAwYZXb7Y7Y98ADD5Qk/fTTT8H9qu5Tdb8dO3aooqKi1v18Pl+N9xnYb/v27THVrbn06tWr1nG+LpdLTz/9tDZv3qzly5fXebycnJzgOHXJzD5d9UeAzZs3a8eOHRo6dKjmzZunefPm1Xi85GTzFWLs2LH6+OOP9eSTT+q8887Tn//8Z40cOVKzZs3S+eefr3vvvVc33nijjj76aH333Xc69NBDtXbt2ib7AaKwsFBHHnlkRC+DqkpKSpSUlBTTcZOTk/XVV1+pS5cu+s1vfqMdO3bo4osvrraPJC1ZskSSCdcbN27U119/rfLy8mrjsDMzM/XXv/41pnoAABIXYRoAIMm0zD7yyCPKzc3VnXfeqSeffFJPPfWU7rjjDv3+97+P2PfQQw/Vc889F/U41157rX788cdq25944gmVl5dHtBwH1iYOhOuAQPAJbC8vL6+2T9X9ajpWrPuF32d96tZa3HrrrbrggguC1/v16yePx6N//vOf+te//iXJtEhfcMEFuueee9SjR49ajzd79mzdeuut+t3vfqcjjjhC/fv317nnnqu5c+fqrLPOkmSCbuDx+sUvfqF3331X5513nv7973832cze33//vQ4++OBa9znkkEP09ttv17rPRx99VG3iuEMOOUR/+9vftGLFiuCSW88884z++Mc/auPGjSotLZVkZnzPzMzU4YcfrhNPPFGHHXZY1FnFDzrooOCPNQCA1o8wDQCIcOyxx+rZZ5/VZ599pgsuuEAzZsxQnz59dP755wf3SUlJidoFWTItptHCdH5+vs4//3wddNBBEftKppW3e/fuwe2B2wdahV0uV9SW4PD9wo8Vbb8OHTrogAMOqHO/8PusT90SiW3bNbbARpvN+4UXXtAtt9yio48+WpK0adMm9e3bN9ii+sEHH0TtmfCrX/0q+PeJJ56offv2ae3atXrxxRd16aWXyuv1Bsu7d+8enBn8pZde0qhRo/TJJ5/o7rvvbvT5Smas/wEHHFDrPg2dzXvjxo268sor9ec//1m2beuVV17Rfvvtp7y8PB1++OHq37+/zj//fJ188sm64447JEkzZ87UP//5T7344ovVjte5c2ft2bNHlZWVre7HGABAdXySAwCiOuaYY7RixQpJ0rJlyxp1rDfeeENffvmlpkyZErE9EHD+85//RGwPXD/22GOD+23YsCG4pm/4fklJSTrmmGOUmpqqnj17VjtWYL8BAwYoJSWlxvv0+/36+uuvI+6zPnVLJFOnTq1xiadoLr/8cv3www+6//77JZmu5eG6desmt9td7RI+Fvjss8/WQQcdpEGDBsm2bZ1zzjk66KCDgpdA6+2kSZP0wgsv6O6775bb7dZJJ53UBGdswnp4eG9K119/vX788Ufl5uaqb9++uuKKK9SjRw9NmjRJJ510kg455BANGzZM7733niSzBNaf//znapPWBWzfvl0HHnggQRoA2gg+zQEAkqRt27ZV27Z3715JpkWtMR588EFlZmbq+OOPj9g+duxYdezYUY8//njE9ieeeEKpqakaM2aMJGn8+PHy+/165plngvvs27dPy5Yt04gRI3TIIYcE93v33Xe1cePG4H5ff/213nvvPZ133nmSTFfm9PR0PfXUU9q3b19wv2eeeUZ79uwJ7lffusWbbduSpN///vd65plnguse10e3bt3UqVOnGsszMjKizij+5ptvBvd5++239f7778vpdKq4uFi2bcu2bc2ZM0dDhgwJtvCPHDlSffr00Z/+9Cddc801TRYoe/XqpS1btjTJsaq66qqr9MQTT2jVqlXy+Xz69ttvdcIJJ0TsM3bsWL333nu68MIL9cc//lEvvPCCTj755Kg/6ng8HvXu3btZ6goAaHl08wYASDLLIl1wwQU6+eST1a1bN3k8Hi1cuFCdOnUKLmXVEFu3btXLL7+sRYsWVSvr1auXrr32Wt17773q2rWrTjnlFL399tt6/PHHdf/99wcnOTv//PP15z//Wbm5ufJ6verbt6/+8pe/yOPxaOnSpcHjzZo1S88++6zGjh2rG2+8UUlJSbrzzjvVp08fTZ8+PbjfH//4R5177rk666yzdNVVV8nj8eiWW27Rr371K40aNSqmusXbN998I0l688039eabb1abVboxCgoKoo79/eUvfxlx/fHHH1dKSopefvllTZ48WZ9++qnmz58fHIstSZWVlerdu7eKi4ubdPbzkSNH6p577tE333wTdeK7xhg3blzw7507d+r111/Xrl27NGHChOD2n3/+WZWVlVq1apU++OADHX300XrzzTd1+umna+fOndp///2D+65cubJJl08DAMQXYRoAIEmaPHmy3nzzTf3tb39TWVmZevbsqeHDh+uZZ55pVJfmhx56SF27dtVFF10Utfzuu+/WAQccoL/85S/Kz89X//79tXjxYv3mN78J7tOxY0e98sor+t3vfqc77rhDfr9fQ4YM0ZtvvqnjjjsuuF+fPn309ttva/r06brmmmuUkpKiMWPG6O6771bXrl2D+51zzjl65plndPvtt+uiiy7SQQcdpKlTp2r27Nkx162h9u7dG2z5D/fzzz9LMt3Oa1p+TDK9BTp27Kji4mJ16dJFK1as0ODBgxtUl0DrdlVOp1NdunSptr1jx44R1xctWqSLL75Yt956q+644w5VVFRoxowZEctV/fa3v9XKlSt17LHH6rLLLlPfvn0bXN9wp556qvbff3+9/PLLuvbaa6PuU15eri+//LLW43g8nojrFRUVeuaZZ/T+++/r3//+t9atWyeXy6Xrr79eEyZM0OrVq3XTTTfpnXfe0ciRI7V69ergbYuLi3X44YdHBOkvv/xSGzZsqPZDBACgFbMBAGgme/futQ855BB7+vTp8a5Kwpk6daotqcGXlStXBo9VVFRk27Yd8zGKiorshx9+2P71r39tp6amBo+3bdu2Om87e/bsiPN555137DPOOMM+4IAD7CFDhtidOnWyp02bZvv9fvvqq6+2k5KS7Mcff9zeuXOnnZmZaXft2tV+8sknm+Sx/N3vfmf37dvX3rdvX7Wy2bNnx/SYbNq0KXjbrKwse8KECfY999xjf/rpp/bu3bvthx9+2M7MzLSTkpLsc845x/7yyy/tyspKe9y4cfbBBx9sP/HEE/bQoUPtq6++OqIel156qZ2VldUk5wsASAy0TAMAms3zzz+v77//PmJ9Yxh33HGHZs6c2eDbh8+KHpgsraioKKZj7N69W/fee6/222+/qLNrv/vuu1Fn8w6f2f0Pf/iDli1bJq/Xq9/85jd66qmn1L17d/39739XSUmJhg8frs8//1xPPPGELrnkEknSihUrdP7552vSpEnq169fjTPD19eMGTP017/+VQsXLtR1111XrTwtLU1bt26t9Rhvv/22TjnllIhtn3zyScT1ffv26bnnntPxxx+vpUuXRswQ/re//U233HKL/vCHP2j//ffXjBkzgmVr1qzRsmXLIrq9AwBavyTbrqFvFwAAjfT8889r+/bthOk27JFHHlGnTp107rnnRh1H/v/+3//T6NGjq42Trqio0AsvvBARzBtj5cqVGj9+vN57770m6T7eVHbt2qWsrCydd955weWzAABtA2EaAAAAAIAYsTQWAAAAAAAxIkwDAAAAABAjwjQAAAAAADFqU7N5V1ZW6ttvv1VqaqqSkpLiXR0AAAAAQAuxbVs7d+5Uz5491aFD87cbt6kw/e2336p3797xrgYAAAAAIE62bNmiXr16Nfv9tKkwHViSY8uWLeratWucawMAAAAAaCmlpaXq3bt31KUam0ObCtOBrt1du3YlTAMAAABAO9RSQ36ZgAwAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAABA/O3bF+8aADEhTAMAAKBh9u6V3n473rVITBMnSsXF0ct27JA++0xasUIqK2vZeiWSDRukXr1C16++Wrr11rhVJ6EUFUmlpdHLRo2SVq8OXS8vl2w7dH3DBrMPmh1hGgCAtmDdOumMMySnUzr0UOnyy6UffojcJz9f6tdP6txZOvVUaePGUNmOHdJvfiN17y65XNLpp5tjRvPTT2a/006L3P7559KIEeb4hx0m/fWvkeUffiiddJLkcEh9+kh/+lP047/wgtSzZ/XtJSXShAlSly6S2y394Q9SZWXNj8kLL0gZGeb+hgyRCgpq3veyy6SkpPpffve76Md56CHpF78w9zlggPTww5HlxcXSmDGh52nGDPNFWJIef7zm+3v3XRNaayqv+lgH/OUv0uGHSykp0tCh1R8Dy6p+LK+35sepqh9/lM45p+bXSjTvvCOdcIJ5nfTuLU2fHhkofT7zfHTrJnXtKl15ZfXAWdtreePG6ud09NG116my0jxXgwZVL5s0qfrxnn++9uMVFkpvvGFex8cfLx17rHTEESY4du4sHXKIeb/+4Q9m36q++Ub61a/M+XfvLp17rtkW7k9/Mu8jh0M68cTIcNW3b/TXyejRpnzUqOjlhx9evS7N8bqMZt8+6aWXzGdEffz8s5SXJ/XoYT4TTjzRvLbC/etf5jl1OKT0dHMu4d5/Xxo2zLw/DjtMWrIksvzGG83rzOk0r6G//a32Ou3aJV13nXlvOxxSZmaorKbH6Ioroh/r+efNayc/33zeud3muNH89rfSzTfXXK++fWu+HHVU9NvU9XlekzlzzHm9915oW13v6VdeMc9P167Sr38t+f2hsrfeMmV79tTv/lua3Yb4fD5bku3z+eJdFQAAWtbJJ9v2nXfa9tq1tr18uW3362fb48aFyp991rZTUmz7ySdt+5NPbHv4cNs+6ijbrqgw5ddfb9tXXGHbH3xg2//+t22fdppt9+hh29H+T50xw7Yl2x49OrTN57PtQw+17UmTTB1uv922O3Qwx7Nt2/7xR9t2ucx9rFlj6uFw2PZjj4WO8cILtj1smG136mTbHTtG3md5uW0PHmzbI0fa9urVtv3Xv9p2ly62PWdO9Mfj3/+27eRk216wwNzfuefa9sEH23ZpafT9d+607e3bzWXsWNu+447Q9e3bbXvRItvOygpd3727+jHWrbPtY44x57F2rW3/8Y+2nZRkHnvbNo/1YYfZ9vjxtl1QYNsvvmjbbrdtz55tyktLbXv9+sjL7Nm23aePbe/da9tlZdXLH3nEtlNTbfuHH6rX529/M49lfr5tf/ihbZ9zjrm/HTtC++y/v20vXRp5zMBroqrDD7fttLTYLoFzD/eLX9j2woXm8Xr6ads+8EDbnjIlVH7WWbZ99NG2/c47tv3yy+Z19ZvfhMrrei1//LF57X31VeicPJ7o52Tb5rk98kjzWB1+ePXy//s/2542LfIx2rWr5uPZtm1PnWrbV19t2z//bN4rH35o259/btt//7upa2Vl7be/4ALb/t3vzOvkrbfMa/+YY0Ln+Nhjtt25s20vWWJe35ddZt5fP/5oyjdvjqxvUZF5/S9aZMq3bq3+WjrmGNueNat6XZr6dWnb5j22aZPZNy3NbFuxwrwW9u2r/bEJuO8+85peudK8Di66yLyeN20y5V99ZT4DbrzRvB8XLDCvi7feMuUej9k/N9fc/uabTfk774Tu4/LLbfvVV23700/Nc5qcbF630ZSX2/aIEeZz4tVXzX5//WuovOpj9NFH5nX82ms1n+Of/mTb8+aZv3futO1DDjF/jxwZ+mx98knbHjDAtn/6KfK+Ro6sz6MYXV2f5zX573/N8y7Z9rvvhrbX9p4uLbXt7t3N59Ann9j20KHmubVt296zx7bT02t/jKpVvWXzIGEaAIC2oGpYWLrUfPkJhL7Bg00gCCgqMl94wr9YhispMeUrVkRu/89/TCA744zIMH3vvbZ90EHmy0/AsGHmy5htmy+OUmSYnTAhMkSNHWu+zN9/f/Uw/c9/mm3ffhvaduedpi7Rwt+ECeYLXMCPP5ovro8+Wn3fqs4+23zxDrdsmTmf2vzwQ/WQdfrptn3hhebv7783j0H4l/G8vMgfPcLt22d+FAkEoGhOPjl6ALJt2x4yJPLx3bXLtg84wDxXtm2eq6r1qY9XXzXPUW2XQKiLpupr7c47zZdr2zavL8m8XgKWLjUhJhDM6notv/qqCWX1lZlpQsusWdHD9AknhL7c10dZmbn/NWtCYTpg3ToTDupS9TF6/31znC+/NNenTDE/EAX4fNUft3B/+Uso/Ebzxhu1h99wjX1d2rapS1FRZJieMMGcQ7TL//1f9WNUfYz27rVtp9O2H3rIXH/22eqvg8GDzXNt27b9+99X/2Hj9NNNPaKpqDCPUeD9U9WiReb9VdtrP9xNN9n2iSfWXB7+WWrb0cP0W2/Zds+etr1hQ2i/Pn1s27LMj5U9e9r2pZfatt9v/j7qqMhLz57R77uuz/OaXHyxbU+cGBmm63pPf/SR+awKeOCB0OfWHXfY9vnn136fVbR0HqSbNwAAbUHv3pHXHY5QF+iffpI+/VQaOzZUPmCA6R4Z6Boa7faSVFER2lZZabrn3XijuW24lStNd9tOnULbTj01dPxjjzX3+eCDpjtnQYHpYjlxYmj/f/5TuvNO02Wzqi++MF0cw+931CjTJTm8i294fcLPt1s30+UyvCtsUzj/fNP1XJIOPFDaf//Icocj9BgedJB0yinSokWmG+OGDdI//iFdcEH0Yz/xhHnML7ssevmbb5rn9frro5d/8YU0eHDo+v77S8cdJ330kbm+Y4f51+2u8zQjPPqotG2b6T4b7XLnndJ334X2X7jQdCffvdtcj/ZaCzxGX3xh/g3vbj1qlOkKX1hYv9fyjh2xndMnn0i//720337Ry2M93l13me6qxx5bvWz//aN3Vy0slA44wAyFkOp+P06caN4/a9aY99P995vHIdp9lpeb52TWrJrP8dZbpdxc8xquS2Nfl9EUF5su3vPnhyL0nj2mu7DPJy1fbq736SPdc4+5TdXHKDnZXAKP0SmnmOtPPWW2vfaatHmz9MtfmvIvvjCvs6Sk0DFGjQq9P6qybXOc7t2jlz/2mOmy3a1b3ef744/SffdJs2dHL//2W9Pl/t13pa+/Nq+/vn0j99mxw3x2LFtWvXv+m2+a7utLl4bq3rmz6bodfgk/96FDTbd5qe7P82heecV0s696TnW9p3v2lNavN6+Bn3+WXn3VDM/ZtMk8RgsW1HyfCYAwDQBAW2Pb0uLF5suU02m+lEhm7F84y5K2bo1+jEceMV++jj8+tG3uXBMCc3Or779xY+3H79TJfKm97TYzPvG448xkQ6ecEto//ItdVd27m+AcPs4uMDnP999H7vvjjyZ0xXK+DXXYYWY8XzSbN5txs6eeGtr2xBPSs8+a5+WII8zjO2lS9Nv/v/8nTZlScwC66y7pkktqDkDdu1cfZ1taGnq8AmPq+/WT0tKks86q/9jnRx81P6xEu1Qdc33ooaGx61Xt3Ss9+WToMQoEFY8nss6SqXd9Xss//GC+nHfuLPXvL11zjbR9e83nUtvrLnC8Sy81dTvxROnFF2vet6TEjGXu2DF6eZcuoR8VwnXtal5HNQW1Rx4x461/8Qtz/ZRTzLwIgweb99O8edIzz0SGn4Dnnzfvh0suiX7s1avNZerUms8rXGNfl9HMn28em8DzK5kfbPbf3zw2kgnGAwZUD9EBzz5rXiuBzxS324yRvuQSU9czzzR1GzDAlNf1/gj3/fdmXLJlhX48C1debn4g7NXLvI8OPNB8xr36avS6Pvywec+dcUb08p49zY8fZ55pfkjIzDQB++qrQ/sceKD08cdmXHN9eDzm3MMv//1vqDw93XyeSXV/nlfl9Zo5N+67r/qPoXW9p9PSzLwJRx5pnu+9e6WrrpKmTZNmzow+f0YiaZH27xZCN28AQLu3d69tX3mlGU/58cdm26pVpq2narfIU04xY5ireuQR06V64cLQtvfeM10c//Mfc/3SSyO7eR92WPXxy088EequvW2b6VJ45ZVmzPOiRWbM87Jl1e//sceqd/P+9luz/zXXmO6OmzaZsYmSOV44j8dsX7Uqcvvll0fWOeCDD2ruXlrbJTA2M5riYts+4gjbPumkUFfJ3bvNuMGzzjJjup9+2oxj/eMfq9/+zTdNt/Tvv49+/A0bzHjstWtrrsP06aYb/AcfmDo8+KDp+j9mjCkvLTWP3bp1ZhzjiSfadrdutr1lS83HtG3TPXX58prLf/lLM2a3LqWlZvy42x16LHfvtu1evcxj5PWaMZhjxpjH++mn6/da3rLFjL0sLDSvpV69TBfV8vLa6zN7dvRu3oHHaOVKMzZZsu1//CP6MbKzbfv440PHCXTz7tgxdKl6PXw8eFWVlbZ9663meXv55dD2J56w7a5dbXvxYlO/Sy+17d69o79eTj7ZvBZqcsklkV3Ga9MUr0vbrt7N+4orzNjfgQND+/ztb6aLfX384x9m/PPvfx/a9vnn5jNr1izTlXj+fPO5GPhcePll81w89ph5f7zzjukW7nCEjvHOO7a9335mvyOOMGPYo/nuO7PP4YebLvUffmjOab/9zGdBuIoK2+7bt35DBx56yHxGBoaK2LYZ4921q3msTjop8vL99+axDYyZXrnSvDb27DHdr6v65S+j329dn+fhKitNN/xAF/BNmyK7edf1ng4oLQ29rv7+d3N+331n27/6lXmNnH22ma+iDoyZbgTCNACgXduyxQSiQw+NnCjmww/NF5fwcXW2bb6oXntt6PrPP9v2VVeZiZgefjjyuIccYr4kBlQN0xkZJmSFe/hh82XWts2kZVXHJ95+e2i8ZLhoYdq2zbjpgw82X9a7dLHtG24w57VxY+R+//2v2f7GG5HbL7oo+pfHffsiJxs77TTb/n//r/YJyLZvr3mirr/9zUwG9ctfRo4Rf/BBExzLykLb/vpXM86z6neX884zk1DV5Pe/r3sM986dZrxhUpK5nHKKObeaxj2WlpowHRhTWtWWLaZO9b3cfXfNdfv8czNp0i9+UT1sfPih+TIvmeB2yy2hMdH1fS2HCwTwmsYTB9QUpqsaPbrmce7Z2SbIVw3T4bp2rTmMhvvxRxNAUlMjg3RlpXmPhz9P5eXmsbzxxshjBMarfvFF9PvYscM8xq+8Und9bLtpXpe2XT1MV1aawNetm21//bXZJyfHtv/wh9qPU1FhJg7r2NE8f+GfL+efX/15uuIKEzoD7rjDnH9Skgm4V15pxhsH7N5tHrtVq0xdHI7I5yJg61bzON92W2jbvn3meQrfZtvmc6xTp/qPrf7LXyLnPli61IxZnzLFPB+jRplJyubNM+/haGH6mmvMWP1ol6qf27Zd9+d5uFmzzHt5505zvWqYtu3a39NV7d5tzuG998xn1Z/+ZB7L6dMjH4catHQeTI5vuzgAAGgSX31lujcec4y0dq108MGhsrQ08++WLZFj67ZsMWN+JTNW7cwzTdfKDz6IXNJl8WLTHXDq1FBX0H37zL8OhxmLmJZmjhduy5ZQt8F168x4zvAutZmZplvsjh316xI6bpwZi7t1qxl//I9/mHGmVccSut2m62u0+mRlVT9ucnLkmNjdu013zfBtqanV94tm4UIzVnTePDP+MPx8160z3XQ7dw5ty8w0Xdc3bAg95j//bMaPP/ZYzffz/POm+3JtunQxXX8fecScU48eZnmf//u/6Punpppu0VW7vgb89JMZp/vcc7Xfr2S6t7/7bvRxs//+txnzfPbZZgx91W6hQ4eacaIlJWaZtqIi6Y47pIEDQ0vm1PZarirwuH7zjVkirbEGDzbjQ6N59FFT79pYlulGe9BBNe+zfbsZV+p0mvHH4ef6/ffmfRA+BrVjR/P+qtpN/7nnTBf7jIzo9/Pyy+Y9HFgyqzZN9boM9+675t+kJNNF/bzzTFfhO++Unn669jXMKyuliy4y+7zyilnOL9y6dWZJsXCZmaY7eMCNN5rx8tu2me7j114bOc+A0xl67E4+2ew3b15o3HVA9+5Shw7m/ROQnGw+/8K7UkvmORk9un5jq/PzzWvhmWfM2Gi323zWL1pkuq9XVkp//KPpDl2bLVvM4zlokHkv9eplxryvWBF9mbe6Ps/DzZ0b+dkYWO969Ghp5Ejz/0Nt7+mqbrvN3Pakk0yX+oULzfF/8xuzbFaCIUwDANAWXHyxWbv32WfNl7pwaWkmcL7+uvmCLpkvZFu3hr5E33yzGZP30UfVg+3UqdUnybrhBvMl8dFHTTgYPtyE7oqK0HjRN98MHT8trfoax599ZsbIuVz1P8+kpNCYyfx8E6Cqjnnt0ME8Fq+/HpokyeczE03NmFH78W3bTIQT7UtjXdauNQH6uefM2stVpaWZdWr37g2Nbf3sM1P/8InVXn3VjMEMn2Qr3Jo1ZmxptPuIpmtXc3nnHfO8/+pX0ff76SdTXtsX1pQUM8771VelnBwTNgIqK834xjfeMOPFP/mk+u39fvOcXXGF9Oc/117vwI9ADz5oglJg7GVdr+WqAhNKhQedxvjoo5qPVdM44nCBH7yGDat5n5wc8754663qY80POMD8IPPFF6EAadvSf/5Tffzs3/9e++vk7383P1LVp95N+brcudME3R07TFAKmDHDBL7vvjPBN1rYCnjwQfMZ89FH0d+vaWmhya8CPvss9LoK6NTJTGzm85l5HfLza77P8AnOwgXWlF692nwWS+Z9vmFD5I88FRXmR8C5c2u+j4CyMjNu2OORbrnFzANQ9QejQYPM+ZeVRb4XA2w79Pn47rvmfVJcbOYBWL48+hrnUt2f5+GKiiKvl5RIp51mfnQZPjyyrKb3dMAXX5g5FD77zFz3+0M/3JaV1e912tJapP27hdDNGwDQLhUXmy5zzz1XfS3TwNqj991nxhQ++6wZSz18uBmvGtCjh1nXturtt22Lfp9Vu3lv3Wq6AF5zjW1/9pkZb9elS2js7CefmKVQrrvOjGUNjPn83e+qH7umbt5/+Yu57UcfmbGrhx5qlvCybXOeJ51kxiLbtumK2bGjGXO4Zo1Z7ubYY+seN7tihalX1WVpaloaa+ZMc7Ft0+28X7/qj+H69ab7qcdjjn3RReY5+PvfzTjyqmMZf/tbs9ZqTRYsMN3dq6qosO0zzzTrXNu2GUv7yiumq+9TT5nn+JZbQvsvX266sxcUmC7xw4ebLrfh61CH++yzUPflv//djGUMV1RkuvIHHq+zzzZ/v/CCqVdFhVm2SjLPU9XHKLCM29Kl5jn+9FPTbbhLl8jlu+p6Ld91lznG2rWmHr17m2XXAsKfs3DRunlv3Wqej/feM4/nVVeZ1/H770d/jGzbdHON1s3b5zNjjh98MDRG+fvvTV03bDBjrTdsMI9DYI30qo+R12tud911ZnzvsmXm+Zs82YzP/fTTUD1+/NHc97/+VXNdu3Uz9akq/DkLaOjrsqpNm0xX35kzzWuq6lCPKVOiL8tX9fV9wglmLHHVxygw5v/FF0337blzzeNy773mMQrMBbFtm3lffPaZbb/+unn8R44MnfMbb5iuzu++a27/xz+az5RHHjHl4c+ZbZvxvykpZl33Tz4xXf4POijy/fTpp7V3uw/39tuma3RA4LVu25HrTJ93XuRzGOjmffzxZpz3ww+bMc2XX266qp98sun+/oc/mK7wgbkGJk0yy9rZdt2f59FeHwHRunnX9Z4OGDkycsm1sWNNHQoLzbCZ2pZb+x/GTDcCYRpAu3TNNfGuAeLtnXdqniQr8OWostKMLXS7zReZX/86csxeUlL021cNTAFVw7Rtmy9/Rx9txgMOHlx9ArBXX7Xt444zXzh79TLBbt++6seuKUyPGWPGF3ftatvnnBM5bvbbb024eOml0LaFC01Y7dzZfJmsa2Ktb7814yajBa2awvR555mLbZsvqzU9D4HxhB9/bL4wdu5svmjn5lZfm3r4cBOOapKdbb7IVuX3m/Geged8+XITVDp1MuNp77svckzpe++ZsY4Oh9nv178O/TgRTdUwnZoaOfayf//QhFHhYfr++029/H7zI0pNj1FgUq+rrjLH3n9/8xr75JPIetT1Wn7gAXM+KSkmTNx4owm1AeHPWbhoYfqHH8w8BF26mDWETz21+oR3VYWH6V27zLktXmzmHbjxRjOm3+k0r98PPjDHLygw4+wLCmz7m29qfoyuv94cd+9eE/TS0szzN2SIbb/2WmQ93njD3KamH8Q2bDDl4fMrBIQ/ZwENfV1GEwhl4etM27Z5nFJTzY8jBx0UOUFh1dd3v37RH6OsrNBtliyx7SOPNO+Bww+PXCN6y5ZQ2aGHmrXLw+c4KC428wy4XKZOQ4fa9jPPhMrDn7OABx4wdezUyTxehYWR5/2Xv5jnvq4f9WzbrL9+ySWh66+9FprzIRCmt241P5YceGBoUr7i4tCY6YD/+7/QDy23324+Y23b/NgWCNNDhkT+uFnb53m010dAtDBd13vats1nw7BhkZ9RX39tPlNSU82PkFU/K6No6TyYZNuBju2tX2lpqVwul3w+n7oGptEHgLburLPMuDcADffOO2YMYnq6GRdadYmhp58269s29TrVrcnnn5suvBs2mK6da9dKF14YKt+3z3Rhzcw0Xbh37JCWLIlbdeNm82bTzXXDBtPl/fTTzbI/d95plmr661/NWryvv272+/FHs7092rDBdNdftUq67jrz/nrhBTM++fHHzTJ86elm6aQEHC/brE491XTrPu888zPBnDlmmMVdd5nXU8+eppv2W29Jf/mL9K9/mc+x3r3N43rllaEx5+PHm2EAKSmmi3dyshlGsHu3mSvjL3+J66k2pZbOg4yZBgAA7VtFhRnrPH68CczR1upFpGiTWu23n1kbd8cOM6730UfjU7dEkpFh5he49Vbzutq2zUzKdv/9ZmKpRx6JnBCrvZo500xgVVQUGkd72WVmPPftt5txvu1JRYV5LE44wYyXfugh81pavtyM7d6500zQ9dxz5r12771mArrAmOSkpMi1zjt2NOujH3ts5P3UNAEZ6o2WaQBo7WiZBhrP768+0RPQHMInhYJRWVl94sT2bt8+04Ic7bUSPokhItAyDQAA0NII0mgpBOnqCNLV1TZzNUE6YRCmAaA18ngkr9f87fOFlrdwu80yRQAAAGhWhGkAaG08HjN2qqwstC0ry/zrdJpxVgRqAACAZkWYBoDWxus1QXrJksgJgIqKpOxsU06YBgAAaFaEaQBorTIyzBI0AAAAaHGM9gcAAAAAIEaEaQAAAAAAYkSYBgAAAAAgRoRpAAAAAABiRJgGAAAAACBGhGkAgJGTE+8aAAAAtBqEaQCAUVIS7xoAAAC0GoRpAAAAAABiRJgGAAAAACBGhGkAaKM8Po8KtxWqcFuhJj47UYXbCuXxeeJdLQAAgDYhOd4VAAA0PY/Po/SF6fKX+4PbXih6QY5kh4pzi2W5rDjWDgAAoPWjZRoA2iBvmTciSAf4y/3ylnnjUCMAAIC2hTANAAAAAECMCNMA2pWc5aylDAAAgMYjTANoV0p2spYyAAAAGo8wDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIwI0wAAAAAAxCg53hUAgObm8XnkLfNKknx+nwq3FUqS3E63LJcVz6rFn8cjec1jI59PKiyU3G7JauePCwAAQB0I0wDajpwcKT8/YpPH51H6wnT5y/3BbVmLsiRJjmSHinOL22+g9nikjAyprCy0LStLcjqloiICNQAAQC0I0wDajpKSapu8Zd6IIB3OX+6Xt8zbJsO02+mWI9lR7dwdyQ65nW5zxes1Qfqmm6Q+fcy2b76R7rjDlBGmAQAAakSYBoCqorRwtzaWy1JxbnGwe3veijwtGLMgsmu7221aoe+4I/LGTqcpAwAAQI0I0wBQVZQW7oRUVFTrdctlBYOzy+FSZo/MyP0ty9wmMGY6L09asIAx0wAAAPVAmAaA1ibQopydXb0s1lZlywoFZ5dLysysfX8AAABIYmksAGiQnOU58bvzQItyQYG5/OpXob+ZOAwAAKBF0DINAA1QsjPOXcHDW5Sffz6+dQEAAGiHCNMAWrdo6yRLjPsFAABAsyJMA2i9alonWQqulex2RV8iSqqyTFQiCf+BIBw/EAAAACQMwjSA1iuwTvKSJSZUBxQVmcm5vF5ZVmbUJaIkRS4TlSii/UAQ8L8fCAjUAAAA8UeYBtD6ZWTUOgt1nUtEJZJ6/EBAmAYAAIg/wjQAJKI6fiAAAABAfMW8NNYzzzyjgQMHyul0yrIszZkzR7ZtR+yzceNGnXbaaVqyZEm17UlJSRGXo48+OmKfVatWKSsrSw6HQ0cddZReffXVBpwWACBmaWnxrgEAAECrEXOY/vLLLzVr1iytXr1aN954o+bMmaOHHnpIkrRhwwZdeeWVGjRokN58881qt92xY4c6dOigr776SuvXr9f69ev1yiuvBMs3bdqkcePG6bTTTtPHH3+skSNHasKECdq8eXPDzxAAUD/5+fGuAQAAQKsRc5iePXu2LrzwQg0cOFCTJ0/WmWeeqddff12S9MYbb2j79u1atWpV1Nvu2LFD3bp10xFHHKH+/furf//+6t27d7D8/vvvV//+/TV//nwdc8wxuu+++3TggQfqsccea+DpAWgVcnLiXQMAAAAgJjGH6aoqKirUvXt3SdLkyZP10ksvadCgQVH33bFjh9zumpehWblypcaMGRO8npycrBEjRmj16tVR99+zZ49KS0sjLgBaoZKSeNcA9ZCznB89AAAAAhocpnfv3q3Fixfrww8/VG5uriQpKSmp1tv88MMPWr9+vTp37qz+/fvrmmuu0fbt24PlGzduVL9+/SJuY1mWtm7dGvV48+bNk8vlCl7CW7kBAE3D4/OocFuhvtj+hQq3FapwW6E8Pk+8qwUAABBXDZrN2+FwaM+ePeratavy8/N17LHH1ut2Z599to4//nh16NBBa9eu1c0336w1a9bo/fffV8eOHbVr1y45nc6I2zidTu3Zsyfq8W644QZNnz49eL20tJRADQBNyOPzKH1huvzlfklS1qIsSZIj2aHi3OLEW6cbAACghTQoTK9Zs0Y+n0+ffPKJpk2bps8//1xz586t83a9evVSr169JEmDBw/W4YcfrhEjRqiwsFBDhgxRSkqK9u7dG3Ebv99fLWAHpKSkKCUlpSGnAAAx8/g88pZ5JUk+v0+F2wrldrrbdKD0lnmDQTqcv9wvb5m3TZ87AABAbRoUpgcMGCBJGjZsmJxOp6666irdfPPN6ty5c0zHyfzfGqrffPONhgwZorS0NG3ZsiViny1btuiwww5rSDUBoP48HslrgrJ8PqmwUHK7JcuExaottJJppaWFFgAAoH1q9ARkycnJsm1bFRUVMd/2o48+kiT1799fkjR8+PDgzOCSmdzs7bff1ujRoxtbTQCJyOMxoTUQXgsLzbZ41CMjQ8rKMpdVq8y/GRnB+tTVQpvo0lJZQxoAAKApxdQyXVpaqtzcXGVnZ6tnz55au3atZsyYoYsuukhdunSp8/Z33323evbsqaOPPlpffPGFZsyYobFjxwZn/542bZqGDh2qOXPm6Nxzz9WDDz6oyspKXXbZZQ05NwCJLBBgy8rM9SwzFldOp1RUFGwRbhFer6nHkiWmTpKpQ3a2KWvJujST/PGsIQ0AANCUYgrTDodD+/bt06RJk+Tz+dSnTx9de+21uv766+t1e6fTqRkzZsjr9cqyLE2aNEk33XRTsHzw4MFatmyZZs6cqblz52ro0KF67bXXlJqaGttZAUh8iRhgMzKk/w0/AQAAAGoTU5ju1KmTli1bVq99bduutm3KlCmaMmVKrbebOHGiJk6cGEu1ALRmBFgAAAC0Qo0eMw0AAAAAQHtDmAaAenA73XIkO6ptdyQ75Ha641AjAAAAxBNhGkCrkLM8J673b7ksFecWq+DqAhVcXaAR1ggVXF3AslgAAADtVIPWmQaAllaysyTeVZDlsoLB2eVwKbMHY70BAADaK1qmAQAAAACIEWEaAAAAAIAYEaYBoBnEe4w3AAAAmhdhGkDzy2l/wTIRxngDAACg+TABGYDmV9LwYOnxeeQt88rn96lwW6Eks0wVM2gDAAAgngjTABKWx+dR+sJ0+cv9kqSsRVmSzNrOxbnFSsQ4TfgHAABoHwjTAJqHxyN5veZvn08qLJTcbsmqf6j0lnmDQTqcv9wvb5k34cJ0neGfQA0AANBmEKYBND2PR8rIkMrKQtuysiSnUyoqiilQtyZ1hn/CNAAAQJtBmAbQ9LxeE6SXLDGhWjIhOjvblIWH6aKi6H/HQyLVBQAAAAmNMA2g+WRkSJmZ0cvcbtNSnZ0dud3pNGUtKZHqAgAAgFaBpbEAxIdlmdbfggJpxAjzb0FBfLqBh9clvD5tuEs6AAAAGoeWaQDxY1nm4nLV3ILd0nWREqM+AAAASGi0TANAnOQsz4l3FQAAANBAhGkAaIC01LRGH6NkZ0kT1AQAAADxQJgG0K40RQiWpPzx+U1yHAAAALROhGkA7QohGAAAAE2BMA0AAAAAQIwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANIP7SmmaGbQAAAKClEKYBxF8+M2wDAACgdUmOdwUAtGFFRdH/BgAAAFo5wjSApud2S06nlJ0dud3pNGUAAABAK0c3bwBNz7JMS3RBgbmMGGH+LSoyZQAAAEArR8s0gOZhWaHg7HJJmZnxrQ8AAADQhGiZBgAAAAAgRoRpAECTyVmek1DHAQAAaC6EaQBAkynZWZJQxwEAAGguhGkAAAAAAGLEBGQAWr+qa1izpjUAAACaGWEaQMJyO91yJDvkL/dHbHckO+R2uiW3oq9nLbGmdXuQkyPl58e7FgAAoJ0iTANIWJbLUnFusbxlXuWtyNOCMQskmZBtuSzJJdMK7fVWv7HbnbBrWnt8HnnLvPL5fSrcVigp7JxQfyWMqwYAAPFDmAaQ0CyXJctlyeVwKbNHlLWqw9ezbgU8Po/SF6YHW9uzFmVJMq3txbnFaj1nAgAA0L4xARmA5peWFu8aJAxvmbdat3VJ8pf75S2L0sIOAACAhESYBtD8mmBca1pqCwZywj8AAADqQJgG0Crkj2/BiaaY1Kp55eTEuwYAAACNRpgGALQsJg4DAABtABOQAQCan8cTmnXd55MKzSzmiTzrOgAAQG0I0wCA5uXxSBkZUllZaFuWmcVcTqdZ3oxADQAAWhnCNACgeXm9JkgvWWJCdUBRkZSdbcoJ0wAAoJUhTANolJzlOS07ORhar4wMKTPKWuH/4/F5gsuD+fw+FW4rlNvpluUiaAMAgMRDmAbQKCU7mUwqFm6nW45kR7W1ph3JDrmdbkntc61pj8+j9IXpEY9L1qIsOZIdKs4tJlADAICEQ5gGgBZkuSwV5xbLW+ZV3oo8LRizQJLCWmD/F6aLiiJvWPV6G+Mt81b7gUGS/OV+ecu8hGkAAJBwCNMA0MIslyXLZcnlcCmzR5Vuz263mZQrO7v6DZ1OUw4AAIC4Y51pAEgklmVaoQsKzGXEiNDfzHodk5zlOfGuAgAAaMNomQaARGNZodDsctU6aRdqxnh+AADQnGiZBoAmEphcrKrQ5GIAAABoK2iZBlCznBwpn2Wv6qvuycUAAADQVhCmAdSshG6ysap1cjEAAAC0GXTzBgAAAAAgRoRpAGgGaalp8a4CAAAAmhFhGgCaQf54xpoDAAC0ZYRpAEhkabRwAwAAJCLCNAAksjjPps5yXwAAANExmzcAxElrGFfNcl8AAADREaYBIE5ay7hqlvsCAACojm7eAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMdMAInk8ktdr/vb5pMJC87fbLVlMOAUAAABIhGkA4TweKSNDKisLbcvKMv86nVJREYEaAAAAEGEaQDiv1wTpJUtMqA4oKpKys005YRoAAAAgTAOIIiNDymQJJAAAAKAmhGkAQKN5fB55y7zy+X0q3GbG2budblmuJu7JEG1MP+P5AQBAHBCmAcQsEJwkBcNTswQntAoen0fpC9PlL/dLkrIWmXH2jmSHinOL1WSviprG9DOeHwAAxAFhGkBMqgYnyYSnYHAiULdZaalpUbd7y7wRr4cAf7lf3jJv04XpaGP6Gc8PAADihDANICZ1BifCdJuVPz6/2Y7tdrrlSHZUe205kh1yO92ROzOmHwAAJADCNAAg7iyXpeLc4uDwgbwVeVowZgHDBwAAQMIiTAMAEoLlsoLB2eVwKbNHDa3PRUXR/wYAAGhBhGkAQOvgdpvJxrKzI7c7naYMAACgBXWIdwUAAKgXyzIt0QUF5jJihPm3ETN55yzPaeJKAgCA9oKWaQBA62FZoeDscjV6IrKSnSVNUCkAANAe0TINAAAAAECMCNMAgIRT05rWAAAAiYIwDQBIOM25pjUAAEBTIEwDAAAAABAjwjSAmLidbjmSHdW2O5IdcjtZnggAAADtA7N5A4iJ5bJUnFssb5lXkjT33bmadfIsuZ1uWa6GLU8ENCWPzyNvmVc+v0+F2wolidcnAABocoRpADGzXFYwmDx//vNxrg0Q4vF5lL4wXf5yvyQpa1GWJNNzoji3mEANAACaDN28AQBthrfMGwzS4fzl/mBvCgAAgKYQc5h+5plnNHDgQDmdTlmWpTlz5si27Yh9Nm7cqNNOO01LliypdvsXXnhBGRkZcjgcGjJkiAoKCiLKV61apaysLDkcDh111FF69dVXY60i0PRycuJdAwAAAAAJJOYw/eWXX2rWrFlavXq1brzxRs2ZM0cPPfSQJGnDhg268sorNWjQIL355pvVbvvBBx/owgsv1OTJk/Xhhx/KsiyNGzdOO3fulCRt2rRJ48aN02mnnaaPP/5YI0eO1IQJE7R58+bGnSXQWCUl8a4BAAAAgAQSc5iePXu2LrzwQg0cOFCTJ0/WmWeeqddff12S9MYbb2j79u1atWpV1NveddddGjdunK677jode+yxWrx4sXw+n55/3oy5vP/++9W/f3/Nnz9fxxxzjO677z4deOCBeuyxxxpxigAAAAAANK1Gj5muqKhQ9+7dJUmTJ0/WSy+9pEGDBkXdd+XKlRo7dmzwerdu3ZSZmanVq1cHy8eMGRMsT05O1ogRI4LlAAAEpaXFuwYAAKAda/Bs3rt379bTTz+tDz/8UPPnz5ckJSUl1bj/jz/+qJ9++kn9+vWL2G5ZlrZu3SrJjLWOVr527dqox9yzZ4/27NkTvF5aWtqgcwEAtEL5+fGuAQAAaMcaFKYdDof27Nmjrl27Kj8/X8cee2ydt9m1a5ckyel0Rmx3Op3yer3BfaKVhwfmcPPmzdNtt93WkFMAAAAAAKDBGtTNe82aNVq9erXmzp2radOmadasWXXeJiUlRZK0d+/eiO1+vz8YoFNSUmotr+qGG26Qz+cLXrZs2dKQ0wEAAAAAICYNapkeMGCAJGnYsGFyOp266qqrdPPNN6tz58413sbtdislJaVa4N2yZYuysrIkSWlpaVHLDzvssKjHTElJCYZ0AAAAAABaSqMnIEtOTpZt26qoqKj9jjp00AknnBCc+VuSfD6fPvnkE40ePVqSNHz48IjyiooKvf3228FyAAAAAAASQUxhurS0VJMmTdJrr72mzz//XEuXLtWMGTN00UUXqUuXLnXefvr06XrmmWf08MMPa+3atbr88suVnp6ucePGSZKmTZumjz76SHPmzNHnn3+ua6+9VpWVlbrssssadHIAAAAAADSHmMK0w+HQvn37NGnSJA0ZMkS33367rr32Wi1evLhet//lL3+pe++9V3PmzNEJJ5ygvXv3avny5erYsaMkafDgwVq2bJmefPJJHXfccfr888/12muvKTU1NfYzAwAAAACgmcQ0ZrpTp05atmxZvfa1bTvq9qlTp2rq1Kk13m7ixImaOHFiLNUCAKDZ5CzPUf54luECAACRGj1mGgCAtqxkZ0m8qwAAABIQYRoAAAAAgBgRpgEA7Y7H51HhtkL5/D4VbitU4bZCeXyehh8wJ6fpKgcAAFqFBq0zDQBAa+XxeZS+MF3+cr8kKWtRliTJkexQcW6xLJcV+0FL6AoOAEB7Q5gGALSMoqLar7cQb5k3GKTD+cv98pZ5GxamAQBAu0OYBgA0L7dbcjql7OzqZU6nKQcAAGhlCNMAgOZlWaYV2us11/PypAULzN9utykHAABoZQjTAIDmZ1mh0OxySZmZ8a0PAABAIzGbN9BeMfsw0KJylvOeAwCgLaFlGmivmH0Y8ZKW1myHdjvdciQ7qk0w5kh2yO1s4rHZHk+o67rPJxUW/q8S0buul+zkPQcAQFtCmAYAtKz8/GY7tOWyVJxbLG+ZV3kr8rRgjBmb7Xa6m3aWbo9HysiQyspC27LMEltyOs0YccaCAwDQphGmAQBtiuWyZLksuRwuZfZoprHZXq8J0kuWmFAdUFRkZi33egnTAAC0cYRpAAAaKiODydQAAGinmIAMAAAAAIAY0TINtDeBSZPqMWESAAAAgOgI00B7UnXSpKoTJgEN0KIzaAMAACQIwjTQnkSbNCl8wiSgAVpsBm0AAIAEQpgG2iMmTUITC8ygfeRBRzbfDNoAAAAJhDANoLqqXb7pAo56yh/ffGtIAwAAJBLCNIAQt9uMn87Orl7mdJpyoJVryTHeHp9H3jIzhMLn96lwWyHd3wEAaCMI0wBCLMu0QgfGT+flSQvM+Fdm/EZbET7GO1x4yI0WgqvuUxePz6P0hekRoT1rUZYcyQ4V5xYTqAEAaOUI021EzvIculeiaVhWKDS7XIytRpsUGOMdTU0hWFIoCNfjPrxl3mqt35LkL/fLW+YlTAMA0Mp1iHcF0DRKdpbEuwoAkFDSUtMadLuaQrAUCsIAAACEaQBAm0RvHQAA0JwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIwI0wAAAAAAxIgwDaBmaWnxrgEAAACQkAjTQFPJyYl3DZpefn68awAAAAAkJMI00FRKSuJdAwAAAAAthDDdjuQsb4MtpwAAAAAQB4Tp1qCJug+X7KTlNN74QQNIfG6nW45kR9QyR7JDbqe7hWsEAAASUXK8K4BaeDyS1yt98YVUWGi2ud2SZcW3XmgwftAAEp/lslScWyxvmVeSlLciTwvGLJBkgrblsiR541hDAACQCAjTicrjkTIypLIycz0ry/zrdEpFRZJlyePzBL/s+fw+FW4zgTv0ZS92OctzlD+eSacAtG+Wywp+jrocLmX2yGyR++UzGACA1oMwnai8XhOklywxoVoyITo7W/J65XFJ6QvT5S/3B2+StcgEbkeyQ8W5xQ0K1LScAkD88BkMAEDrQZhOdBkZUmb1FhFvmTciSIfzl/vlLfM2uHUaAAAAAFA7JiADAAAAACBGtEy3cdHGVTdmTDUAAAAAgDDdagWWbonW1TuwdIvH54k6rroxY6oBAAAAAITpVqs+S7cUbiuMGrYZUx2DwPJkPh/LkwEAAAAIIky3YvFauqXdqMfyZAAAAADaJyYgA2oSvjxZQYG5LFlitnm98a4dAAAAgDiiZRqoSw3LkwEAAABov2iZBgAAAAAgRrRMo/0KTC4WjsnFAMSiqKj26wAAoM0iTKN9qjq5WACTiwGoD7fbfF5kZ1cvczpNuZhbAQCAtowwjfYpfHKxjAyzrajIfDH2egnTAGpnWeYzI9C7JS9PWmCWJwz2cNlGmAYAoC0jTKN9Y3IxAA1lWaEf3lwuPksAAGhnCNMAAMSRx+eRt8y0Yvv8PhVuK5Tb6ZbloocMAACJjDDdhrmdbjmSHfKX+yO2O5IdcjvdcaoVACDA4/MofWF6xOd01qIsOZIdKs4tJlADAJDACNNtmOWyVJxbHGzxyFuRpwVjFtDiAQAJwlvmrfaDpyT5y/3ylnn5rAYAIIERpts4y2UFv4y5HC5l9mBMHwAAAAA0Vod4VwAAAAAAgNaGMA0AAAAAQIwI02jdcnLiXQMAAAAA7RBhGq1bSUm8awAAAACgHWICMqAxPB7Ja2ZLl88nFRaav91uyWIWXgAAAKCtapdhOmd5jvLH58e7GmjtPB4pI0MqKwtty8oy/zqdUlERgRpox9xOtxzJjmpLXzmSHXI73XGqFQAAaCrtMkyX7KRrMJqA12uC9JIlJlQHFBVJ2dmmnDANtFuWy1JxbrG8Zab3ytx352rWybPkdrobvH40PwYDAJA42mWYBppURoaUyfrdAKqzXFYwOD9//vONPh4/BgMAkDiYgKyNSEtNi3cVAKD9SuMzGACA9oYw3UbQ7Q8A4iifz2AAANobwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwBQCyZ4BAAA0bA0FlCXoqLof9e0Ldo+AFotJngEAADREKaBmrjdktMpZWdHbnc6TVng76rlVfeJh5wcZhcGAAAAmhFhGqiJZZlWZq9XysuTFiww291uUyaFyqUa9/H4PPKWmX18fp8KtxWaXZxuWS6reepeUtI8xwUAAAAgiTAN1M6yzMXlkjIzay6Xou7j8XmUvjBd/nJ/cFvWoixJkiPZoeLc4uYL1AAAAACaDROQAc3IW+aNCNLh/OX+YIs1AAAAgNaFlmm0Ph5PqGu1zycVFkZ2vQYAAACAZkaYbkdqWt4l2pjeZh3P2xgej5SRIZWVhbZlZZkJv4qKmi9Qp7E0DgAAAIAQwnQ7Em15l5rG9CbseF6v1wTpJUtMqJZMiM7ONmXNFaaZGRsAAABAGMJ0O1fTmN7AeN6EC9MBGRnRJwQDAAAAgBbABGQAAAAAAMSIlmmgPSoqiv43AAAAgHohTANNpTVMUuZ2m8nasrMjtzudpgwAAABAvRCmgabSGiYpsyzTEu2tsr41S4sBCS2w6kJgxQVJibvqAgAA7QRhGmhvLIvgDLQiVVddyFqUJUmJu+oCAADtBGEaaEs8HtPq7PNJhab1ilZnoHVrtasuAADQxhGmgbbC4zFLhpWVmetZpvVKTqfp2k2gBgAAAJpMzEtjPfPMMxo4cKCcTqcsy9KcOXNk23awPD8/X/369VPnzp116qmnauPGjcGyjRs3KikpKeJy9NFHRxx/1apVysrKksPh0FFHHaVXX321EacHSDnLc+JdhZbh9ZogvWSJVFBgLkuWmG1Vx0gDAAAAaJSYw/SXX36pWbNmafXq1brxxhs1Z84cPfTQQ5Kk5557Tnl5eZozZ47ee+897du3T2eddZYqKyslSTt27FCHDh301Vdfaf369Vq/fr1eeeWV4LE3bdqkcePG6bTTTtPHH3+skSNHasKECdq8eXPTnC3apZKdJfGuQsvKyJAyM80lIyPetQEAAADapJjD9OzZs3XhhRdq4MCBmjx5ss4880y9/vrrkqR58+Zp8uTJuuSSS5SVlaVHHnlE//nPf/TOO+9IMmG6W7duOuKII9S/f3/1799fvXv3Dh77/vvvV//+/TV//nwdc8wxuu+++3TggQfqsccea6LTRaPltJNWXgBIEG6nW45kR7XtjmSH3E6WtAMAIF5iDtNVVVRUqHv37vrpp5/06aefauzYscGyAQMGqEePHlq9erUkE6bdtaxlu3LlSo0ZMyZ4PTk5WSNGjAjeHgmgpJ218gJAnFkuS8W5xSq4ukAjrBEquLpABVcXMJM3AABx1uAwvXv3bi1evFgffvihcnNztWnTJklSv379IvazLEtbt26VJP3www9av369OnfurP79++uaa67R9u3bg/tu3Lix1ttXtWfPHpWWlkZc0ErQwg0A9Wa5LGX2yJTL4VJmj0xl9sgkSAMAEGcNms3b4XBoz5496tq1q/Lz83Xsscfq3XfflSQ5nc6IfZ1Op/bs2SNJOvvss3X88cerQ4cOWrt2rW6++WatWbNG77//vjp27Khdu3bVevuq5s2bp9tuu60hp4B4o4UbAAAAQCvWoDC9Zs0a+Xw+ffLJJ5o2bZo+//xznXPOOZKkvXv3Ruzr9/uDAblXr17q1auXJGnw4ME6/PDDNWLECBUWFmrIkCFKSUmp9fZV3XDDDZo+fXrwemlpacQY7DahqCj63wksZ3mO8sfnx7saAAAAANBsGhSmBwwYIEkaNmyYnE6nrrrqKk2dOlWStGXLFh1++OHBfbds2aLzzz8/6nEyMzMlSd98842GDBmitLQ0bdmyJWKfLVu26LDDDot6+5SUFKWkpDTkFBKf223WB87OjtzudJqylubxmOWVfD6psDBUxyhrF7e72bMBoIECk4v5y/0R25lcDACAxNegMB1xgORk2bYtl8ulvn376vXXX9eoUaMkSV999ZW2bt2q0aNHR73tRx99JEnq37+/JGn48OF6/fXXdeutt0oyk5u9/fbbmjFjRmOr2fpYlmmJrro+cA0Btll5PGaJpbIycz0ry/zrdJo6tnR9AKCNCEwu5i0zn/V5K/K0YMwCuZ1uxkQDAJDgYgrTpaWlys3NVXZ2tnr27Km1a9dqxowZuuiii9SlSxdNnz5dN9xwgwYNGqR+/fopLy9P48eP1zHHHCNJuvvuu9WzZ08dffTR+uKLLzRjxgyNHTtWgwYNkiRNmzZNQ4cO1Zw5c3TuuefqwQcfVGVlpS677LKmPu/WwbISI6h6vSZIL1kSWre4qMi0mnu9iVFHAGilLJcVDM6BCcYAAEDiiylMOxwO7du3T5MmTZLP51OfPn107bXX6vrrr5ck5ebmavv27ZoyZYr8fr/OPvtsLVy4MHh7p9OpGTNmyOv1yrIsTZo0STfddFOwfPDgwVq2bJlmzpypuXPnaujQoXrttdeUmpraRKeLRsnIkDL5kgcAAAAAMYXpTp06admyZTWWJyUlac6cOZozZ07U8ilTpmjKlCm13sfEiRM1ceLEWKqFRmC8HgAAAADErtFjptG6NeV4PY/PI2+ZVz6/T4XbzCRljPsDAAAA0BYRptEk4/U8Po/SF6YHW7izFplJyhzJDhXnFhOom1pOjpTP8mMAAABAvBCmESEtNa3mwlrWvPaWeat1FZckf7lf3jIvYbopBJYnk6QvvjBLlMVjdncAAAAAhGlEyh8fpbUz0da8bkVqGpMu1TwuPWd5TvXnoeryZJJZoozlyQAAAIC4IEyjbuFrXuflSQsWmO20itappjHpUs3jyUt2llQ/EMuTAQAAAAmFMI36Cax57XK12PJYUVto6ykwGZqk4IRo8ZoMrUnXkGV5MgAAACAhEKaRsKK20NZD1cnQJDMhGpOhAWgPGvNDJAAAqD/CNNqcRJ4MrdYJ3gCgEQI9cr7Y/gXLEwIA0AII00ALorUIQHOIeXlCltcDAKDRCNPxEr7MUQATegEAGiDmHjklDRtGAwAAQtpNmI42IZUUpy5w0ZY5kljmCAAAAABaiXYRpmuakEqqpQtcc2KZIwBAFMyrAABA69Eh3hVoCTV1f5NCXeDiIrDMUWZmKFQDANqtRJpXIWd5TryrAABAQmsXYRoAAMSmocsTAgDQXrSLbt5Aoos2pp8lbQAAAIDERZgG4qymMf0NHs9fVBT9bwCoQ0JN1gkAQIIjTANxFvOSNjVxu82M8NnZkdudTlMGoH0LX5LR55MKTVAOLMuYcJN1AgCQ4AjTQFthWaYl2uuV8vKkBQvMdtYvBxBtScYsE5QDyzJ696t7ss5qYTonR8pPnEnTAABoSYRpoC2xLHNxucws8QAgRV+SUYpclrFHA45bwiRlAID2izBdE35tBwC0NYElGQEAQKMRpmvCr+1xweQ3AAAAAFoDwjQSRr0mv4lX5QAAAAAgTId4VwAIqGlWayk0+Q0AAAAAJAJaptFy6liWBU0oLS3eNQAAAADaNMI0WkY9lmXRfvGpWpvE5HkAAABAs6Kbd3PLyYl3DRJD+LIsBQWhy5IlZruXLtwAAAAAWg9apptbW5sVvLHdh1mWBQBat2hDdhiuAwBohwjTiA3dhwGg/appyE5guA6BGgDQjhCmwzFBFgAANQsfspORYbYVFUnZ2aasIf9X5uTwQy0AoFUiTAfUZ4IsAjUAAE07ZKetDYcCALQbhOmAaL+2S43/xR0AgCaSlsqydwAAJArCdFUx/NqeszxH+ePpmgYAaBlt6v+cwNAqhlUBAFopwnQjlOykaxpaWFFR9L8BoDWpOrSqjmFV/HgNAEhEhGmgNXC7zZfM7OzI7U6nKQOA1qSeE5l5fB55y7z6YvsXKtxmWq/dTrcsF63XAID4I0wDrYFlmS+agdnm8/KkBQvoEgmgybidbjmSHfKX+6uVOZIdcjvdkrxNe6e1DK3y+DxKX5gerE/WoqxgXYpziwnUAIC4I0wDrYVlhYKzy9V0M+kCgCTLZak4t1jeMhOY81bkacGYBZLCW4ObOEzXwlvmjRrs/eV+ecu81cI0XcEBAC2NMA0AQCtXU6tyrC3KlssKhlSXw6XMHq3nRzvmMQEAtDTCdFVVJ3Wqcj0wfkuSfH6fCrcVMn5LTfdFDgAQu/BW5Xi3KAMA0F4QpgNqmuBJCk7yVHX8lmTGcDF+iy9yABBvgVbl1taiDABAa9Uh3hVoCYFW02iCLaeBCZ4KCsxlxIjQ3/9bpqOu8VvtneWylNkjM/hFLrNHZrv+gQEAYMYyAwDQFrWLlumqk6qEi+iizQRPAIC2rI6hTM2BscwAgLaqXYRpKXJSFQAA2pV6DGUCAACxaTdhGgCAdqumteol1qsHAKCBCNMAALQHDGUCAKBJtYsJyAAAAAAAaEqEaQAAAAAAYkSYBgAA1aSlpsW7CgAAJDTCNAAAqCZ/fH68qwAAQEIjTANx5na65Uh2VNvuSHbI7WS5GgAAACARMZs3EGeWy1JxbrG8ZWbJmrwVeVowZoHcTjdrowNoHmmN7MJdVBT9bwAA2hHCNJAALJcVDM4uh0uZPViyBkAzym9gF263W3I6pezsyO1OpykDAKAdoZs3AACoH8syLdEFBeYyYoT5t6gotIY1AADtBC3TAACg/iwrFJxdLimTnjQAgPaJlmkkjJom4pKYjKuaxo53BAAAANAotEwjYdQ0EZeksMm4vHGsYQJp6HhHAAAAAE2CMI2EwkRcAND6eXye4A+jPr9PhdsKY16hINBbyV/uj9hOTyUAQKIgTAMAgCbj8XmUvjA9IgRnLcqSI9mh4tziegfq8N5K0XsqAQAQX4RpAADQZLxl3mqtyZLkL/fLW+aNKQgHeivRUwkAkIiYgAxIMGmpTC4GAAAAJDpapoEEkz+eycUAoD6ijc2W6AoOAGgZhGkAANBkYpo4rKgo+t/1UNPY7MB9xTI+GwCAhiBMAwCAJlPTMocRrcVut+R0StnZkTd2Ok1ZFdGGv9Q0Nltq2PhsAABiRZhGwmLsMAC0TnUuc2hZpiXa65Xy8qQFZqZuud2mrAqGvwAAEhFhGi2raje+Wrr11frlqRFdAwEACcCyzMXlkjKZqRsA0PoQptHkorYo19SlT6qxW19UMXYNBID2hl49AAC0DMI0mlzUFuXwLn1Svbr1RVXTcWI5BgC0YXSJBgCgZRCm0XICXfqkxnXra6rjAADiL42WdABA69Qh3hUAAABtV53dzvNbriU9Z3lOi90XAKDtI0wDAICGqUerciJ1Oy/ZWRLvKgAA2hC6eTcHjyc0ptfnkwoLGdMLAGh7WrBVGQCAREOYbmoej5SRIZWVhbZlZZnZpouKCNQAAAAA0AbQzbupeb0mSC9ZIhUUmMuSJWZboLUaTDgDAAAAoFWjZbq5ZGQwy3Rt6BoIAAAAoBUjTMdTUVH0vwEAAAAACY0wHQ9utxlDnZ0dud3pNGVoOfygAQAAAKABCNPxYFkmuHm90ty50qxZZjszfrccftAAAAAA0AiE6XixLHN5/vl416R9Cv9BIy9PWrDAbOcHDQAAAAD1QJhGm+N2uuVIdshf7o/Y7kh2yO0Ma3UO/KDhcjFZHAAAAICYEKZrwtJNrZblslScWyxvmVmKLG9FnhaMWSC30y3LRaszAAAAgMYjTNeEpZtaNctlBYOzy+FSZg9angEAAAA0nQ7xrgDQ3NJS6WUAAG1NYEhPNNWG9QAA0AxomUablz+eXgYA0NbUNKRHEsN6qsrJoccdADQDwjQAAGiVGNJTTyUl8a4BALRJdPMGAAAAACBGhGkAAAAAAGJEmAYAAAAAIEYxh+lnnnlGAwcOlNPplGVZmjNnjmzbDpbn5+erX79+6ty5s0499VRt3Lgx4vYvvPCCMjIy5HA4NGTIEBUUFESUr1q1SllZWXI4HDrqqKP06quvNvDUAAAAAABoHjGH6S+//FKzZs3S6tWrdeONN2rOnDl66KGHJEnPPfec8vLyNGfOHL333nvat2+fzjrrLFVWVkqSPvjgA1144YWaPHmyPvzwQ1mWpXHjxmnnzp2SpE2bNmncuHE67bTT9PHHH2vkyJGaMGGCNm/e3HRnDFSVxtJZANDasQwiAKClxRymZ8+erQsvvFADBw7U5MmTdeaZZ+r111+XJM2bN0+TJ0/WJZdcoqysLD3yyCP6z3/+o3feeUeSdNddd2ncuHG67rrrdOyxx2rx4sXy+Xx6/vnnJUn333+/+vfvr/nz5+uYY47RfffdpwMPPFCPPfZYE54yUAXLhQBAq8cyiACAltboMdMVFRXq3r27fvrpJ3366acaO3ZssGzAgAHq0aOHVq9eLUlauXJlRHm3bt2UmZkZUT5mzJhgeXJyskaMGBEsBwAAAAAgETR4nendu3fr6aef1ocffqj58+dr06ZNkqR+/fpF7GdZlrZu3aoff/xRP/30U43lkrRx48ao5WvXro1ahz179mjPnj3B66WlpQ09HQAAAAAA6q1BLdMOh0NdunTR9OnT9cADD+jYY4/Vrl27JElOpzNiX6fTqT179tRZLkm7du2qtbyqefPmyeVyBS+9e/duyOkAAAAAABCTBrVMr1mzRj6fT5988ommTZumzz//XOecc44kae/evRH7+v1+OZ1OpaSk1FouSSkpKbWWV3XDDTdo+vTpweulpaUEagAAAABAs2tQmB4wYIAkadiwYXI6nbrqqqs0depUSdKWLVt0+OGHB/fdsmWLzj//fLndbqWkpGjLli0Rx9qyZYuysrIkSWlpaVHLDzvssKj1SElJCYZ0AACAqrbt3KZtu7ZJknx+nwq3FapHlx7qkdojzjVLHDnLc5jADQAaoNETkCUnJ8u2bblcLvXt2zc4s7ckffXVV9q6datGjx6tDh066IQTTogoD7Rujx49WpI0fPjwiPKKigq9/fbbwXIAAIBYPFzwsLIWZSlrUZZWeVYpa1GWHi54ON7VSiglO0viXQUAaJViapkuLS1Vbm6usrOz1bNnT61du1YzZszQRRddFBxDfcMNN2jQoEHq16+f8vLyNH78eB1zzDGSpOnTp2vChAkaMWKEjj/+eN12221KT0/XuHHjJEnTpk3T0KFDNWfOHJ177rl68MEHVVlZqcsuu6zJTxwAALR9k7Mm66z0syRJeSvytGDMAvXo0g5apT0eyes1f/t8UmGh5HZLlhXfegFAGxJTmHY4HNq3b58mTZokn8+nPn366Nprr9X1118vScrNzdX27ds1ZcoU+f1+nX322Vq4cGHw9r/85S917733as6cOfrxxx916qmnavny5erYsaMkafDgwVq2bJlmzpypuXPnaujQoXrttdeUmprahKcMAADaix6poS7dLodLmT0y41yjFuDxSBkZUllZaFtWluR0SkVFBGoAaCIxhelOnTpp2bJlNZYnJSVpzpw5mjNnTo37TJ06NTi+OpqJEydq4sSJsVQLAAAAAV6vCdJLlphQLZkQnZ1tygjTANAkGrzONAAAAOIsJ0fKr2HysIwMKbPmlniPzyNvmTc4MZskuZ1uWS7CNgDUB2EarVtaWrxrAABA/JQ0bPIwj8+j9IXp8pf7JUlZi8zKKo5kh4pzi6sFamb8BoDqCNNo3Wr6NR4AgLaqCSYX85Z5g0E6nL/cL2+Zt1qYZsZvAKiOMA0AANBaMLkYACSMRq8zDQAAgBYSPrlYQYG5LFlitgVaqwEALYKWaQAAgNamjsnFAADNjzAdA7fTLUeyo9oYI0eyQ26nO061AgAAiKKoKPrfAIAmQZiOgeWyVJxbLG9ZZDcqlpEAAAAJw+02Y6izsyO3O52mDADQJAjTMbJcFsEZAAAkLssyLdGBMdR5edKCBTHP+A0AqB1hGgAAoK2xrFBwdrkYXw0AzYDZvAEAAAAAiBFhGgAA4H9ylufEuwoAgFaCMA0AAPA/JTtL4l0FAEArQZgGAABoy9LS4l0DAGiTmICsubC2IwAASAT5+fGuAQC0SYTppsbajgAAAADQ5tHNu6kF1nYsKDCXESPMv0VFrO0IAAAAAG0ELdPNgbUdAQAAAKBNo2UaAAAAAIAYEaYBAAAAAIgRYRoAALQLaaksEYVWLCcn3jUAUAVhGgAAtAv541vZElEJEJ48Po8KtxXK5/epcFuhCrcVyuPzxLta7VNJSbxrAKAKJiADAABIRHEOTx6fR+kL0+Uv90uSshZlSZIcyQ4V5xbLcrFKCYD2jZZpAAAAVOMt8waDdDh/uV/eMm8cagQAiYUw3dzSGJ8FAAAAAG0N3bybW34rG58FAEA74/F5gi2tgbHBbqebbswAgFoRpgEAQLtVdVywZMYGMy4YCcPjkbxeyeeTCgvNNrdbsnhtAvFGmAYAAO1WXeOC22qYdjvdciQ7qp27I9kht9Mdp1qhGo9HysiQysrM9SwzCZycTqmoiEANxBlhGgAAoJ2xXJaKc4vlLfMqb0WeFoxZIEl0b080Xq8J0kuWmFAtmRCdnW3KCNNAXBGmAQAA2iHLZclyWXI5XMrskRnv6qA2GRlSJs8RkGiYzRsAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEROQAQAAAK2Ux+eRt8wrSZr77lzNOnmWJGZmB1oCYRoAAKAdS0tNi3cVkJMj5efHfDOPz6P0hekR64W/UPSCJLNmeHFuMYEaaEaEaQAAgHYsf3zsIQ5NxOMx60V/8YVUWGi2ud31Xj/aW+aNCNLh/OV+ecu8hGmgGTFmGgAAAO1PTk7L7RONx2PWj87KklatMv9mZZltHk/DjgmgRRGmAQAAmlJDwxVaVklJw/fxeExLcmFhqFU51gDs9UplZdKSJVJBgbksWWK2eb2xHQtAXNDNGwAAoCnVJ6Sh9Qq0KJeVhbZlZUlOp1RUVO8u2kEZGVJmZtPWEUCLoGUaAAAAqC9alAH8Dy3TAAAAQKxoUQbaPcI0AAAAEBCYYVuSfL4GzbINoH0gTAMAAABSzeOhpdCYaAD4H8I0AAAAIEWOh87ICG0vKpKysxkTDSACYRoAAKApBLoH0zW49WM8NIB6IEwDAAA0VtXuwVW7BhOo27Wc5TnKH58f72oAaGIsjQUAANBYLJeEWpTsZO1xoC2iZRoAAKCe6mxhpHtw4qM7PoAmQpgGAACoJ1oYW4mcHCk/yo8edXXHb0Ien0feMtMrwef3qXBbodxOtywXoR1oKwjTAAAAaBsCrc5ffBG91TnabN3NMFO3x+dR+sJ0+cv9wW1Zi7LkSHaoOLeYQA20EYRpAAAAtH6xTALXzN3xvWXeiCAd4C/3y1vmJUwDbQQTkAEAAKD1YxI4AC2MlmkAAAC0HUwCB6CF0DINAAAAAECMaJkGAABIFIEJtCSWbgKABEeYBgAASARVJ9CSmnXpJgBA4xCmAQAAEkG0ZZukZlm6CQDQeIRpAACARMIEWgDQKhCmAQAA0L6Ed5mn+zyABiJMAwAAtDaEwYZxu8348+zsyO1OpymjKz2AGBCmAQAAWou6wiBqZ1nmxwevV8rLkxYsMNsDs6UTpgHEgDANAADQWoSHQSkUCFk6q/4sy1xcrprHpldt7Y/W+k/vAKDdI0wDAAC0JoEwKNUeCFurnBwpPz8+911Ty78U2frf0r0DagjubqdbjmSH/OX+ajdxJDvkdtJbAWhOhGkAAIA6eHweecu88vl9KtxWKMkEGctFa3CTKylpmftJS6u+raaWfymy9b+legfU0a3fclkqzi2Wt8zUJW9FnhaMMfXl9Qk0P8I0AABot2pq2Qtv1fP4PEpfmB7cJ2tRVnCf4tziegeWQCCXpLnvztWsk2cF60DoiYOaWr/r0/Jfxz71eV3VS11jvCVZLiv4+nE5XMrs0cZ6KgAJjDANAADarZpa9sIDrrfMG7Ubrb/cL2+Zt15BuGogl6QXil6QFBbKm+KEkBDq87qq/8HqMcYbQFwQpgEAQLvWEi17NQVyKSyUN+TA0boqIyHQYgy0fR3iXQEAAAA0ULwm6gIA0DINAAAAtGXh4/XDMV4faBzCNAAAANBGRRuvHxDrJHoAIhGmAQAA/ictlTHIceHxhJaa8vmkwsLmWWqqOST4uPV6jdcnTAMNQpgGAAD4n/zxjEFucR6PlJEhlZWFtmVlmbWUi4oSP1Azbh1ot5iADAAAAPHj9ZogvWSJVFBgLkuWmG3e6uN8JSlneU7L1C3BW50BxBct0wAAAIi/jIx6r6NcsrOkmSvzP7Q6A6gFYRoAAABtR1FR9L/jiLH4QNtEmAYAAEA1bqdbjmRHtcmrHMkOuZ3uavvnLM+J75hzt9uMs87OjtzudJqyOGIsPtA2EaYBAABQjeWyVJxbLG+ZV3kr8rRgzAJJNa9N3GJdr2tiWaYl2uuV8vKkBaa+rWZWcACtDmEaAAAAUVkuS5bLksvhUmaP+o1njivLMheXq97jrwGgoZjNGwAAAACAGBGmAQAAUCsm0EoALNMFJBy6eQMAAKBWNU2g5fF55C0za0H7/D4VbiuUVPO4ajQCy3QBCYcwDQAAgJh5fB6lL0yPmO07a1GWJDPjd3FuMYEaQJtGN28AAADEzFvmrbZsVoC/3B9ssQaAtoowDQAAAABAjAjTAAAAAADEKOYwvW7dOp1xxhlyOp069NBDdfnll+uHH36QJO3du1fTp0/XwQcfrP3331+/+tWvtH379uBtN27cqKSkpIjL0UcfHXH8VatWKSsrSw6HQ0cddZReffXVRp4iAAAAAABNK+YwnZubq1GjRmn16tVavHix3nnnHU2aNEmS9Pvf/17PPfecHn/8cS1fvlz/+c9/dNFFFwVvu2PHDnXo0EFfffWV1q9fr/Xr1+uVV14Jlm/atEnjxo3Taaedpo8//lgjR47UhAkTtHnz5safKQAAAJBoioqkwkJzKSqKd20AxCDm2byXLl2q3r17S5IGDhwon8+nSy65RKWlpXrggQe0bNkyjRs3TpL06KOP6qSTTtK6des0cOBA7dixQ926ddMRRxwR9dj333+/+vfvr/nz50uS7rvvPr388st67LHHdNtttzX0HAEAAIDE4nZLTqeUnR253ek0ZQASXswt04EgHeBwOFRZWak1a9aooqJCgwcPDpadcMIJSklJ0UcffSTJtEy7a/lwWLlypcaMGRO8npycrBEjRmj16tVR99+zZ49KS0sjLgAAAEDCsyzTEl1QII0YYf4tKDDbLJYUA1qDRk1AZtu2Fi9erGHDhgVD9jfffBMsLysrU3l5ub7//ntJ0g8//KD169erc+fO6t+/v6655ppqY6r79esXcR+WZWnr1q1R73/evHlyuVzBS9WgDwAA0Fhup1uOZEe17Y5kh9zO9tuCWNPjIvHY1JtlSZmZkstl/s3MJEgDrUjM3bwD9u3bpylTpmjlypVatWqV+vbtq+OOO0433XSTfvGLX8jlcunaa6+Vbdvq2LGjJOnss8/W8ccfrw4dOmjt2rW6+eabtWbNGr3//vvq2LGjdu3aJafTGXE/TqdTe/bsiVqHG264QdOnTw9eLy0tJVADAIAmZbksFecWy1vmVd6KPC0Ys0CSCZOWq/0Gn/DHRVKzPzYenyd4Xz6/T4XbCtv9cwAgvhoUprdu3aoLLrhAGzdu1FtvvaXjjjtOkvTUU0/pggsukGVZSk5O1rRp09S1a1cdfPDBkqRevXqpV69ekqTBgwfr8MMP14gRI1RYWKghQ4YoJSVFe/fujbgvv99fLWAHpKSkKCUlpSGnAAAAUG+Wy5LlsuRyuJTZIzPe1UkYgcdFUrM+Nh6fR+kL0+Uv9we3ZS3KkiPZoeLcYgI1gLiIuZv3V199pWHDhik1NVVr167V8ccfHyw74ogjVFhYqO+++07bt2/XzJkz9dNPP0WMow6XmWk+cANdw9PS0rRly5aIfbZs2aLDDjss1moCAACgjfCWeSOCdIC/3B9srQaAlhZzmL744ot1wgkn6F//+lewxbmqQw45RN26ddODDz6oAQMGaNCgQVH3C0xM1r9/f0nS8OHD9frrrwfLKyoq9Pbbb2v06NGxVhMAAAAAJEk5y3PiXQW0QTF18/7qq69UUFCgmTNnauPGjRFlBx10kFauXKmDDz5YXbt21T//+U/Nnz9fL730UnCfu+++Wz179tTRRx+tL774QjNmzNDYsWODYXvatGkaOnSo5syZo3PPPVcPPvigKisrddlllzX6RAEAABBfOctzlD8+v/nvKC2t+e8DrUrJzpJ4VwFtUExh+rvvvpMknXfeedXK7r//fu3YsUP33HOPfv75Zw0aNEgvvfSSTj/99OA+TqdTM2bMkNfrlWVZmjRpkm666aZg+eDBg7Vs2TLNnDlTc+fO1dChQ/Xaa68pNTW1oecHAACABNFigSa/BQI7gHYvpjA9YsQI2bZd6z633HJLjWVTpkzRlClTar39xIkTNXHixFiqBQAAALR7aam0yAMtqVHrTAMAAKBurMmMltAiXegBBDV4nWkAAADUT/3WZGZWagBoTQjTAAAALSB8TeYjDzqS9aoBoJWjmzcAAEALozsuALR+tEwDAAA0laKi6H8DANocwjQAAEBjud2S0yllZ0dudzpNGQCgzaGbNwAAQGNZlmmJLiiQRoww/xYUmG2WFe/aAQCaAS3TAAAATcGyzMXlkjKZXAwA2jpapgEAAAAAiBFhGgAAAACAGNHNGwAAIJFUnQWcWcEBICERpgEAABJBTTOCS616VnCPzyNvmVeS5PP7VLitUJLkdrpluZicDU0gJ0fKr752e7TXHq87NCXCNAAAQCIIzAjuNV/+NXeuNGuW+dvtbpWzgnt8HqUvTJe/3B/clrUoS5LkSHaoOLdYre+skHBKSqptqum1F3zdEajRBAjTAAAAiSIwI7gkPf98fOvSBLxl3ogwE85f7pe3zFuvMO12uuVIdlQ7liPZIbezdbbYo5E8ntAPTz6fVGh6PAR+eKrptRd83RGm0QQI0wAAAEholstScW5xsMtu3oo8LRizgC677ZXHI2VkSGVloW1ZpseDnE7Tw2O/+FQN7QthGgAAAAnPclnB4OxyuJTZg7W82y2v1wTpJUtMqA4oKjJzDni9Uo/4VQ/tB2EaAAAAiKe0tHjXoHXKyJAy+VEF8cM60wAAAEA8RZmJGkDiI0wDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAQD2lpTJRVCLgeQCQCAjTAAAA9ZQ/nomiEgHPA4BEQJgGAAAAACBGhGkAAAAAAGJEmAYAAGhKaYznBYD2gDANAADQlPIZzwsA7QFhGgAAAECb4na65Uh2VNvuSHbI7XTHoUZoi5LjXQEAAAAAaEqWy1JxbrG8ZV5JUt6KPC0Ys0Bup1uWy4pz7dBW0DINAAAAoM2xXJYye2Qqs0emXA6XMntk1hqkc5bntGDt0BYQpgEAAAC0eyU7S+JdBbQyhGkAAAAAAGJEmAYAAAAAIEaEaQAAAAAAYkSYBgAAANCmpaWmxbsKaIMI0wAAAADatPzx+fGuAtogwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAmoXb6ZYj2RG1zJHskNvpbuEaAUDTSY53BQAAANA2WS5LxbnF8pZ5JUl5K/K0YMwCSSZoWy5LkjeONUQ0OctzlD8+P97VABIeYRoAAADNxnJZ/wvNksvhUmaPzDjXCHUp2VkS7yoArQLdvAEAAAAAiBFhGgAAAACAGNHNGwAAAI2WlprWuAMUFUX/GwASFGEaAAAAjdbgCavcbsnplLKzI7c7naYMABIU3bwBAAAQP5ZlWqILCsxlxAjzb1GRKQMSRM7ynHhXAQmGlmkAAADEl2WFgrPLJWUy4zcSD7OcoypapgEAAAAAiBFhGgAAAC2i0ZOUAUACIUwDAACgRTR4kjIASECEaQAAAAAAYkSYBgAAAAAgRoRpAAAAoI1yO91yJDuiljmSHXI7WcsbaCiWxgIAAADaKMtlqTi3WN4yb7Uyt9Mty8Va3kBDEaYBAACANsxyWYRmoBnQzRsAAAAAgBjRMg0AAACgXfL4PMEu8D6/T4XbCun+jnojTAMAAABodzw+j9IXpstf7g9uy1qUJUeyQ8W5xQRq1Ilu3gAAAADaHW+ZNyJIB/jL/VEnbAOqIkwDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMWI2bwAAAKCdY4koIHaEaQAAAKAdY4kooGHo5g0AAAC0YywRBTQMYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAABAu+N2uuVIdlTb7kh2yO10x6FGUE5OvGsQk+R4VwAAAAAAWprlslScWxxcSztvRZ4WjFkgt9Mty2XFuXbtVElJvGsQE8I0AAAAEkdaWrxrgHbEclnB4OxyuJTZIzPONUJrQjdvAAAAJI78/HjXAADqhTANAAAAAECMYg7T69at0xlnnCGn06lDDz1Ul19+uX744QdJ0t69ezV9+nQdfPDB2n///fWrX/1K27dvj7j9Cy+8oIyMDDkcDg0ZMkQFBQUR5atWrVJWVpYcDoeOOuoovfrqq404PQAAAACoW1oqQwwQm5jDdG5urkaNGqXVq1dr8eLFeueddzRp0iRJ0u9//3s999xzevzxx7V8+XL95z//0UUXXRS87QcffKALL7xQkydP1ocffijLsjRu3Djt3LlTkrRp0yaNGzdOp512mj7++GONHDlSEyZM0ObNm5vmbAEAAABEYFZrI388QwwQm5gnIFu6dKl69+4tSRo4cKB8Pp8uueQSlZaW6oEHHtCyZcs0btw4SdKjjz6qk046SevWrdPAgQN11113ady4cbruuuskSYsXL9ahhx6q559/Xpdffrnuv/9+9e/fX/Pnz5ck3XfffXr55Zf12GOP6bbbbmuiUwYAAAAQwKzWQMPE3DIdCNIBDodDlZWVWrNmjSoqKjR48OBg2QknnKCUlBR99NFHkqSVK1dq7NixwfJu3bopMzNTq1evDpaPGTMmWJ6cnKwRI0YEywEAAAA0PctlKbNHpjJ7ZAZntSZIA7Vr1ARktm1r8eLFGjZsWDBkf/PNN8HysrIylZeX6/vvv9ePP/6on376Sf369Ys4hmVZ2rp1qyRp48aNtZZXtWfPHpWWlkZcAAAAAABobg0O0/v27dPVV1+tlStXauHCherbt6+OO+443XTTTdqyZYtKS0s1ZcoU2batjh07ateuXZIkp9MZcRyn06k9e/ZIknbt2lVreVXz5s2Ty+UKXqq2mgMAAAAA0BwaFKa3bt2qUaNGafny5Xrrrbd03HHHKSkpSU899ZT27Nkjy7LUvXt3ud1ude3aVQcffLBSUlIkmRm/w/n9/mCATklJqbW8qhtuuEE+ny942bJlS0NOBwAAAACAmMQcpr/66isNGzZMqampWrt2rY4//vhg2RFHHKHCwkJ999132r59u2bOnKmffvpJgwcPltvtVkpKSrXAu2XLFh122GGSpLS0tFrLq0pJSVHXrl0jLgAAAADiLCenafYBEljMYfriiy/WCSecoH/96186+OCDo+5zyCGHqFu3bnrwwQc1YMAADRo0SB06dNAJJ5yg119/Pbifz+fTJ598otGjR0uShg8fHlFeUVGht99+O1gOAAAAoBUoKWmafYAEFtPSWF999ZUKCgo0c+ZMbdy4MaLsoIMO0sqVK3XwwQera9eu+uc//6n58+frpZdeCu4zffp0TZgwQSNGjNDxxx+v2267Tenp6cGltKZNm6ahQ4dqzpw5Ovfcc/Xggw+qsrJSl112WePPFAAAAECTyFmew7rMaPdiCtPfffedJOm8886rVnb//fdrx44duueee/Tzzz9r0KBBeumll3T66acH9/nlL3+pe++9V3PmzNGPP/6oU089VcuXL1fHjh0lSYMHD9ayZcs0c+ZMzZ07V0OHDtVrr72m1NTUxpwjAAAAgCZUspNWZSCmMD1ixAjZtl3rPrfcckut5VOnTtXUqVNrLJ84caImTpwYS7UAAAAAAGhRjVpnGgAAAACA9ogwDQAAAABAjAjTAAAAAADEiDANAAAAAECMYpqADAAAAEDblpaaFu8qoD3xeCSv1/zt80mFhZLbLVlWfOtVD4RpAAAAAEGsH40W4/FIGRlSWVloW1aW5HRKRUUJH6jp5g0AAAAAaHlerwnSS5ZIBQXmsmSJ2RZorU5gtEwDAAAAAOInI0PKzIx3LWJGmAYAAABQJ4/PI2+ZaS30+X0q3FYot9MtyxVjV9zAGNnA+Fip1YyRBcIRpgEAAADUyuPzKH1huvzl/uC2rEVZciQ7VJxbXP9AXXWMbFaW+beVjJEFwhGmAQAAANTKW+aNCNIB/nK/vGXeUJiuq9U5fIxsRobZVlQkZWebMsI0WhHCNAAAAIDGi6XVuZWOkQXCMZs3AAAAgMZr5TMzA7GiZRoAAABA06lPq3NRUfS/E1Bg4rXApGuSGjbxGtocwjQAAACAluF2m27f2dmR251OU5Zgqk68lrXIdF2PeeK1ti4nR8rPj3ctWhzdvAEAAAC0DMsyLdEFBdKIEaHu4Ak6k3ddE6/hf0pK6t4nJ6f569HCCNMAAAAAWo5lmW7gLpf5NzMzIYN0Q+Qsb3uBscnUJ3C3MoRpAAAAAGgCJTtbLjAS3OOPMA0AAAAArUxLBndER5gGAAAAUCu30y1HsqPadkeyQ25nlYnDioqkwkJzSfCZuuOiDY4dbq+YzRsAAABArSyXpeLc4uCkW3kr8rRgzILIJaJa2UzdcVPfybra4ezYrQ1hGgAAAECdLJcVDM4uh0uZPaqsJR2YqdvrlfLypAULzHa3O6YJxgLrOlfVrtZ2boOTdbVFhGkAAAAATcOyzCUwU3eMqq7rHC64tnNT1BNoAoyZBgAAAJAQalrXWWJtZyQewjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAABAjwjQAAAAAADFKjncFAAAAAAB18/g8wbW2fX6fCrcVyu10y3JZca5Z+0SYBgAAAIAE5/F5lL4wXf5yf3Bb1qIsOZIdKs4tTsxA7fFIXhP+5fNJhYWS2y1ZCVjXBiBMAwAAAECC85Z5I4J0gL/cL2+ZN/HCtMcjZWRIZWWhbVlZktMpFRW1iUBNmAYAAACQENxOtxzJjqih0ZHskNvpluRt+YrVIdD9OtD1WhLdr71eE6SXLDGhWjIhOjvblBGmAQAAAKAB0tKqbbJclopzi4PjgvNW5GnBmAWSwsNpYoXpqt2vsxZlSVJid79ONEVF0f9OcIRpAAAAAC0vPz/qZstlBQOoy+FSZo/M6LevGrriFMJaXffrphJtPLQUGhPtdpsu3dnZkbdzOk1ZYN+69klghGkAAAAArUdNAUxqNSGs1atpPLQUOSa6qCgUuPPypAULIicgq7rP3LnSrFmtZpIywjQAAACA1qOmkCa1mhDW6kUbDy1VHxMduEiSyyVlRullEL7P8883f92bEGEaAAAAQOsSHsCOPDJ6SEPzy8ho1499h3hXAAAAAAAarIax10BzI0wDAAAAaFpRZuoG2hrCNAAAAICmRWsx2gHCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAiElaKhOMIUZtcFI6wjQAAACAmOSPZ4IxxKgNTkpHmAYAAAAAIEaEaQAAAAAAYkSYBgAAAAAgRsnxrgAAAAAAtGkej+T1mr99Pqmw0PztdkuWVfM+4eVIOIRpAAAAAGguHo+UkSGVlYW2ZWWZf51OqajI/B1tn0A5gToh0c0bAAAAAJqL12tC8pIlUkFB6LJkidnu9UbfJ7y8AXKW5zTxiaAqWqYBAAAAoLllZEiZmY3fp55KdpY0yXFQM8I0AAAAALQn4eOzAxifHTPCNAAAAAC0F9HGcEuMz24AxkwDAAAAQAO5nW45kh3VtjuSHXI73XGoUR2aYXx2e0XLNAAAAAA0kOWyVJxbLG+ZV3kr8rRgzAJJJmRbLktSggbUWsZne3weecuq1zt0TpAI0wAAAADQKJbLkuWy5HK4lNmjaSYQixePz6P0henyl/urlTmSHSrOLRZx2qCbNwAAAABAkuQt80YN0pLkL/dHbbFur2iZBgAAAJCQ0lLT4l2FllVUFP1vJCTCNAAAAICElD8+P95VaDpVw3H4dbfbzKadnR25j9NpypCQCNMAAAAA0FxqCspSKCxblgnXgdm08/KkBQtY+znBEaYBAAAAoLnUFJSlyLBsWaG/Xa4aZ9pG4iBMAwAAAEBzIii3SczmDQAAAABAjAjTAAAAAJDg3E63HMmOatsdyQ65nUxSFg908wYAAACABGe5LBXnFldb59ntdMtyMUlZPBCmAQAAAKAVsFxW0wVn1rRuNMI0AAAAAEQR6FrtL/dHbG/VXavrXNPaG/VmqI4wDQAAAABRtMmu1eFLdUVbpmsbYbq+CNMAAAAAUIMm7VrdAjw+j7xlXvn8PhVuK5QUJfwHlupima5GIUwDAAAAQBvg8XmUvjA92C09a1GWJNMtvTi3uFX9KNAasDQWAAAAALQB3jJvtfHdkuQv91frqo7GI0wDAAAAQBvAWtQti27eAAAAANBS0tKa7dDhE6blrcjTgjFmcrFWPWFaAiNMAwAAAEBLyc9v1sMHJkxzOVzK7MHkYs2Jbt4AAAAAAMSIMA0AAAAAQIwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIxiDtPr1q3TGWecIafTqUMPPVSXX365fvjhB0lSeXm5ZsyYoUMPPVROp1NjxoxRcXFx8LYbN25UUlJSxOXoo4+OOP6qVauUlZUlh8Oho446Sq+++mojTxEAAAAAgKYVc5jOzc3VqFGjtHr1ai1evFjvvPOOJk2aJEm644479MQTT2jRokV699131aFDB40bN06VlZWSpB07dqhDhw766quvtH79eq1fv16vvPJK8NibNm3SuHHjdNppp+njjz/WyJEjNWHCBG3evLlpzhYAAAAAgCaQHOsNli5dqt69e+v/t3fvwVGV9x/HPwm5seRCSaKYhJUY0FSk3BSEIkUuUiwi1FsFBEXsVCFIVe4yIkVArM0oKqJSwaIoRdqh1AulJDAV4wU1cSBDsAwQBFQSMNzB5Pv7w2Z/WbIkeza3dX2/ZnaGfc55znnOhyd79pvNOStJP/vZz/Ttt9/qjjvu0IkTJ/TRRx9p1KhRGjp0qCRpwYIF6tSpk0pKSpScnKzS0lK1bNlS7du397ntRYsWqV27dnr88cclSU8//bTWrl2rl19+WY8++migxwgAAAAAPyqpcalNPYSQ5/iT6cpCulJMTIznk+fbbrtN69at065du3Ty5Ek9//zzuvbaa5WcnCzp+0+mk5KSzrvtnJwc/fKXv/Q8j4iIUJ8+fZSXl+d0mAAAAADww5Ra90J48ZDF9TAQ1MTxJ9NVmZmWLl2qHj16yOVyafTo0XrnnXeUkZGhsLAwXXDBBdq6datn/ZKSEu3cuVPNmzdXamqqBgwYoD/84Q+eYnvXrl1KT0/32ofb7VZ+fr7P/Z8+fVqnT5/2PC8rK6vL4QAAAABA01vcdIVwkitJMRExOvXdqWrLYiJilORKknSo8QcWhAIups+ePav77rtPOTk52rx5syRpzpw5ys3N1V//+lelpKRo7ty5uuGGG7RlyxbFxMToxhtv1NVXX63w8HDl5+dr1qxZ+uyzz/Tee++pWbNmOnbsmFwul9d+XC6XV8Fc1fz58/nzbwAAAACoJ+4Et3ZM2KFDJ6oXzEmuJLkT3KKY/l5AxfS+fft02223adeuXdq4caOuvPJKHT58WPPnz9crr7yim2++WZK0atUqtWnTRitWrNC4ceOUlpamtLQ0SVKXLl2UkZGhPn366JNPPtFVV12l6OhonTlzxmtfp06dqlZgV5o+fboeeOABz/OysrJqf4YOAAAAAPCfO8H9v6IZNXF8zXRRUZF69OihuLg45efn6+qrr/a0nzp1Sp07d/asGxsbq/bt26ugoMDntrp27SpJ2rNnjyQpNTVVxcXFXusUFxfrkksu8dk/Ojpa8fHxXg8AAAAAABqa42J6xIgR6tmzp9566y1dcMEFnvaUlBRJ0vbt2z1tJ06c0H//+1+lnucC+g8//FCS1K5dO0lS79699a9//cuzvLy8XLm5uerfv7/TYQIAAAAA0GAc/Zl3UVGRtm7dqmnTpmnXrl1ey5KTkzVs2DBNmjRJERERuuCCCzRv3jyVl5dr1KhRkqQ//vGPSklJ0RVXXKHt27drypQpGjx4sOfT7IkTJ6p79+6aM2eOfv3rX+u5555TRUWF7rzzzno5WAAAAAAA6oOjYvrgwYOSpFtuuaXaskWLFukvf/mLpk6dqjvvvFPHjx9Xjx49tHHjRs8n0y6XS1OmTNGhQ4fkdrs1evRoPfzww55tdOnSRStXrtS0adM0b948de/eXevXr1dcXFxdjhEAAAAAgHoVZmbW1IOoL2VlZUpISNC3337L9dMAAAAAGtXQlUO19va1TT0M/w0dKq0NYLyffCJ16yZt3Sr97z5YNbY3ksauBx1fMw0AAAAAwI8dxTQAAAAAAA5RTAMAAABAPUiN8/0tRkHrPN+6BP84ugEZAAAAAMC3xUMWN/UQnFlcx/EWFtb8PMRRTAMAAAAA/JeUJLlc0v++AtmLy/X98h8BimkAAAAAgP/c7u8/hT506Pvnv/+9lJ39/b+Tkr5f/iNAMQ0AAAAAcMbt/v+iOSGhSb4Kq6lxAzIAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAABC41talH0CQopgEAAAAAgVu8uKlH0CQopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHAooqkHUJ/MTJJUVlbWxCMBAAAAADSmyjqwsi5saCFVTB89elSS1KZNmyYeCQAAAACgKRw9elQJCQkNvp8wa6yyvRFUVFRo//79iouLU1hYWFMP50eprKxMbdq0UXFxseLj45t6OCGJjBsW+TYs8m1Y5NuwyLfhkXHDIt+GRb51Ux/5mZmOHj2qlJQUhYc3/BXNIfXJdHh4uNLS0pp6GJAUHx/Pi0gDI+OGRb4Ni3wbFvk2LPJteGTcsMi3YZFv3dQ1v8b4RLoSNyADAAAAAMAhimkAAAAAAByimEa9io6O1iOPPKLo6OimHkrIIuOGRb4Ni3wbFvk2LPJteGTcsMi3YZFv3fwQ8wupG5ABAAAAANAY+GQaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiOgQVFBTouuuuk8vlUuvWrXXXXXeppKTEs3zx4sVKT09X8+bN1a9fP+3atcuzrLS0VGPHjlViYqISEhI0cOBAFRQU+NzPkSNHlJiYqAEDBjga33fffafLLrtM7dq187tPRUWFlixZos6dO/scx6hRoxQfH6+kpCRNmTJFFRUVjsbkRKjl+/zzz+vSSy9VTEyMMjMztWTJkvOuO3bsWIWFhWnfvn2OxuREsObrdrsVFhbm9Th06JBffWuavzNnzlR6erpcLpeuuOIKrVmzxq9tBirU8q1p/s6ePbvaNisfxcXFfo0rEMGasSS9/vrr6tSpk2JiYtS6dWvl5OT41a+mOVzpzTffVEpKit9jCVSo5Vvba/Do0aOrzd/Vq1f7Paa6Csa8+/bt6/PnOiMjo9a+7733nnr06KHo6GhdcsklWrFihR8p1J9Qy7O2+dvY5zhfgjFzSXrrrbfUuXNnxcTE6LLLLtOyZcv8PqYNGzaoZ8+eat68uRITE/Xqq6/63bcmoZhVTeev7du3a8CAAWrevLlSU1P15JNP+r1dD0PIueaaa+yxxx6z/Px8W7dunaWnp9v1119vZmarVq2y6Ohoe+WVV+zjjz+23r17W4cOHay8vNzMzB588EG7++677f3337ctW7bYgAED7KKLLrJvv/222n6mTJlikqx///6Oxvfcc8+ZJMvIyPBr/RdeeMEuv/xyi4qK8tln8ODB1q1bN3v//fdt9erV1qJFC3v88ccdjcmJUMq3oKDAOnbsaG+++abl5+fbggULLCwszFatWlVt3c8//9yaNWtmkqy4uNjRmJwI1nxbtGhhr776qu3cudPzqNxvTWqbv3fddZe9++679umnn9r48eMtIiLCCgoK/BpTIEIp39rmb0lJidf2du7caePGjbNevXo5icyxYM34xRdftBYtWtiiRYvs888/t3fffde2bdtWa7/a5vCbb75pPXr0sKioKGvWrJlfY6mLUMrXn9fgX/3qVzZx4kSveXzs2DF/46qzYMx737591X62O3bsaDNmzKix3969e61FixY2YcIE+/jjj23WrFkWHh5umzZtCiCZwIRSnv7M38Y+x/kSjJkXFRVZRESEzZw50/Lz8y07O9vCw8Nt48aNtfZ9++23LTo62ubMmWMFBQW2adMmy8vLc5iKb6GWVU3nr6NHj1pqaqrdcsst9tFHH9lTTz1lERER9sorr/gTlQfFdAjau3ev1/NXX33VwsPD7fjx49alSxebOHGiZ1lhYaFJ8kzIc/t++eWXJsneeecdr/Zt27ZZUlKSXXfddY6Kva+++sqSk5Nt2LBhfhfTXbt2tYULF9qMGTOq9cnPzzdJ9sknn3japk6dam632+8xORVK+ZaUlFR7UzZw4ED7zW9+49VWUVFhvXv3tptvvrnBi+lgzPf06dMmKaA3ADXN33OVl5dbXFycPfXUU473469Qytff+VuptLTU4uPjbf369Y7241QwZlxSUmJxcXG2bNkyx8dT2xwePHiwzZgxwxYtWtQoxXQo5evPHO7Zs6c9/fTTjrZbn4Ix73Nt2LDB4uLirKSkpMb1Jk+ebB06dLCKigpP28CBA2348OGO9xmoUMrT6WtwY5zjfAnGzFetWmWtWrXyauvSpYstXLiwxn5nz561iy++2GbPnl3rPgIRSlmZ1Xz+evbZZy0xMdFOnDjhabvnnnusS5cutW63Kv7MOwS1adPG63lMTIwqKip05MgRffrppxo8eLBnWWZmpi666CLl5eWdt68klZeXe9oqKio0btw4zZw5UxdddJGjsWVlZWnEiBHq1KmT330+/vhjTZ48WZGRkdWW5eTk6MILL1SXLl08bf369dPevXt14MABR2PzVyjl26pVK7Vo0aLamKqOR/r+z7hOnDihe++919F4AhGM+ZaWlkqSkpKSHB9PTfP3XGam8vJyJSYmOt6Pv0IpX3/nb6U//elP6tChgwYOHOhoP04FY8arV69WbGysRo4c6fh4apvD//znP/XYY48pNjbW8bYDEUr5+jOHS0tLA3rtqS/BmPe5Zs+erQkTJqhVq1Y1rrd9+3Z17txZYWFhnra+ffvqww8/DGi/gQilPJ2+BjfGOc6XYMz82muvVUREhF577TWVl5dr/fr12r17t2644YYa+23cuFEHDhxQVlaWX/txKpSykmo+f23fvl2ZmZlq3ry5p61v377Kz8/X6dOn/RqbxDXTIc/MtHTpUvXo0UNfffWVJCk9Pd1rHbfbfd5rYF988UU1b95cV199tadt3rx5OnXqlCZMmOBoLCtWrNCWLVs0Z84cR/2qnvTOtWvXLp/HI6lBr+utFAr5VrV7925t2LBB/fr187Tt2LFD06ZN0+LFixUe3rgvGcGSb+X1Qunp6UpNTdXQoUPPex3QuWqav1V9/fXXuv/+++V2uzV8+HC/x1YXoZBvVb7mb6WTJ0/q2Wef1aRJkxxvty6CJeO8vDx17NhRTz75pNLS0tS2bVtNnz5dZ8+erbVvbXPY3zneEEIh36p8zeGSkhKNGTNGiYmJ6tWrl/7+97872mZ9Cpa8q8rLy1NeXp7Gjx9f67qJiYnas2ePV1tZWZm+/vrrgPZdVz/0PM9V02twU5zjfAmWzJOSkrRs2TLdcccdioyM1KBBg/TEE08oMzOzxn55eXlq27at1q5dq4yMDKWmpuq3v/2tjh075ve+/fVDz0qq+fyUmJio4uJimZmnraysTBUVFV7Xidcmwu818YNz9uxZ3XfffcrJydHmzZs9P2gul8trPZfL5fM3MC+99JJmzpypp556yvPbyffee08LFy5UXl6eIiL8nz47d+5UVlaWVq9erfj4+Doclbdjx475PB5Jjn6rFIhQy7eoqEhDhgxR165dNXbsWEnSqVOndPvtt2vSpEnq3r27cnNzA9p2IIIpX7fbrby8PLlcLu3evVsLFizQL37xC33++edKS0urw1FKmzdv1oABA3T27Fm1b99er7/+erVjbAihlq+v+VvVypUrFRUV1ahv4oIp4wMHDuizzz5Tamqq1qxZo23btikrK0vR0dGaPXt24AfZhEIt3/PN4XXr1snlcqmkpETLly/X8OHD9Y9//ENDhgzxe3z1IZjyruq5557T0KFDlZqaWuu6N998s4YOHaply5ZpxIgRysvL04svvqhmzZoFtO+6CIU8qzrf/G2qc5wvwZT5tm3bdNttt2natGkaNmyYcnJylJWVpUsvvVTXXHPNefsdOHBApaWlWrNmjVasWKH9+/dr/PjxOnPmjKObctUmFLKqzfDhwzV37lw99thjeuihh1RUVKSFCxdKkrPXBEd/FI4fjOLiYuvVq5e1bt3a3n//fTMz++CDD0ySffHFF17r9uzZ07KysjzPT548affcc49FRUXZkiVLvLZ54YUX2ksvveRpGzNmjNf1Do8++qg1a9bM83j00UetrKzMfvrTn9rDDz/sWe+RRx7xunZh+fLlXv3Gjh1b7ZjO7WNmdu+991rv3r292nbs2GGSbOvWrX5lFYhQy3fNmjWWkJBgN9xwg5WVlXnaR44caX379rXvvvvOzMxycnIa/Jpps+DK15eysjJr2bKl53qdQOevmdnx48dt+/bttnnzZps6darFxMTY2rVr/YkpYKGW7/nmb1VXXXWVTZ061Z946kWwZTxgwADLyMjwuqnbQw89ZOnp6WZWtzlc6eWXX26Ua6bNQi9ff+Zwpf79+3tuCNRYgi3vSqWlpRYdHW1vv/22V3tNec+dO9eio6MtLCzM2rZta+PGjWvQ+6z4Ekp5mtU8f5viHOdLsGV+6623Vvs5vvvuu+3nP/+5mZ0/83HjxllcXJzXterPPPOMRUZGet6r1VWoZFXV+c5ff/7zny0uLs7CwsIsOTnZJk2aZBEREXbmzBm/86KYDkE7duywlJQUGzRokH311Vee9n379pkky8nJ8Vo/LS3NsrOzzczsxIkTds0111i7du2qFaOzZ882SRYdHe15hIeHW3h4uEVHR9umTZvsm2++scLCQs/jm2++sWXLllXr16xZMwsLC/PcFfDIkSNe/fbv31/tuHz9IMydO9cuvvhir7YNGzaYJCstLQ08xBqEWr6LFi2yqKgoe/LJJ71uyrJ7926TZJGRkZ7tRkZGevY1bty4+g/Xgi/f87nyyitt/PjxZmYBz19fRo8ebT179qx1vUCFWr7nm79VVc7lDz74wElUAQvGjEeMGGEDBw702t4LL7xgLpfLzOpnDjdWMR1q+fozh6t66KGHrEOHDn7nVVfBmHelZcuWWUJCQrU3vrXN59OnT9vu3butvLzc7rvvPrvxxhvrFpIDoZan0/nb0Oc4X4Ix88zMzGp3S3/22WctLi7OzM6f+YwZM6x9+/Ze/davX2+S7OuvvyarAM5f3333ne3Zs8fOnDljCxcutE6dOjmJjGI6FHXr1s1uuukmn18r07ZtW68JWfkpbuVddB988EHLyMjweQfHcyd5YWGhDRs2zHr27GmFhYV2/Phxn+M5d5IXFhba+PHjze12W2FhoR05csSv4/L1g5Cbm2uSrKioyNM2ffp069q1q1/bDEQo5fvZZ59ZRESE/e1vf6u27MyZM9W2u3z5cpNkubm5Pl+s6kOw5evL4cOHLT4+3nMC8Ye/xfTYsWOte/fufm/XqVDKt6b5W1V2dralpKT49UavPgRjxs8884wlJyfbyZMnPW3333+/de7c2e/jCpZiOpTy9XcOV9WnT59GLf6CMe9KN954o91+++0BH9uRI0esZcuWtnLlyoC34VQo5RnI/G3oc5wvwZh5//79bdiwYV5tv/vd7ywzM7PGY1m3bp1FRkbagQMHPG3Z2dnWsmXLGvv5K5Syqsqf92Bnz5619u3b2/z58/3erpkZ10yHmKKiIm3dulXTpk3z+iJ1SUpOTtYDDzyg6dOnq3PnzkpPT9fvf/97DRkyRB07dpQkvfbaaxo5cqRKS0s9d9iVpNjYWLVu3braHUUTEhJ09OjRGm8CkJCQoISEBK+2pKQkRUZG+nXzgJr06dNH3bp109ixY5Wdna3du3fr6aef1vLly+u03fMJtXzfeOMNtWnTRldccYW++OILr2UZGRnV+h88eNCzLNC7hNYkGPOVvr9b8Y4dO9S3b18dPnxYs2fPVlxcnMaMGVOn4/33v/+t3NxcDRo0SLGxsXr33Xe1fPlyPf/883Xa7vmEWr61zd/KG4/k5uaqd+/ejXKjrGDNeNSoUZo7d67GjBmjyZMnKz8/X0uWLNHSpUvr6cgbR6jlW9sc3r9/v5544gndcsstioiI0NKlS7VlyxZt2rSp1qzqQ7DmXWnTpk2aN2+e38dz8OBB5eTkqGPHjjp48KBmzZqlTp066dZbb/V7G3URannWNn83btzYqOc4X4I186ysLA0fPlzz58/X4MGDtXnzZi1dulTZ2dk19hs0aJAuu+wyjRgxQvPmzdOXX36puXPnavLkyU5i8SnUsqrN6dOntWLFCl111VUqKyvTggULFBER4fxO6Y5KbwS9TZs2mSSfj0WLFllFRYXNmjXLkpKSLDY21kaOHGmHDx/29A8LC/PZ96abbvK5v3Ovd/CXv5/S+dNn7969dt1111l0dLS53W5bvHix4/H4K9Tyveuuu857PEePHq22fkNfMx2s+f7nP/+xzMxMi4mJsdTUVBs5cqR9+eWXjo7N1//Jjh077Nprr7WEhASLi4uz7t272xtvvOFou06EWr7+zt+0tDTHv2kOVLBmbGZWUFBgvXv3tqioKHO73Y6/6zUYPpkOtXxrm8MlJSXWq1cvi42NtZ/85CfWr18/y8vL82s89SGY8/7iiy9MkueaTn8UFxfb5ZdfblFRUda6dWubOHFirdeo16dQy7O2+dvY5zhfgjnzFStWeOZjRkaG36/Je/bsseuvv95iYmLswgsvtIcffrherpcOxawq+Tp/nTp1yrp27WoxMTHWqlUrGzNmjB08eNDRds3Mwsyq3A8cAAAAAADUiu+ZBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAof8DDEsSp0VihV4AAAAASUVORK5CYII=",
|
|
93
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA84AAAMSCAYAAAC76Z0MAAAAOnRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjEwLjcsIGh0dHBzOi8vbWF0cGxvdGxpYi5vcmcvTLEjVAAAAAlwSFlzAAAPYQAAD2EBqD+naQAAkFRJREFUeJzs3Xl80/Xhx/E3CDRESkACApVwqECnTmgV8QRvnajgMXUiihd0Q1l14GROcDpxUwdTpB5TQeuxgUPF32TqVDwmHhTxoBTlMFDrEY9ylBYKn98fnyVN2uTbtLTN0dfz8cijzff7TfL5fpuk3/f3c7UxxhgBAAAAAICo2ia6AAAAAAAAJDOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAQCtUXl6utWvXhu5/9tlnKi8vb7LnN8Y02XO1tJ07d8ZcV11d3YIlAQAkC4IzAAAJVFVVpYkTJ2r9+vVxbf/RRx/p7bff3uPXXbBggU488cTQ/cMPP1yLFi2qs92GDRv0zDPPRCzbuHGjnnzySUnSxIkTdeWVV0qSXn75Za1bt06SlJ2drXfeeWePy5kIhYWFOumkk+osHzJkiB555BH99re/1YoVKxJQMgBAohCcAQBIoJ07d+qBBx7Q119/Hdf2Tz75pEaOHKkHHnhAkjRv3jy1adPG8TZy5MgGlckYo3fffVdXXHGFBg8erD//+c+qqqoKrf/qq690ww03aOLEiaHt7733Xp111lkqLi7Wzp07tWbNGmVkZDTodZvKs88+W+8x6devX8zHL168WPvuu2+d5T/++KN27typtm3b6qijjtLChQubcS8AAMmE4AwAiFBSUqKLL75Y/fr1U8eOHTVgwABdcsklWrVqVcR2M2bMUJs2bbRhw4aozzNy5Mio4eTOO+/UySefHLo/f/58DR48WBkZGRo8eLD+9re/1XnMe++9p2OOOUYdO3ZUr169NGXKlIggJ9kwd8EFF8jj8cjj8ei8885TaWlpxDY7d+7UjTfeqN69e6tjx4466qijotbexlOmoK1bt6p///6aN29ezG2a0h133KFbb71VeXl5WrFihcaMGaPi4uKIW4cOHVRQUBC6/9hjj8X13M8995x+8YtfaL/99tNRRx2ljRs36qmnntI777wTCsHGGB144IH65z//qR07dqiyslI7d+7UunXr9NBDD2nEiBHauHGjjDEaMGBAk+zz5s2b1bdvX3366acNelzt4xK83XjjjTEf8/XXX+uFF17QZZddps2bN9dpcp6RkaHbb79dDz30kNq0aRPXBY/7779fZ511VoPKDgBILu0SXQAAQPJYuXKljj76aB155JH605/+pJ49e+qLL77Q7NmzlZOTo//85z86+uij9+g1XnzxRZ155pmSbHPhyy67TDfccINOOeUUvfjii7rqqqvkcrk0duxYSdLatWt10kknacSIEVq8eLHWrFmjG264QT/88EMo0FZXV+vUU0/Vjh07NH/+fO3atUvTpk3TySefrJUrV6p9+/aSpF//+td6/PHHddddd6l///6aNWuWTjnlFK1YsUIDBw6Mu0xBmzdv1ujRo2NePGguv/3tb5WTk6OhQ4dKkjweT8T6Nm3aaL/99tPgwYPrPHbu3LmaO3eufvjhB3377bc6+OCDdcopp0iyx/rEE0/U3XffrVNOOUX77LOPJGnKlCnq1KmTpk+fru+++07du3ePWbbc3Fzl5+erTZs2Gj16dMS6yZMna8yYMQ3e36lTp+r444/XQQcd1KDHRdt/SerRo0fMx9x5550aPHiwTjrpJI0fP16SdN999+mjjz5SRUWFHnnkEc2fP1+rVq3S999/rxtuuEF33HGHYzmuvPJK3X333Xr66ad14YUXNmgfAABJwgAA8D/jxo0zffv2NdXV1RHLf/jhB+P1es0ZZ5wRWjZ9+nQjyaxfvz7qc40YMcL07ds3YtnmzZtN+/btzerVq40xxgwcONCcc845Educc8455oADDgjdv/rqq03v3r3N9u3bQ8vuuece07ZtW+P3+40xxjz55JNGklm5cmVom48++shIMoWFhcYYYzZu3Gj22msvc88994S22b59u+ndu7e58sorQ8viKZMxxjz//POmf//+xuv1Gknm0UcfjXoc6rNlyxYjybzzzjuNenw0GRkZZvHixVHXvf/++6agoMCMHTvW7LPPPqagoMC89NJLpmfPnuaWW26ps31lZaUZOHCguemmm4wxxlRXV5sVK1aYJ554wrRt29YcccQRZsyYMWbq1KnmjTfeMCUlJebqq682/fv3N7feequ59dZbjc/nMz/72c/MBx980OB9+eyzz0y7du3MZ599FvdjFi1aZJxOcWbNmlXnvWmMMWvWrDEdO3Y0S5YsCb3u448/bjp06GAkGUkmJyfH/O53vzPPPPOM+eyzz8zu3bvjKtOcOXPM/vvvb3bt2hX3fgAAkgdNtQEAIT/++KMkadeuXRHLu3Tpor/85S+64IIL9uj5X3nlFe23334aNGiQ1q1bpzVr1ui8886L2Oa8887T559/Hhrx+cUXX9SoUaPkcrkittm9e7deeuml0DYDBw7UT3/609A2hxxyiAYOHKglS5ZIkl566SXt2rUr4vVcLpdGjRoV2ibeMv34448aPXq0jjzySL388st7dEyCjjzyyDr9cL1eb8Q2//73vzV69GiNHj1aN9xwQ2j5yy+/rEsuuSSu1znssMM0ceJEjRgxQpmZmZo4caJOPvlkXX755Zo+fXqdMrhcLm3fvj3Un3mvvfbSvvvuq5kzZ2rcuHEaMmSIOnXqpI8//liTJk1S165dtWDBAlVXV+umm27STTfdpJ07d+rqq69Wbm5ug4/Ln/70Jx155JE64IADGvzYhrrjjju0c+fOUN/uQw45RL/4xS+0bNkyff/99+rbt6+uuuoqXXjhhaqoqND999+vU045RY8//ni9z/2LX/xCmzZtijoAGwAg+dFUGwAQcvrpp+v555/XUUcdpcsvv1wnnHBCqLlrrGC2a9euqFP0mCjTEb344ov62c9+JklavXq1JGnQoEER2wSbTK9Zs0a9evXSxo0b62zTq1cvZWZmas2aNaHnqr1N8LnCt8nMzFSvXr3qbPPggw+qoqIirjLtv//+crvd+vTTTzV48OAma6b99NNP69BDD41Y1q5d5L/pnTt3auvWrVq3bp2++uqr0PLS0lK99tprEdtu2rQptD8+n09ut9vx9f/4xz/q2muv1Q8//FCnDH379g01d6+urtZxxx2n/v3767777tN1112nDh06aNGiRTrttNN0yy23SLIjb//444/atWuXysrKlJOT04CjodBrPfPMM7r55psb/FjJNlmPpW/fvnWWXXzxxXK73QoEAvrHP/6h++67T19++aXeeecdFRQU6JtvvlFeXp4k29z70EMP1ZAhQ6K+92rr2rWrjj76aD399NM699xzG7U/AIDEITgDAEImTJig9evXa/bs2frVr34lSdp33311+umna+LEiTriiCPqPMapJrB2OHnxxRdDo0EHa7dr98/t3LlzaH2sbSQpMzMztP7HH3+MGl46d+4cCs4//vhj1OcJvl55eXlcZZKkDh06xOw/21h9+/at9zlHjRqlUaNGacaMGaFa8liCAU+SXnvtNceRtYuKirTvvvtqy5YtddZVV1errKxMPp9Pkg3S//d//6cDDjhAjz/+uJYuXapJkyYpIyND8+fP109/+lPNmDFD99xzj9555x3t2rVLXq9Xffr0cSxvNMuWLdMPP/ygww47rMGPlezgYNE89thjoem0wp1wwgk64IADdOihh2r69Ok68sgj9eqrr+qee+7RT37yE3Xp0kUXXXSRbr31VvXu3VtPPvmkRo0aFXp/1Ofoo4/Wvffeq127dmmvvfZq1D4BABKD4AwACGnTpo3+9Kc/acqUKVq8eLHeeOMNvfbaa5o3b57mz5+vv/zlL/r1r38d8Zjnn3++Ti2uZEP4d999F7r/8ccfKxAI6Pjjj5dUUyO9e/fuOmUIro+1TXC74HpjzB5tU9/rhW+TKhYvXqxRo0bFXF9dXa3vv/9eBx10kPbaay8NGDBAzz33XNRtjz76aL311luS7DHo3LmzvvnmGz355JM64ogjdO655+qrr75SaWmpTjjhBP3qV7/Sxx9/rCeeeEIulytivuiGCF70OPDAAxv1+IYODlZaWqqTTz5ZP/3pTzV48GDdcsstcrvdoZr7n//856qsrFTv3r311FNP6corr9Rbb70Vd236gQceqB9//FEbN250nA4LAJB8CM4AgDq8Xq/Gjx8fGlX43Xff1aWXXqqpU6dq7NixEX1vDznkkKghIDMzMyI4v/jiixo5cqQ6duwoyfabllSnlrO8vDy0PljzG60mtLy8PPQcXbp02aNtJFvLHE+ZUt1f//pXzZ8/Xxs3blT79u01a9YsjRgxQhdccIF+9atfac6cORHbz5gxQ6+88kro/nfffVfnQsn8+fNDv7/22mtq3769LrzwQo0ePVp77713xPqGCE711FLH/dZbb9WaNWu0Zs0affHFF8rJyYkYGXzYsGGaNWuWFi1apPHjx+vxxx9vUBP04Ofmq6++IjgDQIphcDAAgCRpw4YN6tmzpx566KE664444gjdeuut2rlzZ2iArIYK798s1fQbLikpidguWMs4aNAgderUSb17966zTVlZmbZu3Rpqnj1w4MA62wSfK3ybLVu2qKysrM42++23n/bee++4ypRMdu/eHbOWOJYxY8boqaee0syZM5WZmalTTjklNEfzfffdV2dwsGCf5aBu3brphx9+0Omnn67zzz9fP/zwgz755BO1a9dOixcv1jHHHCNJOumkk9S7d28ZY0LTXTVUsKY/WkuB5jBlyhQ99dRTKi0t1YYNG3T33XerrKwsNGf46NGjVVZWpnPPPVczZ87U+eef36jXcep7DQBITgRnAIAkab/99pMxRg8++KC2b99eZ/2aNWvUrl077b///g1+7s2bN+vtt9/W6aefHlp24IEHqn///vrHP/4Rse0zzzyj/fffP/Q6p556qhYvXqzKysqIbdq2bauTTz45tM2aNWu0cuXK0DYff/yx1qxZo1NPPVWSdPLJJ6tNmzYRr1dVVaX/+7//C20Tb5kSzRijTZs2aciQIfrNb37ToMf6fL6YFwAuvvhiFRcXR9yCfd2D2rRpo6qqKm3YsEGLFi3S5Zdfrt/85jc69NBDdcYZZ4QGNFu9erW+/PJLfffdd/r3v//dqP3s2bOnJEW0XGiI1atXR7198803Ubfff//9QwN4HXHEERowYIAeeOCBUBP9F198MTSq+GWXXdbg8gQHXgvuFwAgddBUGwAgyQ76dO+99+qiiy7SsGHDlJeXp8GDB2v79u16+eWXdd999+mWW26pM0VSPF555RX169evzkBiM2bM0KWXXqopU6boZz/7mV566SU988wzeuKJJ0LbTJ06VU8//bTOOecc5efna8OGDZo2bZquuOKK0IBVF154oWbOnKmf//znmjlzpvbaay/99re/1UEHHRSaQqtfv3667LLLdNNNN6lDhw4aOHCg/vrXv+rHH3/U1KlTG1SmxgoEAgoEAhHLKioqJElffPFFzCbJvXr1ihiwbMuWLfruu+90ySWX6MYbb9Q///nPPS6bZAc9q12G8GnAgvbdd1+tWrVKzz33nC644AJVVVXpxBNP1I8//qiuXbuqpKREp556qoYPH67+/fvrggsu0IsvvhiqjY5XcJTx4uJi7bfffg3en+zs7Jjroo2qfdlll+mxxx5T586ddd555+nOO+/Uscceq9LSUuXn52vhwoW67rrrtHjxYp111llatGiRXnzxRX3++ed1auajWb16tTp37qysrKwG7wsAIMFafupoAEAye/vtt825555revfubdq3b2/23Xdfc+KJJ5olS5ZEbDd9+nQjyaxfvz7q84wYMcL07dvXGGPMlVdeaSZPnhx1u/vvv98ccMABpkOHDmbgwIHm4YcfrrPNG2+8YY444giTkZFh9t13XzNlyhRTVVUVsY3f7zejR482nTp1MpmZmea8884zpaWlEdts377d5Ofnmx49epiMjAxz5JFHmv/+97+NKlPQ+vXrjSTz6KOPxtwmKHjMGnp76KGHIp5n69at5osvvjCPPvpo3M/x5ptvGmOM2bx5s/nkk0/MhAkTTP/+/UPPefbZZ8d87NFHHx3x2osWLTKXXnqpad++vTn77LPN888/bw488EBz9tlnmwceeMBkZmaakSNHmvLyclNVVWVOP/1007FjR/OPf/yj3mMUbvfu3aZ79+5mxowZDXrcokWLjNMpzqxZs0LvzXCvvPKKeeqpp8z27duNMcZs2bLF/PKXvzQZGRmmb9++5vnnnzfGGPP555+bAw880Hi9XjN8+HBz/PHHx1Wu0047zZx//vkN2hcAQHJoY0wKDREKAABCysvL6/TZjqVv377q2LGjvvzyS+23335yuVy68cYb9fvf/16S7b/bo0cP/fnPf4543B133KG33norNKq23+9XTk6Ojj/+eE2aNEkjRoyQJH3zzTfy+/0aM2aMxo8fr5tvvjnUbHvnzp361a9+pRNPPDHUAiBekydP1htvvKEVK1bE/ZitW7dq06ZNMUfVrqys1Pbt29W1a1fH5zHG6LLLLlNOTo4mTJgQUfu+efNm3XzzzSosLNTcuXP185//3PG5vv/+e/Xq1UtPP/20xowZE/e+AACSA8EZAIBWZvfu3WrbNnKYk23btqlt27ahUc+d7Ny5U+3bt4+6bseOHerQoUOTlFOyg9YdeOCB+uCDD0JNt1PRfffdp7lz5+qTTz5hcDAASEEEZwAAkNQmT56sb7/9Vk8++WSii9IoVVVVOvDAA3XffffpzDPPTHRxAACNwKjaAAAgqd1+++36+OOPtWrVqkQXpVHmz5+vkSNHEpoBIIVR4wwAAAAAgANqnAEAAAAAcEBwBgAAAADAQbtEF6Cp7N69W19++aUyMzMZrRIAAAAAWhFjjLZs2aLevXvXmTmiKaRNcP7yyy/Vp0+fRBcDAAAAAJAgGzdu1H777dfkz5s2wTkzM1OSPVCdO3dOcGkAAAAAAC1l8+bN6tOnTygXNrW0Cc7B5tmdO3cmOAMAAABAK9Rc3XYZHAwAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMBBo4PzhAkTNHLkyND91157TYcffrg6deqkn/70p3rhhRciti8sLFS/fv3kdrt15pln6uuvvw6t2717t6ZOnap99tlHXbt2VX5+vnbt2tXYogEAAAAA0GQaFZzfeustPfTQQ6H7n3/+uUaNGqWLL75Yn3zyifLy8nTOOefo448/liS9++67uuqqq/SXv/xFH330kXbs2KFx48aFHv+Xv/xFCxYs0CuvvKIlS5Zo0aJF+vOf/7yHuwYAAAAAwJ5rY4wxDXnAjh07NHToUHXr1k1t27bV66+/rltvvVWvvPKKli5dGtrulFNO0bBhw3Tbbbfp0ksvVZs2bTRv3jxJ0hdffKH+/fvr888/14ABA9SvXz/NmDFDl112mSTpscce00033SS/3x93uTZv3iyPx6Py8nJ17ty5IbsEAAAAAEhhzZ0HG1zjPHPmTA0dOlQnnHBCaNkFF1ygu+++O2K7Nm3aaNu2bZKkZcuW6dhjjw2t69u3r7KysvTuu++qrKxMX3zxRcT6o48+Whs3blRZWVmDdwgAAAAAgKbUoOC8evVq3X///frLX/4SsXzgwIE67LDDQveLi4v12muvhcL1pk2blJWVFfGY3r17q7S0VJs2bZKkiPW9e/eWJJWWlsYsS1VVlTZv3hxxAwAAAACgqcUdnI0xmjBhgmbMmKEePXrE3O6bb77R6NGjlZubq1GjRkmSKisrlZGREbFdRkaGtm/frsrKytD98HWStH379pivM3PmTHk8ntCtT58+8e4KAAAAgGRTVZXoEgAxxR2c//a3v2nnzp26+uqrY27z/fff6+STT1ZlZaUWLlyoNm3aSJJcLlcoIAdVVVWpY8eOcrlckhSxvup/H5qOHTvGfK0bb7xR5eXlodvGjRvj3RUAAAA0tX79pE8+SXQpkstHH0lbt0Zft2uXtHJly5YnGR12mPT66/b3s86SXnopocVJuJUrpaeeir7usMOkV16J/dgNGySvt1mKhQYE5yeffFIrVqxQ165d1aVLF91xxx1666231KVLF/n9fn3zzTcaMWKEysvL9eqrr0Y0vc7KyqrTX7m0tFRZWVmh7cLXB5to127eHS4jI0OdO3eOuAEAgCjWr5fOPFPyeKT+/aWZM6Xdu2vWFxXZEzKXSxo6VHr33Zp11dXS9OmSzyd17SqNGSN9+WXNemPs+p497fqrr5bCL5avWycdf7x97kGDpFrTVYY8/rgUNs2lJGnbNumaa6RevaQePaTx46Xy8pr1H35oH5OZKQ0cKD3yiPNxKCy04c7ttscjbGrMOk47TWrTpv5bu3bOrxm0c6d0yCHSjBnR1zdm/ysrpUmTpH32seunTbN/j1heeknKzpY6dpSOO05as8Yu37Ah9v698Ub05zr/fOmYYyJvX30ljRtXd/k//1n/8Vm3zv5dggGqtiuuiH3sJGnChLrHL973XtCf/yz17Ws/J6NHR77Pw82cad9H8bjiCum552rub9ggLVwo/fKX9jkuu0z69tv6n6cxx2f7dunyy+3nY999pdtvj1z/5pvSkCH2+AwbJr3/fuzXN0a65Rb7Puvc2b7e/8YykmT3YexYG9qysqTrr3euPX7rLSlal8yyMmmvvWI/Lpb//ldq29Ye32hlP+kk6X+DFIfU9/0xZ450wAF2f088UVq9OvbrL15c97Nz3nk16198UfrpT6VOneyxXrYs9nO9/LL0i19IDz9stw8+X+3yv/uu9NprsZ/nwgtjf647dYr9uEDAfs+73fbzUN/3alC077BwTz1lXzvc229L++8vde8uPfhgzfKdO6UBA5yPeSKYOJWVlZn169eHbpMnTzZHHHGEWb9+vdmyZYvJzc01+++/v9m4cWOdx15yySXmsssuC91ft26dkWTWrVtnjDGmT58+Zt68eaH1jzzyiPH5fPEWzRhjTHl5uZFkysvLG/Q4AADSWlWVMQcdZMzYscZ8/rkxS5YY0727MXPn2vVbthiz777G/O53xmzYYMxvf2uM12vM5s12/W23GdOvnzFLlxpTUmLMGWcYM3y4Mbt32/V/+pMxPXoY89prxnz4oTEDBxpzww123a5dxhxyiDHjx9vnvvdeY1wuY/73/z9k6VJj9t7bmBEjIpdfeaUxQ4cas3y5MStXGjNsmDE//7ld9913ttxTp9rn+/vf7XP/61/Rj8OyZXb9M88Y89lnxpxyir3FsmuXMTt32lvfvnbfgvfPOsuY+fPt79XV8f0dbrvNGMmY6dPrrmvM/htjTF6ePd7Llxvz1lv271pQEP31v/jCGLfbrl+/3phx44zJzrb7uWuXMd9+G3kbN86+9s6d0Z/v+eeNeeqp+G5r1tR/fE4+2R6f116ru+6uu2IfO2OMefNNY9q0iTx+8b73gp5+2pjMTGP+7/+MWbvWmPPPr/v3MMZ+hjp2tO+J+nzyif27rlljP4N7721Mr172dcaNs++peDXm+PzqV8bk5hqzapUxL79sTJcuxjz5pF33zTfGeDzGTJxoy/fXv9r7fn/013/gAWM6dTLmH/8wprjYmFNPNWb06Jr1J51ky7hqlTFvv23MAQfYz2Ysp55qzIIF9vfcXLtfu3bZY/P++zWftVjvv3A7dtjjK9n3drhdu4y59lq77tFHa5bX9/1RWGhM167GLF5s3w9XXGG/Bysqopfhjjvsd2P4Zyj4Hbphg33uO++0v99xhzH77GNMIBB7n2bNsp/3ykpjtm+339+PPmqP1csv2+fv37/m7xm0fr0x3brVHJcVK+z3cfjtvvvs88ZyxhnGnH663e+//92YDh3s39RJrO+woO+/t/8nakfPQw815pFH7HdYt252v4wx5qGHjLngAufXjKK582Dcwbm26dOnmxH/Ozh33HGHycjIMO+884759ttvQ7ctW7YYY4x56623TEZGhlm4cKFZu3atOf30083pp58eeq7bb7/d9OvXz7z33nvmgw8+MP369TN/+tOfGlQegjMAAFG88YYxGRmRJ3x//KMxRx9tf3/kEXtCGAzCu3cbM2CAMQ8/bO8PGGC3CSottSc/n31mT0q7d7cnmUGFhcaceKL9/dVXbVjburVm/fHHG/P739fcnzHDnlQeckjkSdeOHXb5q6/WLHv7bWP22sue9D32WGS5jTHmqquMufji6Mdh3DhjLr205v6GDTZsrV0bfftwffsa8/HHNffPPtuYxx+v/3FBa9YY07u3PbmvHW4au//ffWdM+/Y2MAfNnGlMWEVFhJtvjnz+bdvsie5//lN32/fes++ZeILd0Ufb90O02w8/1P94Y+zf8rjj6gbD8nJjzjvPnlD36RM9OFdVGfOTnxhz7LGR+xfPey/cL39pzLnn1tz/6CNbnh9/jNzuxBNtWeMJzpdeat+T69fbv1swSI0aZUxYhVG9GnN8Kirs+yd8+1tuscfJGGPuvtsGr/ALP6eeasy0adHLcMghkceutNR+ftassWFbirwo8cQTxmRlxd6naMF51aro76P334/9PMYY84c/1Byf8OC8aZP9m/frZy8ahAfn+r4/TjjBfmaCduywn5eXX45ehksvNWbKlOjr/vGPmjAbtM8+xjz7rPN+ffNNzQW8ceNqgvPTTxtz+OH2ezzc2WdHHrdLLzVm0SJ7EePee+3tl7+s+e6PZt26usdx/HhjLrkk9mNifYeFu/zymr9ROJerJsQPH27Mu+/a/d1/f/sZbKDmzoMNno4qmoULF6qqqkpHHnmkunfvHrpNmjRJkp1eau7cucrPz9dBBx2k9u3ba/78+aHHT5kyRWeffbZOOeUUnXTSSTr33HP1m9/8pimKBgBA6zZ4sG1GGD5uSJs2Nc0sly2zzWmDTejatJGOOqqmufYDD0hnnBH5WMk+/tNPbbO+s86qWX/xxTV98JYtk3JypL33rll/9NGRTcFffdU2YzznnMhyG2Ob+B5+eORr79plm6COGCE99lhk07/w/apt2TIpbOpL9e1rm5SGl6Up9OtXt8nshAm2mWu0voeN3f+337ZNio8+umb9b38rPfpo9HLV3n+3u26z/KD8fNtU9NBDnfa0xnPP2aaVwduOHdG3CzYJD29u/N13ttwFBXW3X7/ePtf779tmm9HMnGn3I2yaVEnxvffCDR1qmw9//rk9xk88YZswd+hQs838+bY8l10W/TnCFRdLTz5pP0tBmZn2Z6dOtsl9dbW9BbtNNOXx+fBD+7cIf/2jj7bbGiOtXWu7Z4Q3iz70UOmdd6Lvz9q10vDhNfd797bNa995R+rSxX7H9O9fs97psxjLv/4l9elTE/2OP1569llbTskelzZtIptjr1ljj81dd9V9vqIi28XkvffsZyVcfd8ft94a+Xdu29aWKdY+rVolHXhg9HWHHCJt3myPkWS7DPzwQ90yBZ12mvSHP0jdutkm4u3b27IGXXGF/XxOm1b3sb//vX1c+DTBlZX2mG3YEL17ysiRNfu6bJm0336RXRGcPjdS7O+woKVLbbeAG2+su87ns+/J776z77E+fexn75BD7C3JxNkxp64ZYf8U3nfqE/E/l19+uS6//PLohWjXTrNnz9bs2bMbWxwAABBN9+7SySfX3K+qsn3WgmF306a6Jyi9e9tQLNm+geHmzrX9mbOz7Ylu9+72pOh3v5N+/NGePM2caQPHpk02nNZ+7vC+jUuX2p+1+2526CCdfnrd187JsSfqXbrYk66gb7+VFiywATWaeMoS9Prr9qQ9XO1j9Nxz0iWX2N+vv77mxH3FCil8JpFHH7Xh5oorbB/r2hq7/2vX2rA0b570pz/ZsDd+vA1ZtfsRSnb/x4yJXBZt/4uKbH/Rhx6q+xyxnH12fNv5fPbvFB4YrrvOnrT/5Cd1tz/00Mj+wbWtXi3df78dTGnu3Mh1Dfl7S9KVV9r38YEH2qDSvr10zz01F5wCAXvi//LLzn2BJRuGr77a/k2Cdu2q6Q+/e7f09NPS5Mn2/g03SHfc0bTHZ9Mme6EmPPj37m1D1Hff2b7KH30U+Ri/3/ZTj6ZHD9v/OGjrVun77+32mZnS/2bSkWQDZkFB3YsZ9XnsMfv32bzZ9iv+7DMbpIKOPtoen332qVkWvCjVvXvd5zvzTHuLxudz/v4Iv+Ag2c/Z7t3SkUdGf77Vq+3n5p577HfshRfaENu+vb14OXeu7Tffrp29oHHFFTa8R/PQQzYYb95sj/ny5fZzv2mT/Z65+WYbrlevtoF+4MCax7ZtG/kzJ8deBAg6+GDb3z3cc8/VXEBp6OdGiv0dJtljMWGCdN999ljUNnOmdOqp9jPzu9/Z99ntt9uLTkmo0cEZAACkmF27bI3wd99JwZZdlZWRQU+y96NNCfnMM/ZEZ84ce0K+dau9TZsmBS9+X3mlfZ3Zsxv23PWZPdsGz3/9q+66bdtsKOza1Z6QRtOQsowYYU9ug3r0sGGpb197/9xz7e0Xv7D3gyepki1D0Lff2rD1yivRw2xD1N7/rVttbdvf/mZrQr/+2g4E1bGj9Otf1318vPs/Z449kc3Odi7Prl32GN1xh71gEk27dvaiQTC8tW0bWev+n//YWt7GjMRtjD0hnzHD/n1qa+h77+GHbYB4+mkbnu+4I3JwsPx86dJLpYMOqj84z5plj8kpp9Qs22svGw4k6bbbbEC5//7IxzXl8Ym1/5I9BuedZ8sxb54d0O3VV6Xnn7cD0UVz4YX2sz9ihA2zU6bY5dFaF+Tn2xrKOCrWQp5+2l6cOOYY+3k54QR7/+CDa7Zp3z7y+Dz8sH39K6+Uvvgi/teqrb7vj7fflq691l7oiPZeKy2Vtmyxf79582zY/eUvbfCdPVv6+GP72D/8wQb5hQvthcnt223Lj9r69LGf861b7XskeMHj5ptti4jZs+0FsgEDbIsKp5HZhw2LXsu8YEHN4GXhF2qa8jtbsu+xoUPtxdtowfqcc2yLph077AWYJ5+0A7JlZdn3wIYN9v/LlVc27vWbGMEZAIDWYPduG6wWL7YnZcETZJcrchRsydYS1J4S8l//skHxssukiRPtsnbtpIoKeyIXHE31zjvtdn/5i33uQKD+567PQw/Zmrdbb61bC1tZaWtyPv3UjgAd7US0IfspRY6WXVFhQ9B++9Usa9PGniTXN6L2r39tj1f4yX9jRNv/du1suYIjhUv2BLOgIHpwjrX/4bOS7NolLVpka7Drc+ed0Zte1nb00Tb81VZZad9H993X8PeDZC8Y7Nxpa3ajaeh7789/tvtzwQX2/iOP2AAzcqQ9qX/77ZpWGPX55S/tZ+BXv4q+fv/9659yaU+PT6y/t2Sfr08fu4/XXCNddZUNNxMmxB6l+fe/t+F08GB7ISQvz15ECDY/D7rpJlvrOm+eHUU6XpmZ9qJNebl9T3//vW31EV5jHu6bb+z7fU8vStX3/bF8uQ12xx5rQ2A0WVk2JIcfix077EXKu++2+3XccbZGVbLH5eST7Wdo+vToz9m+vf2O2bat5rv67rvtd8kdd0g//7n0wQe29Ul9Vq+WSkrs4//zH3thLJaGfE/WZ9Uq29WndsuG2jIy7G33bumPf7QXRKZPt+WcMEHKzbU17Pvt1/AyNDGCMwAA6W7XLtuseNEiW2t84ok167KyIptgSrYGJby53rPP2kBx4YWRU4b07Gl/DhpUs2zw4JrmoFlZtrbF6bnrc9999uR+2jR7Uh6uosKe1H70kQ0iTn3i4tnPaN57zzbprF0LE48nn7T9WYM1i1u32j6E//xn/SeTQbH2v2dPGyrC+yIOHmxrMqOJtf9DhtTc/+ADG1xiNW+tbcIEG7LvvbfuutGjbVlihY1337W1ZxdeGLl81ChbA1q76XVtTz5pm8UHa/grK22Nbpcu9tg29L23cWNk0OvUydY8v/eeDQClpTUBZscO+3pdutj+qsccE/lce+8d2be6tqFDbS1hdXXsiy97enyysuxncOfOmiaypaU2GHXrZu9fcklNC5Tu3W2Xg1h9yd1ue8wffNAGVbfb1r6Gbz91qg1n999vy1ifV1+1UxitXGmbII8caWs2p0+3tex33BH7sS++aC+MBPvtB/uJ//Sn9rPy29/W//r1fX+88469UDVsmP3udLpQVvsCQvB78Icf6r63JPseeO+92M/397/bi5zB6eWuvjpyCqmf/MTW6Id3wwn3ww81FxQqKuxx3bXLfgeFdyGorbHfk9EsWGDLMXiwvR9scdGli33/BlvsBD3zjP2MDR9u93fyZLvt4YfbCxhJEJybZHAwAACQxCZPtuH3hRci+yJK9iTlrbdqTtCMsbVrwYGA3n7bhubx420tUniz5CFD7El5UVHNsuJiexLp9drnKCqKHFDnzTcjBxlysmCBDY1//GPdAGaMLdcnn9gmgOGDaEUzfLh97aD16+0JYX1lefDBuuElXuvX2/D24Yf2dthhthYxWnPzaJz2f9gwG+DCa0GLi2MHn9r7v22bDZ7h+//667a/ZKzmutH88IOtrT344Jrb88/b/XVyxBH2+ASPTXD7v/3NNmmtz1NP2f0NPnbiRHt8P/zQNm1t6Htv//0jj2VVlW0m2rOnrRksKal5rT/8wb5G8G8ar1277DHfvt2GoGg18UF7enyGDLFB77//rVn25pv2fRMcgOySS+znuXt3+3l6/vm6ffuDfvtbO2hTp072osBbb9mLLMGLBnfdZUPz/PmxWwEEvfeeLUtwHuX9969Z17GjLVftQQdrO/dc288/eGyCn6l//aumRYyT+r4/PvtM+tnPbDB/4QXnGtfXXrPNnbdurVm2YoX9DvR66763JFsLHLzwGM1zz0X2sy4vj+zb/bOf2b9HuB497N9nxw779zjuOLv8mGNsy5d33rHhs7733aZNkQOwNeQ7O9zkyfY4Bv9Gf/ubXf7hh3X/tsbY77jf/97eb9Om5n/Sjh2xBxxsac0yVncCMB0VAABRLFtmx6idMydyjtHvv7fry8vtvM2/+52d6/d3v7PzbW7ZYqdqyc62U9h8803k43fssI+/+mo73cl//2unjRk4sGb+1l277OODc+nOnWvnwN2woW45p0+vO11St27GXHRR3TmGd+2yU7K0aWOndAlfF5w+aMeOmm2NsdM2ZWQYs3ChnYLq9NPtzckTT9i5bWvPDes0HdX339uyRzNiROy5iBu6/8bYeaiHDbNzPL/6qv27BefnDs7NHPw7rVtnp3657z57/MePN+bgg2ueyxg7p++ZZ8Y4GLXMnGnMhAn22ESbQujxx4158cXIqW9ql6m2WPMUG+N87Iype/zqe+/Vfn889JCdIuj55+1Ua5deaudcjjal1qOPxjcd1dln22ndrrnG7tvee9u/6QMPGJOfb8u2a5cxQ4bYKXma+vhcfbWdvuiTT+z7o0sXOy+vMXaqJrfbmAcftJ/7666z+xucMqv28fnLX+zUdEVFdm7gn/7UzhNtjJ2Oqn17+7mv/V6NZtcuYzZurLkfnI7KGGNeeMGW49BD7XELV7tM4YLvw9qf1aC+fSOno6rv++O004w58EB7nMLXB6dO2rKlZtutW+10YBddZOf5fvllOxXX3Xfb9atW2bmQ//IX+zmcPdtOT/bf/0Yv6xdf2PmsN22qWZaTY6ejy8015p//tPM3d+pkn7v2cdh335r7++5r38+LF9d8Pk48sWYqMGPsfvxvCmFjjP1eOf10uy/PPGO/N995x65zeo/W/gzW9tprdaejClq0qGaqNGPsZ+M3v7FT4nm90f9nRJG08zgnG4IzAABR/OY30YNN+In/smX25L1DB3uCFpw39ZNPYs/RGzzRraoy5te/tqEjM9POhRo8uTTGmJISY445xp58DRpkw1Q0tU+6Xngh9muvX2/nr422LvgcwZO08BPphx+2J7gulzFnnWUvBkSzdaudw9Xlsid0tTkF5759Ywe8hgTn+vbfGHvCO26cPYHeZx87B29wXtpgkAgPWosX2wsbGRn2tT7/vO5+5edHL19tweBsjJ13tfZtyxY7V/Exx9Q8JlqZwjVlcDbG+b0X7f1xzz32IlBmpjEnnWTMp59Gf62GBOdHH7Xz586ZYwPn9u325vfb15k0yV7wMKbpj8+WLXb+3b33tgHqz3+OXL94sT0uLpc9TuHz5tY+PtXVxlx7rQ3+Xbva0Bz8nM+ZE/u9Go/cXGOee86+93r0MOaDD+w85YccYj/npaXRyxSuocHZ6ftjy5bY+xN8jksvjXy/ffqpDZydOhnTs6edMzt8juhXX7X7uffe9qLAc8/FPh7nnWc/18bY7+ANG+zf6Ouv7dzbHToYc/vtxtx4ozFDh0aG3mjBOdp+hAfnESMi57j/6itjzjjDvqbPZ8z8+XWPc7T34Z4E59xcY/7975r7X3xh56ru3NmYO++M/Zy1NHcebGNMsB48tW3evFkej0fl5eXqHD7QBQAAQEN8+KFtbjp7dt1paSTbf/e886SxY1u4YEnkjjtsc87aI0MH9eljB3CaMSO+QcTS0ejR9rZhQ91p0oyR/v1v2+x67Fg72FZrddhhtrl427a2OW+wq8DWrfa9c+ihSTOqcrPbtcsOLnfTTfYzdPHFtu9vfr7tsvGrX0mXXaa8b+ep4NR7bNeb666rGfBrwwbbrDo4rVjPnna6qPDm8Oeea0cPd2oKn6KaOw8SnAEAANAw339vB56qPScsgGZ31lNn6fmLnrdBOzgHM5o9DzKqNgAAABomfKAiAIlBaG5RjKoNAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAJIG8F/ISXQTEQHAGAAAAgCRQuqU00UVADARnAAAAAAAcEJwBAAAAAHBAcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcEJwBAAAAAHBAcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcEJwBAAAAAHBAcAYAAAAAwEG7RBcAAAAAAFozf7lfgYqAyivLVVRWJEnyur3yeXwJLhmCCM4AAAAAkCD+cr8GzRmkyupKSVLug7mSJFc7l0omlRCekwRNtQEAAAAgQQIVgVBoDldZXalARSABJUI0BGcAAAAAaG55eYkuAfYAwRkAAAAAmltpaaJLgD1AcAYAAAAAwAHBGQAAAAAAB4yqDQAAAADNxe+XAgGpvFwqslNNyeuVfIyWnUoIzgAAAADQHPx+KTtbqqiw93PtVFNyu6XiYsJzCqGpNgAAAAA0h0DAhubCQmn5cnsrLLTLAkw1lUqocQYAAACA5pSdLeXkJLoU2APUOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAABAK5P3Ql6iixCSTGWJheAMAAAAAK1M6ZbSRBchJJnKEku7RBcAAAAAAForr9srVzuXKqsrI5a72rnkdXslSf5yvwIVAUlSeWW5isqKQo/1eXwtW+BWiuAMAAAAAAni8/hUMqlEgYqA8pfka9ZpsyTVhGJ/uV+D5gyKCNa5D+ZKsuG6ZFIJ4bkFEJwBAAAAIIF8Hp98Hp88Lo9yeuVErAtUBOrURgdVVlcqUBEgOLcA+jgDAAAAAOCA4AwAAAAAaB55yT9idjxoqg0AAAAAzam4OPrvrUFp8o+YHQ+CMwAAAAA0B69XcrulsWMjl7vddh1SBk21AQAAAKA5+Hy2hnn5cum44+zP5cvtMh8DeqUSapwBAAAAoLn4fPbm8Ug5OfVvj6REjTMAAAAApJM0GZArmRCcAQAAACCdpMmAXMmE4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAaLC8F1rP6N3M4wwAAAAArYC/3K9ARUCSVF5ZrqKyInndXvk8vkY9X+mW1jN6N8EZAAAAANKcv9yvQXMGqbK6MrQs98Fcudq5VDKppNHhubWgqTYAAAAAJIGszKxme+5ARSAiNAdVVleGaqHryGu+ptj+cr+KyopUVFYUqv0uKiuSv9zfbK+5J6hxBgAAAIAkUDCqoM4yr9srVztX1NDraueS1+1tvgKVNk9T7Fi135KStgac4AwAAAAAScrn8alkUkmoVjh/Sb5mnTZLkvaof3Iixar9lmpqwJNtvwjOAAAAAJDEfB5fKEh6XB7l9MpJcIlaH/o4AwAAAADggOAMAAAAAIADgjMAAAAAoMUEBzyLptkHPGsk+jgDAAAAwJ7Ky5MK6o6KjbpSccAzgjMAAAAANIbfLwX+NwfyqlVSUZHk9Uq+5At+ySbVBjwjOAMAAABAQ/n9Una2VFFRsyw3V3K7peLiuuE5K6tly4cmRR9nAAAAAGioQMCG5sJCaflyeysstMuCtdDhaMad0qhxBgAAAIDGys6WcpK7mTH2HDXOAAAAAAA4oMYZAAAAABA3f7lfgYqAyivLVVRWJCnKaNjBgdPKy+2gaVJKD5xGcAYAAAAAxMVf7tegOYNUWV0pScp9MFeSnX+5ZFKJDc+1B07LtdvEHDgtBdBUGwAAAAAQl0BFIBSaw1VWV4bmZW7wwGkpgBpnAAAAAEDTS6OB0wjOAAAAAAAr2DdZqumfnMJ9k5sKwRkAAAAAULdvsmT7J4f1Tfa6vXK1c9Vpru1q55LX7W3hArccgjMAAAAApLpoNcVSw2qLw/smZ2fbZcXF0tixdp3PJ5/Hp5JJJQpUBJS/JF+zTptlX6b2qNpphuAMAAAAAKksVk2xVFNb3L4Bz1dP32SfxwZoj8ujnF7p0Ye5PgRnAAAAAEhl0WqKpcja4l6JK146IDgDAAAAQDpIo1Gskw3zOAMAAAAA4IDgDAAAAABImKzMrEQXoV4EZwAAAABAwhSMKkh0EepFcAYAAAAAwAHBGQAAAAAAB4yqDQAAAADpoLjY+T4ajeAMAAAAAKnM65Xcbjtnc21ut12vQIsXK50QnAEAAAAglfl8tnY58L9wnJ8vzZplf/d67foygvOeIDgDAAAAQKrz+exNkjweKScnseVJMwRnAAAAAEDTC+9jneL9rRs9qvaECRM0cuTIOss/++wzuVyuOstfeuklZWdnq2PHjjruuOO0Zs2aiPV33XWXevXqpU6dOmncuHHaunVrY4sGAAAAAGkpKzMr0UWoX3if69xcexs7Nqy/deppVHB+66239NBDD9VZvmnTJp111lmqqqqKWO73+zVmzBhNnjxZxcXF6t+/v0aPHq3du3dLkhYuXKjbb79dTz31lJYtW6ZPPvlE119/fWOKBgAAAABpq2BUQaKLUL9gn+vlyyNvxcU1zclTTIOD844dOzRhwgQdc8wxEcufffZZ5ebmRq1tfvjhh3X44Ydr4sSJ6tevnwoKCuT3+/X6669Lku69915de+21GjlypA4++GDNnj1b8+fPV0VFReP2CgAAAAAQ4nV75WpXN6u52rnkdTdDLbDPZ/tZh99SNDRLjQjOM2fO1NChQ3XCCSdELH/xxRd1yy23aFZw9LYwy5Yt07HHHhu673a7NXToUL377rsyxui9996LWD98+HBVV1dr5cqVDS0eAAAAAKAWn8enkkklWn71ci2/ermO8x2n5VcvV8mkEvk8qRtoW0qDBgdbvXq17r//fq1cuVJz586NWPfAAw9IUqgWOdymTZs0ZsyYiGW9e/dWaWmpAoGAKisrlZVV01a/Q4cO6tatm0pLS2OWpaqqKqJJ+ObNmxuyKwAAAADQqvg8vlBI9rg8yunFyNvxirvG2RijCRMmaMaMGerRo0eDXqSyslIZGRkRyzIyMrR9+3ZVVlaG7kdbH8vMmTPl8XhCtz59+jSoTAAAAAAAxCPu4Py3v/1NO3fu1NVXX93gF3G5XKGAHFRVVaWOHTuG+kTHWh/LjTfeqPLy8tBt48aNDS4XAAAAAAD1ibup9pNPPqkVK1aoa9eukmzQra6uVpcuXfTRRx/J59DROysrS2VlZRHLSktLNWTIEHXr1k0ZGRkqKytTdna2JDsAWSAQiGi+XVtGRkadWmoAAAAAaJC8PKkgBUaqRkLFXeP81FNPqbi4WB9++KE+/PBDTZw4UYcddpg+/PBD9e7d2/Gxw4cP15tvvhm6v23bNq1YsULDhw9X27ZtNWzYsIj1b7/9tjp06KAhQ4Y0fI8AAAAAIF4O4yoBQXHXOPfs2TPifpcuXeRyudSvX796Hzt+/Hjdeeedmjt3rs444wzdcsstGjBggEaMGCFJysvL0y9/+Usde+yx6tWrl6ZMmaLx48c7NtUGAAAAAETh0HIXjdPg6agao3///lqwYIH++te/atCgQVq3bp2effZZtW1rX/6iiy7SlClTdNFFF+nwww/XIYccorvuuqsligYAAAAA6YWm502uQdNRhZsxY0bU5SNHjpQxps7yUaNGadSoUTGfb9q0aZo2bVpjiwMAAAAAQLNokRpnAAAAAABSFcEZAAAAAAAHBGcAAAAAcJKXl+gSIMEIzgAAAADghCmrWj2CMwAAAAAADho9qjYAAAAAIDVlZTrM9VxcHP33VozgDAAAAACtTMGoKHM9e72S2y2NHRu53O2261oxmmoDAAAAACSfz9YwL19ub+eea38WF9t1rRg1zgAAAAAAy+erCckLFya2LEmEGmcAAAAAABwQnAEAAAAAcEBTbQAAAABoLEagbhUIzgAAAABaF79fCgTs7+XlUlGR/d3rjX8QLEagblUIzgAAAABaD79fys6WKipqluXm2p9ud/wjSAdHoA4G8Px8adashoVvpAyCMwAAAIDWIxCwobmw0AbooOJiW3scCMQffMNHoPZ4pJycpi8vkgLBGQAAAEB6CW+KHURNMPYAwRkAAABA+ojWFFuqaYYdq29ycJtg/+Ro/aCdwndWVtPtA5IOwRkAAABA+ojWFDu8GXZOTvS+yVJNMI7VD9qpD3RBQfPuFxKK4AwAAAAg/WRnx+5zXF/f5PrCN02+Wx2CMwAAAABE4xS+0aq0TXQBAAAAAABIZgRnAAAAAECDZWW2ngHRCM4AAAAAgAYrGNV6BkQjOAMAAAAA4IDBwQAAAAAgmuLi6L+j1SE4AwAAAEA4r9fO2Tx2bORyt9uuQ6tDU20AAAAACOfz2Rrm5cvt7bjj7M/iYuZwbqWocQYAAACA2ny+mpDs8TCfcytHjTMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAABar6ysRJcAKYDgDAAAAKD1KihIdAmQAgjOAAAAAAA4IDgDAAAAgBOac7d6BGcAAAAAcEJz7laP4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAAAAAADgjOAAAAAAA4IDgDAAAAAOCA4AwAAAAAgAOCMwAACMl7IS/RRQAAIOkQnAEAQEjpltJEFwEAgKRDcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcEJwBAGhN8hj8CwCAhmqX6AIAAIBm5vdLgYD9fdUqqahI8nolny+x5QIAIEUQnAEASGd+v5SdLVVU1CzLzZXcbqm4mPAMAEAcaKoNAEA6CwRsaC4slJYvt7fCQrssWAsNAAAcUeMMAEBrkJ0t5eQkuhQAAKQkapwBAAAAAHBAjTMAAACA9FNcHP13oBEIzgCApJH3Qp4KRhUkuhgAgFTm9doBEMeOjVzudtt1QCPQVBsAkDRKt5QmughJK+8F5l8GgAix5qX3+WwN8/Ll0rnn1gyMyEwC2APUOAMAkKT85X4FKuzI16u+XaWisiJJktftlc/DyR+AVio4N31wXnqp7tz0Pp+9LVyYmDIi7RCcAQBIQv5yvwbNGaTK6srQstwHcyVJrnYulUwqITwDaH1qz02fa78XmZsezY2m2gAAJKFARSAiNIerrK4M1UQDQKvC3PRIEGqcAQAAAKQW5qZHC6PGGQAAAAAABwRnAAAAAAAcEJwBAEgXsaZmAQAAe4Q+zgAAJEJwOpXaak+p0hClzIMNAEBzIDgDANDSak+nEi44pUr7li8WAACIjuAMAEBLC59OJTu7ZnlxsTR2rF3fK3HFAwAAkQjOAIDmFa1J8p40R04nTKcCAEBKIDgDAJpPrCbJwebIhGcAAJACGFUbANB8wpskL19ub4WFdlm0gbEAAACSEDXOAIDmR5NkAACQwqhxBgAAAADAAcEZAAAAAAAHBGcAAAAAABwQnAEAAAAAcEBwBgCgOeXlJboEAABgDxGcAQBNg4AYXWlpoksAAAD2EMEZANA0CIgAACBNEZwBAAAAAHBAcAYAoLFong4AQKvQLtEFAADAX+5XoCKg8spyFZUVSZK8bq98Hl+CSxaD3y8FAtKqVVKRLa+8XsmXpOUFAAB7hOAMAEgof7lfg+YMUmV1pSQp98FcSZKrnUslk0qSLzz7/VJ2tlRRYe/n2vLK7ZaKi1M2PKfcxQsAAFoQwRkAkFCBikAoNIerrK5UoCKQfMEtELChubDQBmjJBuaxY+26FAzOKXfxAgCAFkZwBgCgMbKzpZycRJeiSaTcxQsAAFoYg4MBAAAAAOCA4AwAAAAAgINGB+cJEyZo5MiRofvr1q3T8ccfL5fLpUGDBumFF16I2P6ll15Sdna2OnbsqOOOO05r1qyJWH/XXXepV69e6tSpk8aNG6etW7c2tmgAAAAAADSZRgXnt956Sw899FDo/u7duzV69Gj1799fJSUluuaaa3T++edr/fr1kiS/368xY8Zo8uTJKi4uVv/+/TV69Gjt3r1bkrRw4ULdfvvteuqpp7Rs2TJ98sknuv7665tg9wAAAAAA2DMNDs47duzQhAkTdMwxx4SWLV26VGvXrtW9996rvn37atKkSTryyCP16KOPSpIefvhhHX744Zo4caL69eungoIC+f1+vf7665Kke++9V9dee61Gjhypgw8+WLNnz9b8+fNVEZzqAwCAdFRcbOeBDt6Ki0OrvG6vXO1cUR/maueS1+1tqVICANDqNXhU7ZkzZ2ro0KE64IADQsF32bJlysnJ0d577x3a7uijj9a7774bWn/ssceG1rndbg0dOlTvvvuujj/+eL333nu6+eabQ+uHDx+u6upqrVy5UkceeWRj9w0AgOTk9dp5n8eOrbvO7Za8dv7kkkklClQEJEn5S/I167RZ9uHMrwwAQItqUHBevXq17r//fq1cuVJz584NLd+0aZOysrIitu3du7dKS0tD68eMGRN1fSAQUGVlZcTjO3TooG7duoUeDwBAWvH5bO1ywIZi5edLs2woltcbmgva5/GFArLH5VFOr/SY/goAgFQTd3A2xmjChAmaMWOGevToEbGusrJSGRkZEcsyMjK0ffv2etdXVlaG7sd6fDRVVVWqqqoK3d+8eXO8uwIAQOL5fKGALI+n8XNC+/01Aby83Db5DgvfAABgz8UdnP/2t79p586duvrqq+usc7lcCgT/af9PVVWVOnbsGFofDMjh6zt37iyXy/bfirY++PhoZs6cqVtuuSXe4gMAkH78fik7WwofEyQ31zb3Li4mPAMA0ETiHhzsySef1IoVK9S1a1d16dJFd9xxh9566y116dJF++67r8rKyiK2Ly0tDTW/zsrKirm+W7duysjIiFi/Y8cOBQKBOs2/w914440qLy8P3TZu3BjvrgAAGiovL9ElQDSBgA3NhYXS8uX2Vlhol9W6oA0AABov7hrnp556KqJWePbs2Vq2bJmefvpprVmzRn/+85+1bdu20ABhb775Zmie5+HDh+vNN98MPXbbtm1asWKFbr31VrVt21bDhg3Tm2++qRNOOEGS9Pbbb6tDhw4aMmRIzPJkZGTUad4NAGgmjDnRcMEm1MHm01LzNaHOzm58U28AAFCvuINzz549I+536dJFLpdL/fr1k8/nk8/n0zXXXKPp06frX//6l95//3099thjkqTx48frzjvv1Ny5c3XGGWfolltu0YABAzRixAhJUl5enn75y1/q2GOPVa9evTRlyhSNHz/esak2AKCZ0Xe28Wo3oc7NtT9pQg0AQEpq8HRU0bRt21bPPvusrrjiCg0aNEj9+vXTP//5T/Xt21eS1L9/fy1YsEDXX3+9rrvuOg0fPlzPPvus2ra1LcUvuugirV+/XhdddJG2bdum888/X3fddVdTFA0A0Bj0nd0z4U2os7PtsuJiO/1UIND0xy9s/ueI3xu6DQAAiKrRwXnGjBkR9wcOHBjRHLu2UaNGadSoUTHXT5s2TdOmTWtscQAATamlg1+6au4m1LHmg/7fXNBxbwMAABw1SY0zACBN0Xc2ucWaDzq8SX082wAAAEcEZwAAmktLNI+OZz7o8G1+8hMuhgAA0EAEZwAAmloyN48uKEjs6wMAkILinscZAADEKdg8evly6dxza+ZYZmA1AABSEjXOAAA0h2Dz6IULE10SAACwh6hxBgAADZL3Ql6iiwAAQIsiOAMAkAKyMrMSXYSQ0i2liS4CAAAtiqbaAIDm1xKjS6eyrPpDccGo5hvUy+v2ytXOpcrqyojlrnYued3M9QwAAMEZANB8knl06WSS4JGufR6fSiaVKFAR0O1v3q5px06TZAO1z8NgZgAAEJwBAM0nOLp0ICDl50uzZtnlXi+jSycZn8cnn8enhT+PPZiZv9yvQEVA5ZXlKiorkkS4BgC0DgRnAEDj+f02FEtSeblUVFQ3FAdHl/Z4pJycxJQTe8xf7tegOYNCzblzH8yVZJtzl0wqITwDANIawRkA0Dh+v5SdLVVU1CzLzbXNsJmvOO0EKgJ1+kBLUmV1pQIVAYIzgJbF2BloYQRnAEDjBAI2NN90k9S3r132xRfSbbfZdbWDc4wBsBiYCgAQN8bOQIIQnAEAjRM8ebnttsjlsU5eYgyAFT4wVf6SfM06zfaDjtV3Nu+FvGYdYRoAkMQYOwMJQnAGADRO+MmLVHMC04iTl+DAVB6XRzm96vaDDg5KJUmrvl3VJANTEcABIEUxdgYSgOAMAGi84MmL1CQnMFmZdZtz1x6USmqagalKt5Q2vqAAAKBVaZvoAgAAEBStBjjWoFRSzcBUAAAAzYngDAAAAKDp5OW1zOvEGHQSaA4EZwAAAABNp7SFusLEGHQSaA4EZwAAAAAAHBCcAQAAAABwQHAGACBd0N8PAIBmQXAGACBd0N8PQKpoqQHEgCZCcAYAIBZO7ACgebTUAGJAEyE4AwAQCyd2AABABGcAAAAAABwRnAEA6cHvl4qK7O2882p+9/sTXTIASB8t2YWF7jJIIu0SXQAAQJpI5IjOfr+UnS1VVNQse+YZ+9PtloqLJZ8vMWUDgHTSkl1Y6C6DJEJwBgA0jUSO6BwI2NBcWGgDdFBxsTR2rF1PcAYAAI1EcAYApI/sbCknJ9GlAAAAaYY+zgAAAAAAOKDGGQDQavjL/QpUBCRJ5ZXlKiorktftlc/TiGbcxcXRfwcAAGmH4AwAaBX85X4NmjNIldWVoWW5D+bK1c6lkkkl8Ydnr9cOODZ2bORyt9uuAwAAaYfgDABoFQIVgYjQHFRZXalARSD+4Ozz2RrmQCByudfLAGQAAKQpgjMAAA3l87W6kOx1e+Vq56pz8cHVziWvm5p2AEB6IzgDAIB6+Tw+lUwqUaAioPwl+Zp12ixJanwfcQAAUgjBGQAAxMXn8cnn8cnj8iinF9N+AQBaD4IzACC21jhytN9f03+5vFwqKqL/MgC0lLIye5NqvoN79bI3IIEIzgCAulrryNF+v5SdLVVU1CzLzbX7XVxMeAaA5vbAA9Itt9Tcz82Vpk+XZsxIWJEASWqb6AIAAJJQcOTo5cvt7bjj7M90D4+BgA3NhYU1+15YaJfVHkUbAND0Jkyo+79nwoRElwqgxhkAEEP4yNEej5TTivq0Zme3rv1NYnkv5KlgVEGiiwGgpYQ3y25t/3uQ1KhxBgAATS7vhbwmeZ7SLaVN8jwAAOwJapwBAECTI/ACrUy0gRUlBldE2iA4AwAAAGi8WAMrSpGDKzJrAVIYwRkAAABA82LWAqQ4gjMAAAAAKS9PKogyGF99zbCDMzEEt8nPl2bNitymqKhm1oLsbLuuuNhOexgIEJyR9AjOAID6ZWUlugRIAf5yvwIV9sS5vLJcRWX25Nrr9srn4aQYSHqlUcYmiLcZdrwzMTBrAVIUwRkAUL9oNRBAGH+5X4PmDFJldWVoWe6D9uTa1c6lkkklhGcgFYXPbx+sKZaoLUarQ3AGAAB7LFARiAjN4SqrKxWoCBCcgVRGTTFaOYIzAABIKtGafNPcGwCQSARnAACQNGI1+aa5N9CMgoN/Mf8yEBPBGQDQKnjdXrnaueo0J3a1c8nr9iaoVK1clBF8YzX5prk30ExqD/5Ve+AvAJIIzgCAVsLn8alkUkmoCXD+knzNOm0WTYAbISuziUZZjzaCL4CWFW3wr/CBvwBIIjgDAFoRn8cXCskel0c5vRjopjEKRjHKOpB26hv8q3btM7XRaGUIzgAAAACi83pts+2xY+uuc7vteqAVIDgDAAAAiM7ns7XLwWbb+fnSrFn291gDiGU1UXcOIIkQnAEAAADE5vPVBGSPp/75nAvozoH00zbRBQAAAACAOqi5RhKhxhkAkNRiTSMlhU8l9b8mhAxeAwDpg5prJBGCMwAgqcWaRkpSzVRSXjF4DQAAaDYEZwBA0qt3GqnGDF4DAAAQJ4IzACA9NHTwGgAAgDgxOBgAAAAAAA4IzgCAlJKVySirAACgZdFUGwBaI7+/pj9wuBToD1wwilFWAQBAyyI4A0Br4/dL2dlSRUXddW63HWQrycMzAABASyI4A0BrEwjY0FxYaAN0UHGxnc4pECA4AwAAhCE4A0BrlZ3NyNMAgJZVXBz9dyDJEZwBAAAANC+v13YHGjs2crnbbdcBSY5RtQEAQMvx+6WiInsrL7c//f5ElwpIf3l5iX19n8/WMC9fbm/nnmt/Mq4GUgQ1zgAAoGVEG5guN5dB6YCWUFqa6BLYz3jwc75wYWLLAjQQNc4AAKBlhA9MF6x1Kiy0y6JNjwYAQJKgxhkAALQsBqYDUldWVqJLACQENc4AAAAA4lNQkOgSAAlBcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcMDgYAAAAkK78fjtqfXDedEnyepn+DWgggjMAAACQjmrPnZ6ba38ydzrQYDTVBgAAANIRc6cDTYYaZwAAsMe8bq9c7VyqrK6ss87VziWv2yuJE3UgIZg7HdhjBGcAALDHfB6fSiaVKFBhw3H+knzNOm2WJBuqfR6fQsG5uLjmgeG/AwCQpAjOAIBWKSszK9FFSDs+j+9/AVnyuDzK6VWrhsvrtX0rx46NXO5223UAEocLWoAjgjMAoFUqGFWQ6CK0Pj6fPSEP9q3Mz5dmzWKEXyCRuKAFxIXBwQAkVl5eokuAdJRFbXLS8vlsX8ucHMnjsT8JzcCea+z/0+AFreXLpeOOqxlEjFG3gQgEZwCJVVqa6BIgHRVQmwy0KC6CJt6e/D8NXtD6yU9qLmwRmoEIBGcAAADsGS6CpgcuOgIx0ccZQMvz+2v6OJaXS0VF9nf6OQIAACAJEZwBtCy/384nWVFRsyw31/50u+lTBQAAgKRDU20ALSsQsKG5sLBmAJLly+39ioqamugweS/Qdw4AAACJQ40zgMTIzraDj8ShdAt95wAAAJA41DgDAAAAAOCA4AwADcGUK0Cz8rq9crVz1VnuaueS1+1NQIkAAKCpNgA0DFOuAM3K5/GpZFKJAhV2vIP8Jfmaddosed1e+TwMHAgASAyCMwC0VsXFzveB5paVFXWxz+MLhWSPy6OcXvGNhwAAQHMhOANAa+P12qm/xo6tu87ttuuBllBQkOgSAAAQF4IzALQ2Pp+tXY4y9Ze8XubRBgAAqIXgDACtkc9HQEZKyMqM3pwbAICWxKjaAAAgaRWMojk3ACDxCM4AkM6YPgsJQk0xACCdEJwBIJ0xfRYShJpiAEA6oY8zAAAAGs7vrxlksLxcKipigEEAaYvgDAAAgIbx+6XsbKmiomZZbq6d0q64mPAMIO3QVBsAgNqKi23tWVGR/R1ApEDAhubCQmn5cnsrLLTLokx1l/cC4y0ASG3UOANAOgo2oQw2n5RoQhkPr9fWmI0dG7nc7bbrAETKzpZycurdrHQL4y0ASG0EZwBIN7WbUObm2p80oayfz2ePUe0aMy46AADQqhGcASDdhDehzM62y4qLbS1qIEAArI/PxzECAAARCM4A0MTyXshLjql44mxCCQBIUfGObB4+VgPjNgCNQnAGgCZGXz4AQJPKy5MKal2QjWdkc8ZtAJoMo2oDQLLKYxRaAICk0kZekA2O27B8uXTccTUjoDPeBdBgBGcArUJKToVS34kSwRoAWq/wUBwejGuHYp/PdtvxeOzPnBxCM9AINNUG0CqkZfPpxtZAAACSXzz9l8MHMwwGYwDNguAMAPWJdvIiNc8URfEO9AIAKcBf7legIqDyynIVldnvTq/bK5+H7zRH8fRfBtCiCM4A4CTWyYvU9CcwnCgBSCP+cr8GzRmkyupKSVLug/a709XOpZJJJYRnJ0wrCCQdgjOApBSspZAUqqlISC1FtJMXqXlOYDhRApBGAhWBUGgOV1ldqUBFgOAcD6YVBJIGwRlA0qldSyHZmoqE1lK05MkLJ0oAAABJhVG1ASSd+mopWj2/3/Z9DvaBLiqyywCktuBn+7zz+GwDQJKhxhkAUkntftDN1d8aQMuq/dl+5hn7k882ACQFgjMAhI9kHdTAkayj9cmWmmH0WPpBA+mJzzYAJDWCM4DWLdpI1lJNLU88TxGjT7bUjKPH0g8aSE98ttFcsrISXQIgpdHHGUBa85f7VVRWFKoFLiorkr88rM9geC3P8uX2Vlhol9WuhY4hVp9siX7ZQHPLeyEv0UUAUkNBQaJLAKQ0apwBpK0GzSFKLQ+Qkkq3lCa6CEByoEYZaFYEZwBpizlEAaCZhXdpibN7C5oJNcpAsyI4AwAAoGG8XjsWxNixkcvdbrtOdnBEVztXnQuYrnYued3eliopADQJgjMAAECKCI7gf/ubt2vasdMkNcPo/fHw+WwNc3AsiPx8adasiBkJfB6fSiaVKFARUP6SfM06bVbiygsAe4jgDAAAkAJqj9vwTLGd67nZRu+vj89XM02WxxN1nAifxyefxyePy6OcXowjASB1Mao2AABACqhv3IZmk8fI5QBAcAYAAEBspYxcDgAEZwAAACQcc3IDSGYEZwAAACQcc3IDSGYMDgYA6Yr5VQG0lKysZnvq4EjikhI/mjiAVqvBNc6fffaZTj31VGVmZmrgwIF64oknQuvefPNNDRkyRC6XS8OGDdP7778f8diXXnpJ2dnZ6tixo4477jitWbMmYv1dd92lXr16qVOnTho3bpy2bt3ayN0CgFYsfH7V3Fx7Gzs2Yn5VAGhSBQXN8rTBkcRzH8xV7oO5eqb4mdDvg+YMkr/c3yyvCwC1NSg47969W2eeeaZ69uypjz76SH/96181adIkLV26VN9++63OPPNMHXnkkfr44481duxYnXzyydq4caMkye/3a8yYMZo8ebKKi4vVv39/jR49Wrt375YkLVy4ULfffrueeuopLVu2TJ988omuv/76pt9jAEh3wflVly+XjjvO/ly+3C7zUTsDIA5+v1RUZG/l5fanv+VDaqyRxKUWGE0cAMI0qKn2119/rYMPPlhz5sxRZmam+vfvr5EjR+rZZ5/V8uXLtc8++2jOnDnaa6+9dOCBB+pf//qX7r//fv3xj3/Uww8/rMMPP1wTJ06UJBUUFKhHjx56/fXXdcIJJ+jee+/Vtddeq5EjR0qSZs+erVNOOUWzZs2S2+1u8h0HgLQWnF81xtyqABCT3y9lZ0sVFTXLcnNtqxUuwDW9vLxmq7EH0HQaVOPcq1cvLVy4UJmZmZKk9957T0uXLpXH49HatWt12GGHaa+99gptf+ihh+qdd96RJC1btkzHHntsaJ3b7dbQoUP17rvvyhij9957L2L98OHDVV1drZUrV+7RDgIAALRGjR6lOhCwobmwsKbFSmGhXRZoXA1vVmbsPtD+cr+KyopUXlmuorIiFZUVta4m2Ez3BaSERg8OduCBB+rzzz9Xbm6urrnmGs2ZM0cfffRRxDZ+v19fffWVJGnTpk0aM2ZMxPrevXurtLRUgUBAlZWVygobWKJDhw7q1q2bSvkyAZAMag+uxWBbAJLcHo9SnZ3dZC1WCkZFr1EN9mEONsfOfTBXkuRq51LJpJImee2UxiCPQNJodHBesGCBvvnmG9122236+OOPdd555+m2227TvHnzNG7cOL366qt6/vnn1atXL0lSZWWlMjIyIp4jIyND27dvV2VlZeh+tPXRVFVVqaqqKnR/8+bNjd0VAIgtfKCt2kKDbdHHDgDQhGL972GQRyBhGh2chwwZIknaunWrxo8fr3Xr1umRRx7RNddco6uuukpDhw7VhAkT9Nprr0mSXC5XKCAHVVVVqXPnznK5XJIUdX3Hjh2jvv7MmTN1yy23NLb4QJPKeyEv5tV0pLjgQFvB5on5+dKsWfZ3r9euLyM4A0Bj+Dw+lUwqUaAioPwl+Zp1mv1+DU411WoH/6r9vyco+H8HQItr8OBg77zzjkaPHh1aNnjwYG3YsEGBQECXXHKJLr74Yn333Xfq3r27rr/+eg0YMECSlJWVpbKysojnKy0t1ZAhQ9StWzdlZGSorKxM2dnZkqQdO3YoEAhENN8Od+ONN+q6664L3d+8ebP69OnTkN0BmsweN4drjVKp6XNwoC1J+slPGGwLAJqQz+OTz+OTx+VRTi++X0PC//cASLgGDQ62YcMGnXvuuaF+y5L0wQcfyO126+OPP9Yll1yitm3bqnv37jLG6Pnnn9fxxx8vyQ729eabb4Yet23bNq1YsULDhw9X27ZtNWzYsIj1b7/9tjp06BCq2a4tIyNDnTt3jrgBSAHR5hhOpXmGGfkUAACg1WlQcD788MN1+OGH66qrrtKaNWv073//WzfccIMmT56sQYMG6Z///Kceeugh+f1+/eY3v9G2bdt06aWXSpLGjx+vZcuWae7cufriiy90zTXXaMCAARoxYoQkKS8vT7Nnz9arr76q4uJiTZkyRePHj4/ZVBtAigqfY5h5hgE0Umscidnr9srVzlVnuaudS153kl90BIAU16Cm2m3bttWiRYs0adIkDRs2TPvss4+uueYaTZ06Ve3atdPf//53/eY3v9G1116rww47TP/+979DU1f1799fCxYs0PXXX6/rrrtOw4cP17PPPqu2bW12v+iii7R+/XpddNFF2rZtm84//3zdddddTb/HABIvvPlZlHmGgyeHwVFWgzg5DMNIq2jF6huJ2edJzwtw9fUHRgMwdzKABmrw4GC9evXSM888E3XdqFGjNGrUqJiPrW/9tGnTNG3atIYWCUCaCT85lBQ6QeTkUIy0CkgKVATqXFiTpMrqSgUqAmn9PUF/4CbCdKcAGqhBTbUBoKX4PD7l9MpRTq+c0Ami48lwXl7LFS6Rwpu608wdSD6t5bsIAFqZRk9HBQBJpTXVHgSbukdp5g4gwfb0u2gPu2H4y/2h1jrB/t8SzbkBYE8RnAEAABKtCbph1O77LbWe/t8A0Nxoqg0AqSrGPPcAUlATdMOI1fdbqun/DQBoHIIzUlLeC/QhAxgRFkgzPp/tfhHshpGTw9gFAJAkCM5ISaVbWlF/VgAAED8GaAPQDOjjDAAAgPSRCoNF+v1S4H9N58vLpSI7iJu8XloZAEmK4AwAAJBMGL8gvfn9Una2VFFRsyzXDuImt5vpBYEkRXAGkLqiXbHnaj2AVMf4BQ2XSv8PAgEbmgsLbYAOKi62o6oHAslZbqCVIzgDSE2xrthztR5AMgoPdkHJGuxSTar+P8jOtgPAAUgJrW5wMEZjBtJE+BX74LQthYV2We2TUwBIpGCwy82NvGVn23WNkJXZNM250+K8KJn/HzBQGZA2Wl2NM6MxAy0oL6/5mxxyxR5AsovWNHcPm+UWjGqa79a0Oi9Kxv8HqTBQGYC4tLoa5/qkxZVXIFlwwgAANYLBLicnsm8rACDpEZxrSasrr0CaaKomiQAAAEBjEJwBJFYc0640VZNEAAAAoDEIzkmOpuNIe0y7AgAAgCRHcE5yNB0HAAAAgMRqdaNqA2hm4XOVlpdLRUX2d+YrBQAAQIoiOAP1aYkpldJFcK7SioqaZbm59qfbbadfITwDAAAgxdBUG6gPUyrFL3yu0uXLa26FhXZ5sCYaAJJNHmOKAABio8YZQNMLzlUKAKmCi6RoKFqkAa0KNc4AGofaGQBAa8bFFqBVITgDaBxOGAC0MukyRaS/3K+isiIVlRWpvLI89Lu/3J/oogFA0qKpNtJW3gt5KhhFEyoAQNNIhyki/eV+DZozSJXVlaFluQ/aQRxd7VwqmVQihnAEgLoIzolE35hmlQ4nOAAANKVARSAiNIerrK5UoCJAcG4pxcXO9wEkFYJzIsVo6uov9ytQYUcfDjah8rq98nn4VwYAAKLzur1ytXNFDcaudi553d7Q+QUSyOu1UzSOHVt3ndtt1wNIOgTnJBOrCVWo+RThuWX4/TVTJ5WXS0VF9h8ZcxCjibRYV4KsrOZ/DQBJwefxqWRSSSgc5y/J16zTZklS6AI8wbkFRDuHkGrOI3w+W7sc3CY/X5o1K3IbAEmH4JxkYjWhCjWfIjg7ilZbLylmjX3U8OL32+mUKipqluXm2qvAxcWhf2i0DMCeaLGuBHQHAVoVn8cX+j/kcXmU0yt1pgbMykyDC32xziGkyPOI4E2SPB6mcARSAMG5pVGTGVv4sQmqdWyCYTVaKI5rwJNaoTZqeAkE7D+8wkL7z0+y/+jGjrXrfLFfi5YBANAKpdD/9niac0uJqZVOiwE9o51DSHXOIwCkHoJzS4qzJrNVinZspIhjUzus1g7FcQ140pBAm50d8wowLQMAAJJS7n97PM25ExWc04rDOQSA1ERwbklx1GS2WnEcm/rCKgAALS4F/7encnNuAEgUgnMicBUyNo4NACAVpeP/r/DpkZgqCUArR3AGAABAjVjTJSVgqqRk7pMNoHVpFcGZ0Y8BAADiFGu6pAQMeEafbADJIu2DM6MfA0g5NI8E0lMqfbaTaLqktO+TnZUG03ABrUDaB2dGPwaQMpKoeSSAJsRnO70Epx8LTj0m7VltfEEaTMMFtAJpH5zj5TQ/cJNLpSvOSSRWP6dgHydG1k4itd/XvM/jk0TNI4FWIdr8y1LTf+b4bLeMlji/qj39WK6dGjM0/RiAtEVwVt3m3LXnB26y8MwV5z0S3s8pWh8ngnMSiPUel3ifxyuJmkcCaS3W/MtS88zBnIDPdlZmK2kC3JLnV/VNPwYgbRGc1YLNubnivMeC/ZzSso9TOoj1Hpd4nwNILtECkJT0czA3RMGoVtIEOBHnV+k4/RgAR2kfnOtr3tvimviKc94Lea3nHyNSQ6rWmCZjFwoGjAGaXz0BKNrMHFIzdudC48Tzvyda03wu6gKIU9oH51jTGDT7P7y8vBYZ7KF0S2mzvwaQ1pK5CwUDxgAJFWtmDimsO1dwRTJefEONWE3zm6NZPoC0lPbBWUrQNAalBNrmtCf9tqg9QITwJn40LQcQJlZXLimsO1cyX3xDjfr6JvN9D6AerSI4p6MWHQU8CTW2eXqDag/SWQu1iEiZpsbBJn7N3LQ82kWb1vS5BdIS45cAQKtAcE5BLTYKeBqKq/aghcuUEC3VIiLBTY2TaYyDWBdt+NwCaSBVx3ZoTWgZAGAPEZxTUIuNAg6kuPqmMGtJfG4BIIFoGQBgDxGcAaS1ZJnCLJlqvwHEJ9bnVnL47KZKF5XWiJYBAPYAwRlAwwSn8whO5SFxxT4OCRvhH0CjxfrcSg4tV9JxNPx0vBiQjvsEoFkRnAHEr/Z0Hrm2fz3TecQnISP8A9gjfG6VVBcD9mRWjQj17FPeC3mNHogUQHoiOKNVia/ZXaDlC5YqmM4DAJBAzR1mg7MfrPp2VauctQRAbARntCrxNbsjONcrO5u+YQBanSar7URSYtYSAE4Izkgb8Q7iQrM7AEBj0HQ3vTH7AQAnrS44c7U4fTVqEBcAAAAAqEerC85cLU5v1CYDABA/KhQAID6tLjg3q+A0PRJT9QAAgKRHhQIAxIfg3FRqT9MjNWqqnlj9dMP76AJoJszrCQBoCsXFzvcBpByCc1OJNk2P1OCpemL106WPLtACkmiuUgBACvJ6bYXJ2LF117nddj2AlERwbmpNME0P/XSRaHkv5NF8DwCaC61b0pfPZytNgl33br9dmjbN/k7XPSClEZyRthjwpPFKt5QmuggAkL5o3ZLefL6agLxwYWLLAqDJtE10AYDmssc1psXFdoC3oqLU6puUl5foEgAAAABphRpnoLZY/ZOSuW9S+Ijuq1bZsF+7SVi0Ud9pNgagFaD7CQBgTxGcE4k+Tsmpdv+k/Hxp1qzkDZmxRnQPH809nm0AIE3R/QQAsKcIzolEH6fkFd4/yePZ4wHfmlW0Ed1rj+Ye3Oamm6S+fe02X3wh3XZb3CO+AwAAAK0VwRlIF04jugebn992W+TyZG5+DgAAACQJgjPQGqRa83MAaCm1B39MpcEgAQAthuAMtBap1Py8GTA9GYAIsQaClGiNk+oYQwZAMyA4A2gVkm1EXYI8kGCxWuJItMZJdYwhA6AZEJwBIAGSLcgD6chf7legIqDyynIVlRVJkrxur3ye/4XiVt4SBwAQP4IzUB+afAFAyvGX+zVoziBVVldKknIfzJUkudq5VDKppCY8AwAQh7aJLgCQ9GjyBQApJ1ARCIXmcJXVlQpUBBJQIgBAKiM4AwAAAADggOAMAAAAAIADgjMAAAAAAA4Izo2Rl5foEgAAgKbEQJAAAAeMqt0Qfr+d73HVKqnITmvBXI8AAKQBBoIEADggOMfL75eys6WKCns/105rIbdbKi6u2S7892j3AQAAAAApheAcr0DAhubCQhugJRuKx46167xeG6LHjq37WLfbrkerlfdCngpGUZsBAAAApCKCc0NlZ0s5OXWX+3w2SAf+Nzdkfr40a5b9nebcrV7pltJEFwEAAABAIxGcm5LPVxOQPZ7oARsAAAAAkFIYVRsAAAAAAAfUOAOtUYxpV/zlfgUqAiqvLFdRmR053uv2yuehqwEAAABaL4Iz0BpFmXbFX+7XoDmDVFldKUnKfdCOHO9q51LJpBLCswOv2ytXO1fo2IVztXPJ62ZwQAAAgFRGcG4uMWr0kFyyMlPr79Sco3MHKgJRg19ldaUCFQGCswOfx6eSSSUKVNjBAfOX5GvWaXZwQGrsAQAAUh/BublEqdFD8km1KaIYnTt5+Ty+UED2uDzK6cXggAAAAOmCwcEAAAAAAHBAcAYAAGknOPZAbYw7AABoDJpqAwCAtBM+9gDjDgAA9hTBGQCaWKoNOgekq+DYA4w7AADYUzTVRpPKeyEv0UUAEi7VBp0DUg3NsAEALY0aZzQpRn0GADS32lPABdEMGwDQXAjOiF9eHtNsAQCSQvgUcAAANDeaaiN+pdQmAwAAAGh9CM5AIzRL/7o8+ocDAAAAyYim2kAj1O5fF5zqpHb/On+5X4GKgMory1VUViTJoQ8eNfoAAABAUiI4A40U3r8u2lQn/nK/Bs0ZpMrqSklS7oO5kmytdMmkkrj75gXDt6T4AjgAAACAJkVwBppJoCIQCs3hKqsrFagIxBV6a4dvKUoAb7oiAwAAAIiC4Awkmt8vBQJSeblUZGuT5fVKPl/M8C2FBfAWLGpIcXH03wEAAIA0RHBOclmZWYkuApqT3y9lZ0sVFfZ+rq1NltttA2n7litKcMCz2kE9YsAzr9eWbezYyAe73XYdAAAAkIYIzkmuYFSC500O1oZKUWtEsYcCARuaCwttgJZsYB471q7r1XJFqT3gWVBEX2qfz5YvEJDy86VZs/63Ee8HAAAApC+CM2KrXRsq1a0RbUxYysuTChJ8QSDZZGdLOTn1b9fMwgc8i72Rz948nqQoMwAAANDcCM6ILVptqBRZI9qY4My0SwAAAABSCMEZ9UuS2lAAAAAASIS2iS4AAAAAkGjBQTJrixgkE0CrRY0zAAAAWr3wQTLzl+Rr1ml2AMyIQTIBtFoEZwAAAEA1g2R6XB7l9HLoplZcHP13AGmL4AwkA/4BAwCQ/LxeO7PI2LGRy91uuw5A2iI4A4lUzz9gr9v2raqsrqzz0Jo+V4E66wAAQDPw+ewF7kBAys+XZtnm3PJ6GzfTCICUQXAGEqmef8A+KdTfSlKMPlcEZwAAWozPZ28eD7OOAK0IwRlItHr+AQf7W0mqv88VAAAAgCbHdFRAM2FaCwAAACA9UOMMNBOmtQAAAADSA8EZaEZxT2sBAAAAIGnRVBsAAABoqKysRJcAQAsiOMPKy2v0Q/3lfhWVFamorEjlleUqKiuSv9zfhIUDAABIMgUFiS4BgBZEU21YpaWNepi/3K9BcwZFzDOc+2CuXO1cKplUQl9eAEDCZWVSMwgA2DPUOGOPBCoCEaE5qLK6MjT3MAAAiVQwippBNAwXWwDURnAGAAAAwnCxBUBtBGcAAAAAABwQnFOQ1+2Vq52rznJXO5e8bm8CSgQAAAAA6YvBwVKQz+NTyaQSBSoCyl+Sr1mnzZJkA3WDBuPy+6XA//ohl5dLRUX2d69X8jXxoF7RXqs5XgcAAAAAmhjBOUX5PD75PD55XB7l9Mpp+BP4/VJ2tlRRUbMsN9f+dLul4uKa5eG/R7vf2NcKvg7hGQAAAEASIzi3VoGADbKFhTbUBhUXS2PH2vVerw23Y8fWfbzbbdcrjpGzo71W+Ou0guDM6JwAAABA6iI4t3bZ2VJOjBprn88G3GAT6/x8aZZtFh5qZl3WgCmnnF4rzTE6JwAAAJC6CM5w5vPV1Ah7PK02+AIAAABovRhVG0DjZNH8HAAAAK0DNc5pzF/uV6Aisil1g0feBmIpoPk5AAAAWgeCc5ryl/s1aM4gVVZXRix3tXOpZFKJiM4AAAAAEB+Cc5oKVATqhGZJqqyuVKAi0GTB2ev2ytXOFTWge93eyI2dprgCAAAAgCRFcMYe8Xl8KplUEmoSnr8kX7NOmxXZJDzWtFahKa3CEK4BAAAAJBmCM/aYz+MLhWSPy6OcXrVG3o41rVVwSiupYeE6XTHYFgAAAJCUCM5oGfVNaxUerqPNF90a7OlgW9TWAwAAAM2C4IzkEQzXzBfdMNTWAwAAAM2qwfM4f/bZZzr11FOVmZmpgQMH6oknngite/fdd3XkkUeqU6dOOvjgg/V///d/EY996aWXlJ2drY4dO+q4447TmjVrItbfdddd6tWrlzp16qRx48Zp69atjdwtNAuaEienYG398uWRt+Li1lNbDwAAADSjBgXn3bt368wzz1TPnj310Ucf6a9//asmTZqkpUuXatu2bRo1apSOPPJIffrpp5oyZYrOP/98lZSUSJL8fr/GjBmjyZMnq7i4WP3799fo0aO1e/duSdLChQt1++2366mnntKyZcv0ySef6Prrr2/6PUbjMW9v8vL5bC19+I3QDAAAADSJBgXnr7/+WgcffLDmzJmj/v376/TTT9fIkSP17LPPatWqVQoEAvrDH/6gvn376tJLL1V2draWLFkiSXr44Yd1+OGHa+LEierXr58KCgrk9/v1+uuvS5LuvfdeXXvttRo5cqQOPvhgzZ49W/Pnz1dFRUWT7zQAAAAAAPFqUHDu1auXFi5cqMzMTEnSe++9p6VLl8rj8Wj//fdXZmam5s2bJ2OM3n//fa1evVoej0eStGzZMh177LGh53K73Ro6dKjeffddGWP03nvvRawfPny4qqurtXLlyqbYTwAAAAAAGqXBfZyDDjzwQB1xxBEaMGCArrnmGu2zzz56+umnNWXKFLlcLg0bNkwnnniiLrzwQknSpk2blFWrj2zv3r1VWlqqQCCgysrKiPUdOnRQt27dVFpa2tgiAi0mK5P+3wlTXCwVFdkbo4kDAACgGTR6VO0FCxbom2++0W233aaPP/5YgwYN0vjx43XllVfqyiuv1NKlS/Xcc89p8+bNcrlcqqysVEZGRsRzZGRkaPv27aqsrAzdj7Y+mqqqKlVVVYXub968ubG7Iq/bK1c7lyqrKyOWu9q55HUzKjHqVzCK/t8tjtHEAQAA0EIaHZyHDBkiSdq6davGjx+vq6++Wt26ddM999yjNm3a6NBDD9XHH3+sG264QY8++mgoPIerqqpS586d5XK5JCnq+o4dO0Z9/ZkzZ+qWW25pbPEj+Dw+lUwqUaAiELHc6/bK52GAJSAphc/9Ha41zf0NAACAFtGg4Pz111/rnXfe0ejRo0PLBg8erA0bNsjv9+uQQw5RmzZtQuuGDh2q++67T5KUlZWlsrKyiOcrLS3VkCFD1K1bN2VkZKisrEzZ2dmSpB07digQCNRp3h1044036rrrrgvd37x5s/r06dOQ3Yng8/gIyUCqCc79DQAAADSjBvVx3rBhg84991x99dVXoWUffPCB3G63DjjgAK1atSpi+9WrV6tnz56S7GBfb775Zmjdtm3btGLFCg0fPlxt27bVsGHDIta//fbb6tChQ6hmu7aMjAx17tw54gYAAAAAQFNrUHA+/PDDdfjhh+uqq67SmjVr9O9//1s33HCDJk+erHHjxmnTpk2aOnWq1q1bpyeeeEIPPfSQrr76aknS+PHjtWzZMs2dO1dffPGFrrnmGg0YMEAjRoyQJOXl5Wn27Nl69dVXVVxcrClTpmj8+PExm2onDAMRAQAAAECr0qCm2m3bttWiRYs0adIkDRs2TPvss4+uueYaTZ06Ve3atdPrr7+ua665RgUFBcrKytK9996rCy64QJLUv39/LViwQNdff72uu+46DR8+XM8++6zatrXZ/aKLLtL69et10UUXadu2bTr//PN11113Nf0eNxYDEQEAAABAq9TgwcF69eqlZ555Juq6Qw89VG+88UbMx44aNUqjRo2KuX7atGmaNm1aQ4vUMsIHIsrPl2bNsssZiKjpxejXDgAAAACJ0OhRtVul4EBEHo+Uk5Po0qSvAqZ2AgAAAJA8GtTHGcknK5PaWQAAAABoTgTnFFcwKgVrZ2mKDQAAACCFEJzR8miKDQAAACCFEJwBAAAAAHBAcEaTos81AAAAgHRDcEaTSsk+1wAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AwAAAADggOAMAAAAAIADgjMAAAAAAA4IzgAAAAAAOCA4AykkKzMr0UUAAAAAWh2CM5BCCkYVJLoIAAAAQKtDcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcEJwBAAAAAHBAcAYAAAAAwAHBGQAAAAAABwRnAAAAAAAcEJwBAAAAAHBAcAYAAAAAwAHBGQAAAAAABwTnNOV1e+Vq56qz3NXOJa/bm4ASAQAAAEBqapfoAqB5+Dw+lUwqUaAioPwl+Zp12ixJNlD7PD5JgcQWEAAAAABSBME5jfk8Pvk8PnlcHuX0ykl0cQAAAAAgJdFUGwAAAAAABwRnAAAAAAAc0FS7tSsudr4PAAAAAK0cwbm18nolt1saO7buOrfbrgcAAAAAEJwbJSsr0SXYcz6frV0O/G907fx8aZYdeVter10PAAAAACA4N0pBQaJL0DR8vpqA7PFIOYy8DQAAAAC1MTgYAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM6wsrISXQIAAAAASEoEZ1gFBYkuAQAAAAAkJYIzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4IzAAAAAAAOCM4AAAAAADggOAMAAAAA4IDgDAAAAACAA4JzK5CVmZXoIgAAAABAyiI4twIFowoSXQQAAAAASFkEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHBCcAQAAAABwQHAGAAAAAMABwRkAAAAAAAcEZwAAAAAAHLRLdAGaijFGkrR58+YElwQAAAAA0JKCOTCYC5ta2gTnLVu2SJL69OmT4JIAAAAAABJhy5Yt8ng8Tf68bUxzRfIWtnv3bn355ZfKzMxUmzZtEl2cVmnz5s3q06ePNm7cqM6dOye6OGmH49u8OL7Ni+Pb/DjGzYvj27w4vs2L49v8OMaN11THzhijLVu2qHfv3mrbtul7JKdNjXPbtm213377JboYkNS5c2e+MJoRx7d5cXybF8e3+XGMmxfHt3lxfJsXx7f5cYwbrymOXXPUNAcxOBgAAAAAAA4IzgAAAAAAOCA4o8lkZGRo+vTpysjISHRR0hLHt3lxfJsXx7f5cYybF8e3eXF8mxfHt/lxjBsvVY5d2gwOBgAAAABAc6DGGQAAAAAABwRnAAAAAAAcEJwBAAAAAHBAcG4F1q9frzPPPFMej0f9+/fXzJkztXv3bklSUVGRDjvsMLlcLg0dOlTvvvtu6HHV1dWaPn26fD6funbtqjFjxujLL78MrV+8eLHatGkTcTvvvPNilsMYo1tuuUU9evRQ586ddcUVV2jbtm2OZf/00091zDHHyOVy6aCDDtKSJUv28Gg0jVQ+ph9++KFGjhypzMxMDRw4UI888kjE+rvvvls+n09dunTR+eefr6+//roxh6hBkuV4hrv11lt12WWXRSzbvXu3pk6dqn322Uddu3ZVfn6+du3aFdfzvfHGG+rfv3+d5V6vt04Zt27dGtdzxiudj++CBQt08MEHq1OnTjriiCP0zjvvhNbt2LFDkyZNUpcuXdStWzdNnTpV1dXVcZWvoVLlGAcZY3TSSSdp3rx5ce9jtPdwfeVvKul8fJ3ew5K0cOFCDR48WHvvvbdOOeUUbdiwIa7yNUSqHN9vv/1WY8eOldfrVVZWlq6//npVVVXF9XyPP/64Ro4cWWf5XXfdpV69eqlTp04aN25ck3//Sul9fOfMmaMDDjhAnTt31oknnqjVq1dH3W7mzJnq169fXGVras11/I0xmj59unr27KmuXbvq6quvVmVlZVxlivV+rG3Tpk362c9+po4dO2rAgAF67LHHGrbzjZDKx8up7FL937f1MkhrVVVV5qCDDjJjx441n3/+uVmyZInp3r27mTt3rtmyZYvZd999ze9+9zuzYcMG89vf/tZ4vV6zefNmY4wxt912m+nXr59ZunSpKSkpMWeccYYZPny42b17tzHGmDvuuMOcccYZ5ttvvw3dgo+N5oEHHjCdOnUy//jHP0xxcbE59dRTzejRo2NuX1lZafr3729Gjx5tVq9ebZ544gnTqVMn8/777zftQWqgVD6m3333ndl3333N1KlTzbp168zf//5343K5zL/+9S9jjDGFhYWmS5cuZsmSJWbt2rXmF7/4hTnhhBOa8OjVlUzHM+jvf/+72Wuvvcyll14asfzOO+80/fr1M8uXLzfLli0zffv2Nbfffnu9z/fJJ5+Ynj17mr59+0Ys/+qrr4wks27duogyNqV0Pr5vvPGGcblcprCw0Kxfv978/ve/N507dzZlZWXGGGNuvPFGs++++5qXX37ZrFy50uTk5Jhf//rXjTySsaXSMTbGmF27dplrr73WSDKPPvpoXPsY6z1cX/mbQjof3/rew//9739N+/btzUMPPWTWrVtnxowZY4444oiGHcB6pNLxPemkk8zJJ59sVq1aZd5++21zwAEHmKlTp9b7fEuXLjV77723GTFiRMTyBQsWmK5du5rXXnvNfPzxx2bo0KHm6quvju/AxSmdj29hYaHp2rWrWbx4sVm7dq254oorTL9+/UxFRUXEdp9//rnp2LFjne+PltCcx/9Pf/qT6dGjh3nttdfMhx9+aAYOHGhuuOGGessU6/0YzVFHHWWOOuoo8/HHH5sXX3zR7LPPPmbRokV7ckgcpfLxciq7MfV/38aD4Jzm3njjDZORkRHxJfbHP/7RHH300eaRRx4x/fr1C72hd+/ebQYMGGAefvhhY4wxAwYMMI888kjocaWlpUaS+eyzz4wxxlx66aVmypQpcZflkEMOMb///e8jnq9NmzZmzZo1Ubd/5plnTKdOncyPP/4YWjZhwgTzi1/8Iu7XbA6pfEwfe+yxiPIZY8xVV11lLr74YmOMMffdd58pKCgIrfvwww+NpIi/QVNLpuO5c+dOM3HiRON2u83AgQPrnFT07ds34kR4/vz5pk+fPo7PGby4MWTIkDonDa+99prp3r173OVrjHQ+vpdffrkZN25cxLKBAweahx56yBhjTGZmZmhfjDHmnXfeMS6XK64Ty4ZIpWO8adMmc/zxx5t+/fqZLl26xBWcnd7D9ZW/KaTz8a3vPXzOOeeYK6+8MrRu/fr1pk+fPk16gS1Vjq/f7w9daAx64oknTFZWluNzzpgxw7hcLnPIIYfUOfE+7rjjzPTp00P3ly5dajIyMsy2bdviLnN90vn4nnDCCebmm28O3d+xY4fZe++9zcsvvxyx3YknnmiOO+64hATn5jr+u3btMt27dzeFhYWh9YWFhebEE090LI/T+7G25cuXG0lm7dq1oWUzZ840Rx11VNz731CpfLycym5M/d+38aCpdpobPHiwFi9erI4dO4aWtWnTRtu2bdOyZct0zDHHqE2bNqHlRx11VKjZxQMPPKAzzjgj4nGSQk2BV61apQMPPDDusqxdu1bDhw8P3e/du7e6d+8es5nE2rVrlZ2dLY/HE1p26KGHNrxZRRNL5WM6YsQIPfbYY6HXDS+7JP3yl7/UxIkTJUkVFRW677771LFjR3Xo0CHuMjVUMh3PrVu36tNPP9Xbb7+tI488MmJdWVmZvvjiCx177LGhZUcffbQ2btyosrKymM+5ZMkSzZs3T5MnT66zrqHla4x0Pr7XXHONpk6dWmf5tm3b9O2332rLli0Rn49DDz1UlZWVWrFiRdxljkeqHGPJNrPz+Xx67733Ir5bnTi9h+srf1NI5+Pr9B6WpNdff12jR48OLe/Xr5/8fr+8Xm/cZa5PqhzfLl26aPHixRHdBcL/f8Xy6quv6sUXX9Q555wTsdwYo/feey/iO2f48OGqrq7WypUr4y5zfdL5+NZu7t22bVsZYyIeM3/+fO3YsSNmt4bm1lzH/9NPP1UgENBZZ50VWn/xxRfrlVdecSxPrPdjNGvXrlX37t01YMCA0LJDDz1UH3zwQbN1O0rl4+VUdqn+79t4EJzTXPfu3XXyySeH7ldVVemRRx7RCSecoE2bNikrKyti+969e6u0tFSSdNJJJ6lHjx6hdXPnzlXPnj2VnZ0tSVq9erX++9//6pBDDtHAgQN18803a+fOnTHL0qNHj4gT4K1bt+r777/XV199FXP7r776SiZsqnG/3x9z+5aSysfU5/NFnCR8++23WrBggU444YSI7ebNmyePx6P58+dr9uzZEV9CTS2ZjmeXLl30xhtvaMiQIXXWbdq0SZIiytO7d29JCpUnmn/+858699xzo64rLi7W7t279bOf/Ux9+vTR2WefrbVr18Z8rsZI5+M7ZMgQHXTQQaH7//nPf7RmzRodf/zx6tq1q9q3bx/x+fD7/ZLU5N8hqXKMJenMM8/UvHnz1L1797j3z+k9XF/5m0I6H1+n9/CPP/6o77//XtXV1Tr55JOVlZWlc8891/FCXWOkyvHNzMzUqFGjQveNMSooKKjz/6u2pUuXRu0bGQgEVFlZGbF/HTp0ULdu3Ry/0xsqnY/vUUcdFRG0582bp927d4dCeSAQ0I033qiCgoKIC/YtqbmOfzDU/n979xvTxP3HAfxD13+AlSK1oowJZsXNZIyxYJZsmrAxxoQHWzRR9wfdjGMbSYXRsUUewBKdW0DdAx4sJBs4HS4xTEzYEnHOTZ0yIZo4R5ARGWyMhSKEtEqpre/fA9NLD9rrAe3k+vu8EhLvuN59eOfbr/ft3bd37tw5euKJJyg9PZ0qKirI7XZL1hOsPQZiNptpYmKCJicnhXWDg4PkdrtpbGxM1j5mS8l5SdVOJN3fysUD5/8jXq+XXn31Vbp58ybZbDZyuVyk0+lE2+h0OtEb1KelpYX27dtH1dXVpNVqaWhoiBwOB6lUKmpqaqIDBw5QU1MTvf/++0GPv2XLFtq3bx/19fXR1NSUsG2wN82GDRtoYmKC9uzZQx6Ph65cuUKNjY0h32T/JaVl6u/WrVv08ssvU2JiIu3YsUP0u7y8PLp8+TKVlZXR+fPnI/bJ5nT3O08pvi+w8K/H9+9A9cjR09NDo6OjZLVa6cSJE6TT6Sg3N5ccDsec9hdKNOd7/fp1euWVV2jz5s2UmZlJarWaNm7cSLt376Z///2XnE4nVVZWklqtjmgfspAzjrTp9UdCNOc7vQ37vqTKarXS9u3bqa2tjVwuFxUWFoq+7CaclJRveXk5/frrr1RdXT2n1wfqc3zLc+3TQ4nmfH/55ReyWq20a9cuYfBUXl5O27ZtEw1W7qdw5u90OsnpdNLu3bvp4MGD1NjYSCdOnAh4RXOunnrqKVqxYgWVlZWRy+WiGzdu0MGDB4lI3nnefCktL6nap5ve38om+6ZupmherxfFxcXQarX44YcfAAAbNmyY8aUPlZWVKCwsFK377rvvoNVqsWPHDtH66fMEW1paoNfr4fF4sGbNGsTHxyM+Ph5r1qwBANy6dQtbt27FAw88gNjYWLz33nt4/PHH8dlnn+HIkSPC9vHx8cIciJMnTyI5ORlqtRoZGRmoqamB0WgMazZzpdRMAWBychJ5eXkwGo24evWq5N+ZmZkpmrMSKQshT3/btm0Tzf+6dOkSiEg0d+b27dsgInR2dqKkpESU98DAgGh/jY2NM+Z3ud1u0f5cLheWLl2Kr7/+OkhKcxfN+d64cQMPPvggsrKyRDXZ7XY8//zzUKlUMBgMqKurQ0JCAlpbW2WmNjsLPePpps8pn0sbDlV/OEVzvoHa8PDwMIhINAfXbrdDpVLhwoULQY87V0rKt6qqCjExMTh06JCwrqCgQJTvdNXV1aI5kiMjIyAidHd3i7Yzm804duxYwOPORzTn29XVhYSEBLzwwgu4c+cOAKC9vR3p6elCny7Vf/wXwp3/0aNHQUQ4c+aMsO7bb7+FXq+H1+uddXs8e/asaPu9e/cCuDfP2WKxQK1WY8WKFairq4v4d88Ays0rWO3+gp0zyKGe/5ieLXRer5def/11On78OLW0tNBzzz1HRPduiZx+y9fQ0JDoNozW1lbavHkzbdmyhRoaGkTbGgwG0fIjjzxCLpeLxsfH6eTJk8JVSrX6XjOLi4uj5uZmamhooJiYGIqLiyOz2UyrVq2i3Nxcevrpp4V9+eZv5efn0/DwMNntdjKZTFRfXy+a63G/KDnT27dvU2FhIV29epXa29vpscceE7Y5c+YMpaSkUEZGhrBu9erV1NXVRW+88cac8wploeQpxXfM4eFhoQ36bk9KSUmhPXv20Icffihs77vNWIpGoyGNRiMs63Q6SktLC/vjfKI53z/++INyc3Np6dKldOrUKVFNJpOJ2tvbaWJignQ6HbndbrLZbBHpQ5SQcShzacNE0vWHSzTnG6wNJyUlkVqtptWrVwuvMZlMZDKZhKkN4aKkfCsrK2n//v30+eefU3FxsbC+sbFR9qNtiO7lq9PpaHh4WLj12e120+jo6IzbUecrmvO9ePEivfjii7R27Vo6fvy4cKzm5mYaGhqi5cuXE9G9bF0uFxmNRmpra6NnnnlGdk3zFYn8k5OTiYhE709f/jdv3px1e8zJyaFr164Jy0ajkYiIsrOzqbe3l0ZHRykxMZG+//57WrJkiezvqJgLJecVrHYfqXMGWWY1zGaKVFpaitjY2BmfunzxxRdIT08XfTteWlqacHXx/Pnz0Gq1KCkpmfFokR9//BGLFy+Gw+EQ1h05cgQmkyloHR988IHoqufZs2eh0WgwNjYWcPvu7m7k5+eLjv3ss8+ioqJC5l8eOUrN9O7duygqKoLJZAp4pbmgoADvvvuusOzxeGCxWPDJJ58ErSEcFkqe/gJ9Gp+amoqmpiZh+csvv8RDDz0ka3+BPm23WCxoaGgQlp1OJxISEtDW1iZrn3JFa752ux0rV65ETk5OwE/fi4uLcfr0aWH5q6++gtlshtfrlVXjbCglY3/Tr4iGEqgNS9UfTtGab6g2nJOTA5vNJiyPjIxApVKhq6tLVo1yKSXf2tpaqFQqHD58eLZ/4owrVgCwbt061NTUiGrW6/UzHqc0X9Gab29vL4xGI4qKijA1NSX6nd1uR39/v/BTW1uLlJQU9Pf3Y3JyUtb+wyUS+Y+Pj0Oj0Yj+v25paYHBYJDVFwZqj9ONjY1h/fr1GB8fF9a9+eab2LhxY8j9z4dS85KqHQjd38rBA+co19HRASJCfX296Dl/Y2NjmJiYgMlkQlVVFQYGBlBVVQWz2QyHw4G7d+/i0Ucfxbp16zAyMiJ6rdvthtPpRGpqKrZu3Yq+vj6cOnUKKSkp2L9/f9BaDhw4gFWrVuHy5cu4cuUKMjMzUVpaGnT7yclJLFu2DDU1NRgcHERdXR0WLVqE/v7+CCQln5Iz/eabbxATE4PW1lbR8X0dSFtbG/R6PY4dO4a+vj6UlJQgKSkJ//zzT9hz9FlIefoLdFLx8ccfIy0tDZcuXUJXVxfS0tLw6aefytpfoEFHeXk5UlNT8fPPP6OnpwebNm1CVlYWPB6PrH3KEc35vv3220hKSsL169dF9fkeJWO1WrF27Vr09PTg3LlzSE1NRW1t7ZyzDEZJGfub78A5VP3hEs35hmrDzc3NiIuLw9GjR9Hb24uXXnop7M9xVkq+g4OD0Gg0qKysFB1L7qO5Ap14Nzc3w2g04vTp0+ju7saTTz6Jd955R250skRzvgUFBbBYLPj7779F27tcrhnb3q9btSOVPwC89dZbePjhh3HhwgV0dnYiIyND1nPFAfkDwczMTOzcuRMDAwM4fPgw9Ho9Ojo65hOJJCXnJVU7ELq/lYMHzlHOZrOBiGb8+Dqvjo4OZGVlQavVIjs7G52dnQCAa9euBXwd+c1P+P3335Gfn49FixYhOTkZH330keSnRh6PB1arFUlJSUhMTERpaWnAztXfxYsXkZ2dDb1ej6ysLPz0009hyWU+lJzppk2bAh7fvzNqamqCxWKBwWBAXl4efvvtt3lnJmUh5ekv0EnxnTt3sGvXLhiNRhiNRlRUVMi+ehnopMHlcsFms2H58uWIjY1FUVER/vrrL1n7kyua8zWZTAHr880JdTgceO2117B48WIsW7YM1dXVEbkqqqSM/c134Cyn/nCI5nxDtWEAaGhowMqVK6HT6ZCXl4c///xTVn1yKSXf+vr6oMeTI9iJ9969e2E2mxEfH4/t27eH9RnOQPTm63A4gm4fqN3fr4FzJPOfmppCWVkZlixZAoPBgJ07d4Y8r/WRO3Du6enB+vXrERsbi4yMjIjMv/en5LxC1S6nvw0lBvB71g9jjDHGGGOMMcZE+HFUjDHGGGOMMcaYBB44M8YYY4wxxhhjEnjgzBhjjDHGGGOMSeCBM2OMMcYYY4wxJoEHzowxxhhjjDHGmAQeODPGGGOMMcYYYxJ44MwYY4wxxhhjjEnggTNjjDHGGGOMMSaBB86MMcYYY4wxxpgEHjgzxhhjjDHGGGMSeODMGGOMMcYYY4xJ4IEzY4wxxhhjjDEm4X9QtVYjxQul2QAAAABJRU5ErkJggg==",
|
|
86
94
|
"text/plain": [
|
|
87
95
|
"<Figure size 1000x800 with 1 Axes>"
|
|
88
96
|
]
|
|
@@ -105,7 +113,7 @@
|
|
|
105
113
|
],
|
|
106
114
|
"metadata": {
|
|
107
115
|
"kernelspec": {
|
|
108
|
-
"display_name": "
|
|
116
|
+
"display_name": "base",
|
|
109
117
|
"language": "python",
|
|
110
118
|
"name": "python3"
|
|
111
119
|
},
|
|
@@ -119,7 +127,7 @@
|
|
|
119
127
|
"name": "python",
|
|
120
128
|
"nbconvert_exporter": "python",
|
|
121
129
|
"pygments_lexer": "ipython3",
|
|
122
|
-
"version": "3.
|
|
130
|
+
"version": "3.12.7"
|
|
123
131
|
}
|
|
124
132
|
},
|
|
125
133
|
"nbformat": 4,
|
|
@@ -9,17 +9,34 @@
|
|
|
9
9
|
"name": "stdout",
|
|
10
10
|
"output_type": "stream",
|
|
11
11
|
"text": [
|
|
12
|
-
"
|
|
13
|
-
"
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
"
|
|
21
|
-
"
|
|
22
|
-
|
|
12
|
+
"Initialize hikyuu_2.7.3_202601130334_RELEASE_macosx_arm64 ...\n",
|
|
13
|
+
"2026-01-13 15:03:15.542 [HKU-I] - current python version: 3.12.7 (main.cpp:74)\n"
|
|
14
|
+
]
|
|
15
|
+
},
|
|
16
|
+
{
|
|
17
|
+
"name": "stderr",
|
|
18
|
+
"output_type": "stream",
|
|
19
|
+
"text": [
|
|
20
|
+
"2026-01-13 15:03:16,712 [INFO] runing in interactive session [<module>] (/Users/fasiondog/workspace/hikyuu/hikyuu/__init__.py:143) [hikyuu::hku_info]\n",
|
|
21
|
+
"2026-01-13 15:03:16,713 [INFO] running in jupyter [<module>] (/Users/fasiondog/workspace/hikyuu/hikyuu/__init__.py:150) [hikyuu::hku_info]\n"
|
|
22
|
+
]
|
|
23
|
+
},
|
|
24
|
+
{
|
|
25
|
+
"name": "stdout",
|
|
26
|
+
"output_type": "stream",
|
|
27
|
+
"text": [
|
|
28
|
+
"2026-01-13 15:03:16.717 [HKU-I] - 插件路径: /Users/fasiondog/workspace/hku_plugin/hikyuu_plugin (StockManager.cpp:113)\n",
|
|
29
|
+
"2026-01-13 15:03:17.390 [HKU-I] - Using SQLITE3 BaseInfoDriver (BaseInfoDriver.cpp:57)\n",
|
|
30
|
+
"2026-01-13 15:03:17.392 [HKU-I] - 加载市场信息…… (StockManager.cpp:755)\n",
|
|
31
|
+
"2026-01-13 15:03:17.392 [HKU-I] - 加载证券类型信息…… (StockManager.cpp:773)\n",
|
|
32
|
+
"2026-01-13 15:03:17.392 [HKU-I] - 加载证券信息…… (StockManager.cpp:653)\n",
|
|
33
|
+
"2026-01-13 15:03:17.459 [HKU-I] - 加载权息数据…… (StockManager.cpp:791)\n",
|
|
34
|
+
"2026-01-13 15:03:17.553 [HKU-I] - 加载板块信息…… (StockManager.cpp:182)\n",
|
|
35
|
+
"2026-01-13 15:03:17.735 [HKU-I] - 加载K线数据…… (StockManager.cpp:186)\n",
|
|
36
|
+
"2026-01-13 15:03:17.736 [HKU-I] - 预加载 day K线数据至缓存 (最大数量: 100000)! (StockManager.cpp:237)\n",
|
|
37
|
+
"2026-01-13 15:03:17.736 [HKU-I] - 0.34 秒数据加载完毕. (StockManager.cpp:193)\n",
|
|
38
|
+
"CPU times: user 1.1 s, sys: 199 ms, total: 1.3 s\n",
|
|
39
|
+
"Wall time: 2.29 s\n"
|
|
23
40
|
]
|
|
24
41
|
}
|
|
25
42
|
],
|
|
@@ -34,43 +51,24 @@
|
|
|
34
51
|
"source": [
|
|
35
52
|
"# 获取实时日线数据\n",
|
|
36
53
|
"\n",
|
|
37
|
-
"目前仅支持获取实时日线数据,使用函数 realtimeUpdate(source, delta=60)。其中,source支持 '
|
|
54
|
+
"目前仅支持获取实时日线数据,使用函数 realtimeUpdate(source, delta=60)。其中,source支持 'qq' | 'qmt',默认使用 qq\n",
|
|
38
55
|
"\n",
|
|
39
|
-
"
|
|
40
|
-
"\n",
|
|
41
|
-
"**使用 sina 或 qq 时,应注意控制两次获取数据之间的间隔时长(使用参数delta,默认时长60s),以免 ip 被 sina 或 qq 列入黑名单。**"
|
|
42
|
-
]
|
|
43
|
-
},
|
|
44
|
-
{
|
|
45
|
-
"cell_type": "code",
|
|
46
|
-
"execution_count": 2,
|
|
47
|
-
"metadata": {},
|
|
48
|
-
"outputs": [
|
|
49
|
-
{
|
|
50
|
-
"name": "stdout",
|
|
51
|
-
"output_type": "stream",
|
|
52
|
-
"text": [
|
|
53
|
-
"更新完毕! 2021-02-12 17:03:51.398109\n",
|
|
54
|
-
"Wall time: 6.1 s\n"
|
|
55
|
-
]
|
|
56
|
-
}
|
|
57
|
-
],
|
|
58
|
-
"source": [
|
|
59
|
-
"%time realtime_update('sina')"
|
|
56
|
+
"**使用 qq 时,应注意控制两次获取数据之间的间隔时长(使用参数delta,默认时长60s),以免 ip 被 sina 或 qq 列入黑名单。**"
|
|
60
57
|
]
|
|
61
58
|
},
|
|
62
59
|
{
|
|
63
60
|
"cell_type": "code",
|
|
64
|
-
"execution_count":
|
|
61
|
+
"execution_count": 4,
|
|
65
62
|
"metadata": {},
|
|
66
63
|
"outputs": [
|
|
67
64
|
{
|
|
68
65
|
"name": "stdout",
|
|
69
66
|
"output_type": "stream",
|
|
70
67
|
"text": [
|
|
71
|
-
"更新间隔小于60秒,未更新\n",
|
|
72
|
-
"上次更新时间:
|
|
73
|
-
"
|
|
68
|
+
"更新间隔小于 60 秒,未更新\n",
|
|
69
|
+
"上次更新时间: 2026-01-13 15:03:17.837374\n",
|
|
70
|
+
"CPU times: user 54 μs, sys: 7 μs, total: 61 μs\n",
|
|
71
|
+
"Wall time: 59.8 μs\n"
|
|
74
72
|
]
|
|
75
73
|
}
|
|
76
74
|
],
|
|
@@ -88,7 +86,7 @@
|
|
|
88
86
|
],
|
|
89
87
|
"metadata": {
|
|
90
88
|
"kernelspec": {
|
|
91
|
-
"display_name": "
|
|
89
|
+
"display_name": "base",
|
|
92
90
|
"language": "python",
|
|
93
91
|
"name": "python3"
|
|
94
92
|
},
|