hikyuu 2.6.7__py3-none-win_amd64.whl → 2.6.8__py3-none-win_amd64.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (141) hide show
  1. hikyuu/__init__.py +6 -2
  2. hikyuu/__init__.pyi +656 -632
  3. hikyuu/analysis/__init__.pyi +563 -539
  4. hikyuu/analysis/analysis.pyi +583 -561
  5. hikyuu/core.pyi +565 -541
  6. hikyuu/cpp/__init__.pyi +2 -2
  7. hikyuu/cpp/concrt140.dll +0 -0
  8. hikyuu/cpp/core310.pyd +0 -0
  9. hikyuu/cpp/core310.pyi +408 -31
  10. hikyuu/cpp/core311.pyd +0 -0
  11. hikyuu/cpp/core311.pyi +408 -31
  12. hikyuu/cpp/core312.pyd +0 -0
  13. hikyuu/cpp/core312.pyi +408 -31
  14. hikyuu/cpp/core313.pyd +0 -0
  15. hikyuu/cpp/core313.pyi +408 -31
  16. hikyuu/cpp/core39.pyd +0 -0
  17. hikyuu/cpp/core39.pyi +408 -31
  18. hikyuu/cpp/hikyuu.dll +0 -0
  19. hikyuu/cpp/hikyuu.lib +0 -0
  20. hikyuu/cpp/hku_hdf5.dll +0 -0
  21. hikyuu/cpp/hku_hdf5_cpp.dll +0 -0
  22. hikyuu/cpp/hku_hdf5_hl.dll +0 -0
  23. hikyuu/cpp/hku_hdf5_hl_cpp.dll +0 -0
  24. hikyuu/cpp/i18n/zh_CN/hikyuu.mo +0 -0
  25. hikyuu/cpp/msvcp140.dll +0 -0
  26. hikyuu/cpp/msvcp140_1.dll +0 -0
  27. hikyuu/cpp/msvcp140_2.dll +0 -0
  28. hikyuu/cpp/msvcp140_atomic_wait.dll +0 -0
  29. hikyuu/cpp/msvcp140_codecvt_ids.dll +0 -0
  30. hikyuu/cpp/sqlite3.dll +0 -0
  31. hikyuu/cpp/vcruntime140.dll +0 -0
  32. hikyuu/cpp/vcruntime140_1.dll +0 -0
  33. hikyuu/draw/__init__.pyi +1 -1
  34. hikyuu/draw/drawplot/__init__.pyi +31 -36
  35. hikyuu/draw/drawplot/bokeh_draw.pyi +651 -637
  36. hikyuu/draw/drawplot/common.pyi +3 -4
  37. hikyuu/draw/drawplot/echarts_draw.pyi +598 -572
  38. hikyuu/draw/drawplot/matplotlib_draw.pyi +872 -879
  39. hikyuu/draw/elder.pyi +19 -20
  40. hikyuu/draw/kaufman.pyi +18 -18
  41. hikyuu/draw/volume.pyi +10 -10
  42. hikyuu/extend.py +19 -0
  43. hikyuu/extend.pyi +594 -574
  44. hikyuu/hub.pyi +69 -67
  45. hikyuu/include/hikyuu/DataType.h +2 -2
  46. hikyuu/include/hikyuu/KData.h +83 -25
  47. hikyuu/include/hikyuu/KDataImp.h +31 -46
  48. hikyuu/include/hikyuu/KDataPrivatedBufferImp.h +73 -0
  49. hikyuu/include/hikyuu/KDataSharedBufferImp.h +69 -0
  50. hikyuu/include/hikyuu/KQuery.h +16 -4
  51. hikyuu/include/hikyuu/KRecord.h +4 -1
  52. hikyuu/include/hikyuu/Stock.h +10 -4
  53. hikyuu/include/hikyuu/StockManager.h +11 -3
  54. hikyuu/include/hikyuu/TransRecord.h +2 -2
  55. hikyuu/include/hikyuu/data_driver/KDataDriver.h +5 -0
  56. hikyuu/include/hikyuu/doc.h +2 -2
  57. hikyuu/include/hikyuu/global/GlobalSpotAgent.h +8 -0
  58. hikyuu/include/hikyuu/global/agent/SpotAgent.h +12 -7
  59. hikyuu/include/hikyuu/indicator/Indicator.h +11 -0
  60. hikyuu/include/hikyuu/indicator/Indicator2InImp.h +9 -0
  61. hikyuu/include/hikyuu/indicator/IndicatorImp.h +83 -15
  62. hikyuu/include/hikyuu/indicator/build_in.h +1 -0
  63. hikyuu/include/hikyuu/indicator/crt/AMA.h +2 -1
  64. hikyuu/include/hikyuu/indicator/crt/ATR.h +1 -1
  65. hikyuu/include/hikyuu/indicator/crt/CONTEXT.h +2 -0
  66. hikyuu/include/hikyuu/indicator/crt/CYCLE.h +3 -0
  67. hikyuu/include/hikyuu/indicator/crt/DMA.h +1 -1
  68. hikyuu/include/hikyuu/indicator/crt/IC.h +14 -6
  69. hikyuu/include/hikyuu/indicator/crt/ICIR.h +8 -4
  70. hikyuu/include/hikyuu/indicator/crt/INSUM.h +2 -0
  71. hikyuu/include/hikyuu/indicator/crt/PRICELIST.h +2 -0
  72. hikyuu/include/hikyuu/indicator/crt/REFX.h +25 -0
  73. hikyuu/include/hikyuu/indicator/crt/SLICE.h +4 -4
  74. hikyuu/include/hikyuu/indicator/crt/SPEARMAN.h +3 -2
  75. hikyuu/include/hikyuu/indicator/imp/IContext.h +5 -0
  76. hikyuu/include/hikyuu/indicator/imp/ICval.h +6 -0
  77. hikyuu/include/hikyuu/indicator/imp/IDropna.h +9 -0
  78. hikyuu/include/hikyuu/indicator/imp/IIc.h +2 -1
  79. hikyuu/include/hikyuu/indicator/imp/IPriceList.h +1 -0
  80. hikyuu/include/hikyuu/indicator/imp/IRefX.h +23 -0
  81. hikyuu/include/hikyuu/plugin/backtest.h +2 -0
  82. hikyuu/include/hikyuu/plugin/extind.h +45 -0
  83. hikyuu/include/hikyuu/plugin/hkuextra.h +21 -0
  84. hikyuu/include/hikyuu/plugin/interface/HkuExtraPluginInterface.h +16 -0
  85. hikyuu/include/hikyuu/plugin/interface/TMReportPluginInterface.h +1 -0
  86. hikyuu/include/hikyuu/python/pybind_utils.h +19 -11
  87. hikyuu/include/hikyuu/trade_manage/Performance.h +0 -1
  88. hikyuu/include/hikyuu/trade_manage/TradeCostBase.h +5 -0
  89. hikyuu/include/hikyuu/trade_manage/TradeManager.h +4 -0
  90. hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +10 -1
  91. hikyuu/include/hikyuu/trade_sys/allocatefunds/AllocateFundsBase.h +5 -0
  92. hikyuu/include/hikyuu/trade_sys/condition/ConditionBase.h +5 -0
  93. hikyuu/include/hikyuu/trade_sys/environment/EnvironmentBase.h +5 -0
  94. hikyuu/include/hikyuu/trade_sys/moneymanager/MoneyManagerBase.h +5 -0
  95. hikyuu/include/hikyuu/trade_sys/multifactor/MultiFactorBase.h +6 -3
  96. hikyuu/include/hikyuu/trade_sys/portfolio/Portfolio.h +4 -0
  97. hikyuu/include/hikyuu/trade_sys/profitgoal/ProfitGoalBase.h +5 -0
  98. hikyuu/include/hikyuu/trade_sys/selector/SelectorBase.h +5 -2
  99. hikyuu/include/hikyuu/trade_sys/signal/SignalBase.h +5 -0
  100. hikyuu/include/hikyuu/trade_sys/slippage/SlippageBase.h +5 -0
  101. hikyuu/include/hikyuu/trade_sys/stoploss/StoplossBase.h +6 -1
  102. hikyuu/include/hikyuu/trade_sys/system/System.h +5 -0
  103. hikyuu/include/hikyuu/utilities/datetime/Datetime.h +2 -2
  104. hikyuu/include/hikyuu/utilities/os.h +4 -0
  105. hikyuu/include/hikyuu/utilities/thread/GlobalMQStealThreadPool.h +1 -1
  106. hikyuu/include/hikyuu/utilities/thread/GlobalMQThreadPool.h +1 -1
  107. hikyuu/include/hikyuu/utilities/thread/GlobalThreadPool.h +1 -1
  108. hikyuu/include/hikyuu/utilities/thread/MQThreadPool.h +1 -1
  109. hikyuu/include/hikyuu/version.h +4 -4
  110. hikyuu/include/hikyuu/views/arrow_common.h +38 -0
  111. hikyuu/include/hikyuu/views/arrow_views.h +117 -0
  112. hikyuu/indicator/indicator.py +4 -5
  113. hikyuu/plugin/backtest.dll +0 -0
  114. hikyuu/plugin/clickhousedriver.dll +0 -0
  115. hikyuu/plugin/dataserver.dll +0 -0
  116. hikyuu/plugin/device.dll +0 -0
  117. hikyuu/plugin/extind.dll +0 -0
  118. hikyuu/plugin/hkuextra.dll +0 -0
  119. hikyuu/plugin/import2hdf5.dll +0 -0
  120. hikyuu/plugin/tmreport.dll +0 -0
  121. hikyuu/strategy/strategy_demo1.py +1 -1
  122. hikyuu/test/test_init.py +19 -19
  123. hikyuu/trade_manage/__init__.pyi +581 -556
  124. hikyuu/trade_manage/broker.pyi +19 -18
  125. hikyuu/trade_manage/broker_easytrader.pyi +6 -4
  126. hikyuu/trade_manage/broker_mail.pyi +22 -24
  127. hikyuu/trade_manage/trade.py +6 -0
  128. hikyuu/trade_manage/trade.pyi +581 -556
  129. hikyuu/trade_sys/__init__.py +4 -0
  130. hikyuu/util/check.pyi +17 -15
  131. hikyuu/util/mylog.pyi +8 -7
  132. hikyuu/util/notebook.pyi +9 -11
  133. hikyuu/util/singleton.pyi +8 -6
  134. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/METADATA +3 -1
  135. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/RECORD +140 -135
  136. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/top_level.txt +1 -1
  137. hikyuu/include/hikyuu/view/MarketView.h +0 -59
  138. /hikyuu/include/hikyuu/{view → views}/__init__.py +0 -0
  139. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/LICENSE +0 -0
  140. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/WHEEL +0 -0
  141. {hikyuu-2.6.7.dist-info → hikyuu-2.6.8.dist-info}/entry_points.txt +0 -0
hikyuu/cpp/core311.pyi CHANGED
@@ -1,8 +1,9 @@
1
1
  from __future__ import annotations
2
2
  import collections.abc
3
3
  import numpy
4
+ import numpy.typing
4
5
  import typing
5
- __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'toPriceList', 'trades_to_df', 'trades_to_np', 'translist_to_df', 'translist_to_np', 'view_license', 'weights_to_df', 'weights_to_np']
6
+ __all__ = ['ABS', 'ACOS', 'AD', 'ADVANCE', 'AF_EqualWeight', 'AF_FixedWeight', 'AF_FixedWeightList', 'AF_MultiFactor', 'AGG_COUNT', 'AGG_MAD', 'AGG_MAX', 'AGG_MEAN', 'AGG_MEDIAN', 'AGG_MIN', 'AGG_PROD', 'AGG_QUANTILE', 'AGG_STD', 'AGG_SUM', 'AGG_VAR', 'ALIGN', 'AMA', 'ASIN', 'ATAN', 'ATR', 'AVEDEV', 'AllocateFundsBase', 'BACKSET', 'BARSCOUNT', 'BARSLAST', 'BARSLASTCOUNT', 'BARSSINCE', 'BARSSINCEN', 'BETWEEN', 'BLOCKSETNUM', 'BUSINESS', 'Block', 'BlockInfoDriver', 'BorrowRecord', 'BrokerPositionRecord', 'CEILING', 'CN_Bool', 'CN_OPLine', 'CONTEXT', 'CONTEXT_K', 'CORR', 'COS', 'COST', 'COUNT', 'CROSS', 'CVAL', 'CYCLE', 'C_AMO', 'C_CLOSE', 'C_HIGH', 'C_KDATA', 'C_LOW', 'C_OPEN', 'C_VOL', 'ConditionBase', 'Constant', 'CostRecord', 'DATE', 'DAY', 'DEBUG', 'DECLINE', 'DEVSQ', 'DIFF', 'DISCARD', 'DMA', 'DOWNNDAY', 'DROPNA', 'DataDriverFactory', 'Datetime', 'DatetimeList', 'Days', 'EMA', 'ERROR', 'EVERY', 'EV_Bool', 'EV_TwoLine', 'EXIST', 'EXP', 'EnvironmentBase', 'FATAL', 'FILTER', 'FINANCE', 'FLOOR', 'FundsRecord', 'HHV', 'HHVBARS', 'HKUException', 'HOUR', 'HSL', 'Hours', 'IC', 'ICIR', 'IF', 'INBLOCK', 'INDEXA', 'INDEXADV', 'INDEXC', 'INDEXDEC', 'INDEXH', 'INDEXL', 'INDEXO', 'INDEXV', 'INFO', 'INSUM', 'INTPART', 'IR', 'ISINF', 'ISINFA', 'ISLASTBAR', 'ISNA', 'IndParam', 'Indicator', 'IndicatorImp', 'JUMPDOWN', 'JUMPUP', 'KALMAN', 'KDATA_PART', 'KData', 'KDataDriver', 'KDataToHdf5Importer', 'KRecord', 'KRecordList', 'LAST', 'LASTVALUE', 'LIUTONGPAN', 'LLV', 'LLVBARS', 'LN', 'LOG', 'LOG_LEVEL', 'LONGCROSS', 'LoanRecord', 'MA', 'MACD', 'MAX', 'MDD', 'MF_EqualWeight', 'MF_ICIRWeight', 'MF_ICWeight', 'MF_Weight', 'MIN', 'MINUTE', 'MM_FixedCapital', 'MM_FixedCapitalFunds', 'MM_FixedCount', 'MM_FixedCountTps', 'MM_FixedPercent', 'MM_FixedRisk', 'MM_FixedUnits', 'MM_Nothing', 'MM_WilliamsFixedRisk', 'MOD', 'MONTH', 'MRR', 'MarketInfo', 'Microseconds', 'Milliseconds', 'Minutes', 'MoneyManagerBase', 'MultiFactorBase', 'NDAY', 'NOT', 'OFF', 'OrderBrokerBase', 'PF_Simple', 'PF_WithoutAF', 'PG_FixedHoldDays', 'PG_FixedPercent', 'PG_NoGoal', 'POS', 'POW', 'PRICELIST', 'Parameter', 'Performance', 'Portfolio', 'PositionRecord', 'PositionRecordList', 'ProfitGoalBase', 'Query', 'RANK', 'RECOVER_BACKWARD', 'RECOVER_EQUAL_BACKWARD', 'RECOVER_EQUAL_FORWARD', 'RECOVER_FORWARD', 'REF', 'REFX', 'REPLACE', 'RESULT', 'REVERSE', 'ROC', 'ROCP', 'ROCR', 'ROCR100', 'ROUND', 'ROUNDDOWN', 'ROUNDUP', 'RSI', 'SAFTYLOSS', 'SE_EvaluateOptimal', 'SE_Fixed', 'SE_MaxFundsOptimal', 'SE_MultiFactor', 'SE_PerformanceOptimal', 'SE_Signal', 'SGN', 'SG_Add', 'SG_AllwaysBuy', 'SG_And', 'SG_Band', 'SG_Bool', 'SG_Buy', 'SG_Cross', 'SG_CrossGold', 'SG_Cycle', 'SG_Div', 'SG_Flex', 'SG_Mul', 'SG_OneSide', 'SG_Or', 'SG_Sell', 'SG_Single', 'SG_Single2', 'SG_Sub', 'SIN', 'SLICE', 'SLOPE', 'SMA', 'SPEARMAN', 'SP_FixedPercent', 'SP_FixedValue', 'SQRT', 'STDEV', 'STDP', 'ST_FixedPercent', 'ST_Indicator', 'ST_Saftyloss', 'SUM', 'SUMBARS', 'SYS_Simple', 'SYS_WalkForward', 'ScoreRecord', 'ScoreRecordList', 'Seconds', 'SelectorBase', 'SignalBase', 'SlippageBase', 'SpotRecord', 'Stock', 'StockManager', 'StockTypeInfo', 'StockWeight', 'StockWeightList', 'StoplossBase', 'Strategy', 'StrategyContext', 'System', 'SystemPart', 'SystemWeight', 'SystemWeightList', 'TAN', 'TA_ACCBANDS', 'TA_ACOS', 'TA_AD', 'TA_ADD', 'TA_ADOSC', 'TA_ADX', 'TA_ADXR', 'TA_APO', 'TA_AROON', 'TA_AROONOSC', 'TA_ASIN', 'TA_ATAN', 'TA_ATR', 'TA_AVGDEV', 'TA_AVGPRICE', 'TA_BBANDS', 'TA_BETA', 'TA_BOP', 'TA_CCI', 'TA_CDL2CROWS', 'TA_CDL3BLACKCROWS', 'TA_CDL3INSIDE', 'TA_CDL3LINESTRIKE', 'TA_CDL3OUTSIDE', 'TA_CDL3STARSINSOUTH', 'TA_CDL3WHITESOLDIERS', 'TA_CDLABANDONEDBABY', 'TA_CDLADVANCEBLOCK', 'TA_CDLBELTHOLD', 'TA_CDLBREAKAWAY', 'TA_CDLCLOSINGMARUBOZU', 'TA_CDLCONCEALBABYSWALL', 'TA_CDLCOUNTERATTACK', 'TA_CDLDARKCLOUDCOVER', 'TA_CDLDOJI', 'TA_CDLDOJISTAR', 'TA_CDLDRAGONFLYDOJI', 'TA_CDLENGULFING', 'TA_CDLEVENINGDOJISTAR', 'TA_CDLEVENINGSTAR', 'TA_CDLGAPSIDESIDEWHITE', 'TA_CDLGRAVESTONEDOJI', 'TA_CDLHAMMER', 'TA_CDLHANGINGMAN', 'TA_CDLHARAMI', 'TA_CDLHARAMICROSS', 'TA_CDLHIGHWAVE', 'TA_CDLHIKKAKE', 'TA_CDLHIKKAKEMOD', 'TA_CDLHOMINGPIGEON', 'TA_CDLIDENTICAL3CROWS', 'TA_CDLINNECK', 'TA_CDLINVERTEDHAMMER', 'TA_CDLKICKING', 'TA_CDLKICKINGBYLENGTH', 'TA_CDLLADDERBOTTOM', 'TA_CDLLONGLEGGEDDOJI', 'TA_CDLLONGLINE', 'TA_CDLMARUBOZU', 'TA_CDLMATCHINGLOW', 'TA_CDLMATHOLD', 'TA_CDLMORNINGDOJISTAR', 'TA_CDLMORNINGSTAR', 'TA_CDLONNECK', 'TA_CDLPIERCING', 'TA_CDLRICKSHAWMAN', 'TA_CDLRISEFALL3METHODS', 'TA_CDLSEPARATINGLINES', 'TA_CDLSHOOTINGSTAR', 'TA_CDLSHORTLINE', 'TA_CDLSPINNINGTOP', 'TA_CDLSTALLEDPATTERN', 'TA_CDLSTICKSANDWICH', 'TA_CDLTAKURI', 'TA_CDLTASUKIGAP', 'TA_CDLTHRUSTING', 'TA_CDLTRISTAR', 'TA_CDLUNIQUE3RIVER', 'TA_CDLUPSIDEGAP2CROWS', 'TA_CDLXSIDEGAP3METHODS', 'TA_CEIL', 'TA_CMO', 'TA_CORREL', 'TA_COS', 'TA_COSH', 'TA_DEMA', 'TA_DIV', 'TA_DX', 'TA_EMA', 'TA_EXP', 'TA_FLOOR', 'TA_HT_DCPERIOD', 'TA_HT_DCPHASE', 'TA_HT_PHASOR', 'TA_HT_SINE', 'TA_HT_TRENDLINE', 'TA_HT_TRENDMODE', 'TA_IMI', 'TA_KAMA', 'TA_LINEARREG', 'TA_LINEARREG_ANGLE', 'TA_LINEARREG_INTERCEPT', 'TA_LINEARREG_SLOPE', 'TA_LN', 'TA_LOG10', 'TA_MA', 'TA_MACD', 'TA_MACDEXT', 'TA_MACDFIX', 'TA_MAMA', 'TA_MAVP', 'TA_MAX', 'TA_MAXINDEX', 'TA_MEDPRICE', 'TA_MFI', 'TA_MIDPOINT', 'TA_MIDPRICE', 'TA_MIN', 'TA_MININDEX', 'TA_MINMAX', 'TA_MINMAXINDEX', 'TA_MINUS_DI', 'TA_MINUS_DM', 'TA_MOM', 'TA_MULT', 'TA_NATR', 'TA_OBV', 'TA_PLUS_DI', 'TA_PLUS_DM', 'TA_PPO', 'TA_ROC', 'TA_ROCP', 'TA_ROCR', 'TA_ROCR100', 'TA_RSI', 'TA_SAR', 'TA_SAREXT', 'TA_SIN', 'TA_SINH', 'TA_SMA', 'TA_SQRT', 'TA_STDDEV', 'TA_STOCH', 'TA_STOCHF', 'TA_STOCHRSI', 'TA_SUB', 'TA_SUM', 'TA_T3', 'TA_TAN', 'TA_TANH', 'TA_TEMA', 'TA_TRANGE', 'TA_TRIMA', 'TA_TRIX', 'TA_TSF', 'TA_TYPPRICE', 'TA_ULTOSC', 'TA_VAR', 'TA_WCLPRICE', 'TA_WILLR', 'TA_WMA', 'TC_FixedA', 'TC_FixedA2015', 'TC_FixedA2017', 'TC_TestStub', 'TC_Zero', 'TIME', 'TIMELINE', 'TIMELINEVOL', 'TR', 'TRACE', 'TURNOVER', 'TimeDelta', 'TimeLineList', 'TimeLineRecord', 'TradeCostBase', 'TradeManager', 'TradeRecord', 'TradeRecordList', 'TradeRequest', 'TransList', 'TransRecord', 'UPNDAY', 'UTCOffset', 'VAR', 'VARP', 'VIGOR', 'WARN', 'WEAVE', 'WEEK', 'WINNER', 'WITHDAY', 'WITHHALFYEAR', 'WITHHOUR', 'WITHHOUR2', 'WITHHOUR4', 'WITHKTYPE', 'WITHMIN', 'WITHMIN15', 'WITHMIN30', 'WITHMIN5', 'WITHMIN60', 'WITHMONTH', 'WITHQUARTER', 'WITHWEEK', 'WITHYEAR', 'WMA', 'YEAR', 'ZHBOND10', 'ZONGGUBEN', 'ZSCORE', 'active_device', 'backtest', 'batch_calculate_inds', 'can_upgrade', 'close_ostream_to_python', 'close_spend_time', 'combinate_ind', 'combinate_index', 'constant', 'crtBrokerTM', 'crtSEOptimal', 'crtTM', 'crt_pf_strategy', 'crt_sys_strategy', 'dates_to_np', 'dates_to_pa', 'df_to_krecords', 'fetch_trial_license', 'find_optimal_system', 'find_optimal_system_multi', 'get_block', 'get_business_name', 'get_data_from_buffer_server', 'get_date_range', 'get_inds_view', 'get_inds_view_pyarrow', 'get_kdata', 'get_last_version', 'get_log_level', 'get_market_view', 'get_market_view_pyarrow', 'get_spot_from_buffer_server', 'get_stock', 'get_system_part_enum', 'get_system_part_name', 'get_version', 'get_version_git', 'get_version_with_build', 'hikyuu_init', 'inner_analysis_sys_list', 'inner_combinate_ind_analysis', 'inner_combinate_ind_analysis_with_block', 'is_valid_license', 'isinf', 'isnan', 'krecords_to_df', 'krecords_to_np', 'krecords_to_pa', 'open_ostream_to_python', 'open_spend_time', 'positions_to_df', 'positions_to_np', 'positions_to_pa', 'register_extra_ktype', 'release_extra_ktype', 'remove_license', 'roundDown', 'roundEx', 'roundUp', 'run_in_strategy', 'scorerecords_to_df', 'scorerecords_to_np', 'set_log_level', 'set_python_in_interactive', 'set_python_in_jupyter', 'spot_agent_is_connected', 'spot_agent_is_running', 'start_data_server', 'start_spot_agent', 'stop_data_server', 'stop_spot_agent', 'systemweights_to_df', 'systemweights_to_np', 'timeline_to_df', 'timeline_to_np', 'timeline_to_pa', 'toPriceList', 'trades_to_df', 'trades_to_np', 'trades_to_pa', 'translist_to_df', 'translist_to_np', 'translist_to_pa', 'view_license', 'weights_to_df', 'weights_to_np', 'weights_to_pa']
6
7
  class AllocateFundsBase:
7
8
  """
8
9
  资产分配算法基类, 子类接口:
@@ -1204,6 +1205,15 @@ class DatetimeList:
1204
1205
  @staticmethod
1205
1206
  def to_np(data: DatetimeList):
1206
1207
  ...
1208
+ @staticmethod
1209
+ def to_numpy(data: DatetimeList):
1210
+ ...
1211
+ @staticmethod
1212
+ def to_pandas(data: DatetimeList):
1213
+ ...
1214
+ @staticmethod
1215
+ def to_pyarrow(data):
1216
+ ...
1207
1217
  def __bool__(self) -> bool:
1208
1218
  """
1209
1219
  Check whether the list is nonempty
@@ -1633,9 +1643,32 @@ class Indicator:
1633
1643
 
1634
1644
  """
1635
1645
  @staticmethod
1636
- def to_df(indicator):
1646
+ def to_numpy(*args, **kwargs):
1637
1647
  """
1638
- 转化为pandas.DataFrame
1648
+ to_np(self: hikyuu.cpp.core311.Indicator) -> numpy.ndarray
1649
+
1650
+ 转化为np.array, 如果为时间序列, 则包含 datetime 日期列
1651
+ """
1652
+ @staticmethod
1653
+ def to_pandas(*args, **kwargs):
1654
+ """
1655
+ to_df(self: hikyuu.cpp.core311.Indicator) -> object
1656
+
1657
+ 转换为 DataFrame
1658
+ """
1659
+ @staticmethod
1660
+ def value_to_numpy(*args, **kwargs):
1661
+ """
1662
+ value_to_np(self: hikyuu.cpp.core311.Indicator) -> numpy.ndarray
1663
+
1664
+ 仅转化值为np.array, 不包含日期列
1665
+ """
1666
+ @staticmethod
1667
+ def value_to_pandas(*args, **kwargs):
1668
+ """
1669
+ value_to_df(self: hikyuu.cpp.core311.Indicator) -> object
1670
+
1671
+ 转换为 DataFrame, 仅包含值
1639
1672
  """
1640
1673
  @typing.overload
1641
1674
  def __add__(self, arg0: Indicator) -> Indicator:
@@ -1972,14 +2005,30 @@ class Indicator:
1972
2005
  """
1973
2006
  是否支持动态指标参数
1974
2007
  """
2008
+ def to_array(self, result_index: typing.SupportsInt = 0) -> numpy.typing.NDArray[numpy.float64]:
2009
+ """
2010
+ 将指定结果集转化为numpy.array
2011
+ """
2012
+ def to_df(self) -> typing.Any:
2013
+ """
2014
+ 转换为 DataFrame
2015
+ """
1975
2016
  def to_np(self) -> numpy.ndarray:
1976
2017
  """
1977
2018
  转化为np.array, 如果为时间序列, 则包含 datetime 日期列
1978
2019
  """
2020
+ def to_pyarrow(self) -> typing.Any:
2021
+ ...
2022
+ def value_to_df(self) -> typing.Any:
2023
+ """
2024
+ 转换为 DataFrame, 仅包含值
2025
+ """
1979
2026
  def value_to_np(self) -> numpy.ndarray:
1980
2027
  """
1981
2028
  仅转化值为np.array, 不包含日期列
1982
2029
  """
2030
+ def value_to_pyarrow(self) -> typing.Any:
2031
+ ...
1983
2032
  @property
1984
2033
  def discard(self) -> int:
1985
2034
  """
@@ -2071,6 +2120,12 @@ class IndicatorImp:
2071
2120
  ...
2072
2121
  def is_serial(self) -> bool:
2073
2122
  ...
2123
+ def print_all_sub_trees(self, show_long_name: bool = False) -> None:
2124
+ ...
2125
+ def print_leaves(self, show_long_name: bool = False) -> None:
2126
+ ...
2127
+ def print_tree(self, show_long_name: bool = False) -> None:
2128
+ ...
2074
2129
  def set_discard(self, arg0: typing.SupportsInt) -> None:
2075
2130
  ...
2076
2131
  @typing.overload
@@ -2141,6 +2196,25 @@ class KData:
2141
2196
  :param colordown: the color of the rectangle where close < open
2142
2197
 
2143
2198
  """
2199
+ @staticmethod
2200
+ def to_numpy(*args, **kwargs):
2201
+ """
2202
+ to_np(self: hikyuu.cpp.core311.KData) -> numpy.ndarray
2203
+
2204
+ 将 KData 转换为 NumPy 数组
2205
+ """
2206
+ @staticmethod
2207
+ def to_pandas(*args, **kwargs):
2208
+ """
2209
+ to_df(self: hikyuu.cpp.core311.KData, with_stock: bool = False) -> object
2210
+
2211
+ to_df(self, with_stock=False) -> pandas.DataFrame
2212
+
2213
+ 转化为pandas的DataFrame
2214
+
2215
+ :param bool with_stock: 包含Stock的代码与名称
2216
+ :rtype: pandas.DataFrame
2217
+ """
2144
2218
  def __eq__(self, arg0: KData) -> bool:
2145
2219
  ...
2146
2220
  def __getitem__(self, arg0: typing.Any) -> typing.Any:
@@ -2195,6 +2269,16 @@ class KData:
2195
2269
 
2196
2270
  :rtype: DatetimeList
2197
2271
  """
2272
+ @typing.overload
2273
+ def get_kdata(self, ktype: str) -> KData:
2274
+ """
2275
+ get_kdata(self, ktype
2276
+
2277
+ 获取相同时间范围内的其他类型K线数据,如日线下对应的分钟线数据
2278
+
2279
+ :param KQuery::KType ktype: 指定需要的K线类型
2280
+ """
2281
+ @typing.overload
2198
2282
  def get_kdata(self, arg0: Datetime, arg1: Datetime) -> KData:
2199
2283
  """
2200
2284
  get_kdata(self, start_date, end_date)
@@ -2252,6 +2336,8 @@ class KData:
2252
2336
  """
2253
2337
  将 KData 转换为 NumPy 数组
2254
2338
  """
2339
+ def to_pyarrow(self) -> typing.Any:
2340
+ ...
2255
2341
  def tocsv(self, arg0: str) -> None:
2256
2342
  """
2257
2343
  tocsv(self, filename)
@@ -2505,6 +2591,15 @@ class KRecordList:
2505
2591
  @staticmethod
2506
2592
  def to_np(data):
2507
2593
  ...
2594
+ @staticmethod
2595
+ def to_numpy(data):
2596
+ ...
2597
+ @staticmethod
2598
+ def to_pandas(data):
2599
+ ...
2600
+ @staticmethod
2601
+ def to_pyarrow(data):
2602
+ ...
2508
2603
  def __bool__(self) -> bool:
2509
2604
  """
2510
2605
  Check whether the list is nonempty
@@ -3693,6 +3788,12 @@ class PositionRecordList:
3693
3788
  ...
3694
3789
  def to_np(self):
3695
3790
  ...
3791
+ def to_numpy(self):
3792
+ ...
3793
+ def to_pandas(self):
3794
+ ...
3795
+ def to_pyarrow(self):
3796
+ ...
3696
3797
  class ProfitGoalBase:
3697
3798
  """
3698
3799
  盈利目标策略基类
@@ -3945,6 +4046,8 @@ class Query:
3945
4046
  MONTH: typing.ClassVar[str] = 'MONTH'
3946
4047
  NO_RECOVER: typing.ClassVar[Query.RecoverType] # value = <RecoverType.NO_RECOVER: 0>
3947
4048
  QUARTER: typing.ClassVar[str] = 'QUARTER'
4049
+ TIMELINE: typing.ClassVar[str] = 'TIMELINE'
4050
+ TRANS: typing.ClassVar[str] = 'TRANS'
3948
4051
  WEEK: typing.ClassVar[str] = 'WEEK'
3949
4052
  YEAR: typing.ClassVar[str] = 'YEAR'
3950
4053
  @staticmethod
@@ -3960,6 +4063,31 @@ class Query:
3960
4063
  """
3961
4064
  获取所有扩展KType
3962
4065
  """
4066
+ @staticmethod
4067
+ def get_ktype_in_min(arg0: str) -> int:
4068
+ """
4069
+ 获取ktype对应的分钟数
4070
+ """
4071
+ @staticmethod
4072
+ def get_ktype_in_seconds(arg0: str) -> int:
4073
+ """
4074
+ 获取ktype对应的秒数
4075
+ """
4076
+ @staticmethod
4077
+ def is_base_ktype(arg0: str) -> bool:
4078
+ """
4079
+ 判断是否为基础KType
4080
+ """
4081
+ @staticmethod
4082
+ def is_extra_ktype(arg0: str) -> bool:
4083
+ """
4084
+ 判断是否为扩展KType
4085
+ """
4086
+ @staticmethod
4087
+ def is_valid_ktype(arg0: str) -> bool:
4088
+ """
4089
+ 判断KType是否有效
4090
+ """
3963
4091
  def __getstate__(self) -> tuple:
3964
4092
  ...
3965
4093
  def __init__(self, start = 0, end = None, ktype = 'DAY', recover_type = ...):
@@ -3981,21 +4109,9 @@ class Query:
3981
4109
  ...
3982
4110
  def __str__(self) -> str:
3983
4111
  ...
3984
- def get_ktype_in_min(self: str) -> int:
3985
- """
3986
- 获取ktype对应的分钟数
3987
- """
3988
- def is_base_ktype(self: str) -> bool:
4112
+ def is_right_opening(self) -> bool:
3989
4113
  """
3990
- 判断是否为基础KType
3991
- """
3992
- def is_extra_ktype(self: str) -> bool:
3993
- """
3994
- 判断是否为扩展KType
3995
- """
3996
- def is_valid_ktype(self: str) -> bool:
3997
- """
3998
- 判断KType是否有效
4114
+ 判断是否为右开区间,即未指定结束时间
3999
4115
  """
4000
4116
  @property
4001
4117
  def end(self) -> int:
@@ -4153,6 +4269,10 @@ class ScoreRecordList:
4153
4269
  ...
4154
4270
  def to_np(self):
4155
4271
  ...
4272
+ def to_numpy(self):
4273
+ ...
4274
+ def to_pandas(self):
4275
+ ...
4156
4276
  class SelectorBase:
4157
4277
  """
4158
4278
  选择器策略基类,实现标的、系统策略的评估和选取算法,自定义选择器策略子类接口:
@@ -4800,6 +4920,15 @@ class Stock:
4800
4920
  获取所有历史财务信息历史记录, 字段信息可参考 StockManager 中的相关方法: get_history_finance_all_fields/get_history_finance_field_index/get_history_finance_field_name 方法
4801
4921
  日常建议直接使用指标 FINANCE 获取财务数据
4802
4922
  """
4923
+ def get_index_range(self, arg0: Query) -> tuple:
4924
+ """
4925
+ get_index_range(self, query) -> (size_t, size_t)
4926
+
4927
+ 根据KQuery指定的条件, 获取对应的K线位置范围: [start_pos, end_pos)
4928
+
4929
+ :param query [in] 指定的查询条件
4930
+ :return (start_pos, end_pos
4931
+ """
4803
4932
  def get_kdata(self, arg0: Query) -> KData:
4804
4933
  """
4805
4934
  get_kdata(self, query)
@@ -5303,9 +5432,20 @@ class StockManager:
5303
5432
  """
5304
5433
  is_holiday(self, d)
5305
5434
 
5306
- 判断日期是否为节假日
5435
+ 判断指定时间对应的日期是否为节假日(仅使用A股市场)
5436
+
5437
+ :param Datetime d: 待判断的时间
5438
+ """
5439
+ def is_trading_hours(self, d: Datetime, market: str = 'SH') -> bool:
5440
+ """
5441
+ is_trading_hours(self, d)
5307
5442
 
5308
- :param Datetime d: 待判断的日期
5443
+ 判断指定时间对应的日期是否为交易时间
5444
+
5445
+ :param Datetime d: 待判断的时间
5446
+ :param str market: 市场简称
5447
+ :return: 是否为交易时间
5448
+ :rtype: bool
5309
5449
  """
5310
5450
  def reload(self) -> None:
5311
5451
  """
@@ -5511,6 +5651,15 @@ class StockWeightList:
5511
5651
  @staticmethod
5512
5652
  def to_np(data):
5513
5653
  ...
5654
+ @staticmethod
5655
+ def to_numpy(data):
5656
+ ...
5657
+ @staticmethod
5658
+ def to_pandas(data):
5659
+ ...
5660
+ @staticmethod
5661
+ def to_pyarrow(data):
5662
+ ...
5514
5663
  def __bool__(self) -> bool:
5515
5664
  """
5516
5665
  Check whether the list is nonempty
@@ -6474,6 +6623,10 @@ class SystemWeightList:
6474
6623
  ...
6475
6624
  def to_np(self):
6476
6625
  ...
6626
+ def to_numpy(self):
6627
+ ...
6628
+ def to_pandas(self):
6629
+ ...
6477
6630
  class TimeDelta:
6478
6631
  """
6479
6632
  时间时长,用于时间计算。可通过以下方式构建:
@@ -6712,6 +6865,15 @@ class TimeLineList:
6712
6865
  @staticmethod
6713
6866
  def to_np(data):
6714
6867
  ...
6868
+ @staticmethod
6869
+ def to_numpy(data):
6870
+ ...
6871
+ @staticmethod
6872
+ def to_pandas(data):
6873
+ ...
6874
+ @staticmethod
6875
+ def to_pyarrow(data):
6876
+ ...
6715
6877
  def __bool__(self) -> bool:
6716
6878
  """
6717
6879
  Check whether the list is nonempty
@@ -7670,6 +7832,12 @@ class TradeRecordList:
7670
7832
  ...
7671
7833
  def to_np(self):
7672
7834
  ...
7835
+ def to_numpy(self):
7836
+ ...
7837
+ def to_pandas(self):
7838
+ ...
7839
+ def to_pyarrow(self):
7840
+ ...
7673
7841
  class TradeRequest:
7674
7842
  """
7675
7843
  交易请求记录。系统内部在实现延迟操作时登记的交易请求信息。暴露该结构的主要目的是用于
@@ -7750,6 +7918,15 @@ class TransList:
7750
7918
  @staticmethod
7751
7919
  def to_np(data):
7752
7920
  ...
7921
+ @staticmethod
7922
+ def to_numpy(data):
7923
+ ...
7924
+ @staticmethod
7925
+ def to_pandas(data):
7926
+ ...
7927
+ @staticmethod
7928
+ def to_pyarrow(data):
7929
+ ...
7753
7930
  def __bool__(self) -> bool:
7754
7931
  """
7755
7932
  Check whether the list is nonempty
@@ -7986,6 +8163,88 @@ def AF_MultiFactor() -> AllocateFundsBase:
7986
8163
 
7987
8164
  创建 MultiFactor 评分权重的资产分配算法实例, 即直接以SE返回的评分作为权重。
7988
8165
  """
8166
+ def AGG_COUNT(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8167
+ """
8168
+ 聚合函数: 非空值计数, 可参考 AGG_STD 帮助
8169
+ """
8170
+ def AGG_MAD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8171
+ """
8172
+ 聚合函数: 平均绝对偏差, 可参考 AGG_STD 帮助
8173
+ """
8174
+ def AGG_MAX(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8175
+ """
8176
+ 聚合函数: 最大值, 可参考 AGG_STD 帮助
8177
+ """
8178
+ def AGG_MEAN(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8179
+ """
8180
+ 聚合函数: 平均值, 可参考 AGG_STD 帮助
8181
+ """
8182
+ def AGG_MEDIAN(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8183
+ """
8184
+ 聚合函数: 中位数, 可参考 AGG_STD 帮助
8185
+ """
8186
+ def AGG_MIN(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8187
+ """
8188
+ 聚合函数: 最小值, 可参考 AGG_STD 帮助
8189
+ """
8190
+ def AGG_PROD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8191
+ """
8192
+ 聚合函数: 乘积, 可参考 AGG_STD 帮助
8193
+ """
8194
+ def AGG_QUANTILE(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1, quantile: typing.SupportsFloat = 0.75) -> Indicator:
8195
+ """
8196
+ AGG_QUANTILE(ind[, ktype=Query.MIN, fill_null=False, unit=1, quantile=0.75])
8197
+
8198
+ 聚合其他K线周期分位数, 可参考 AGG_STD 帮助
8199
+
8200
+ :param Indicator ind: 待计算指标
8201
+ :param KQuery.KType ktype: 聚合的K线周期
8202
+ :param bool fill_null: 是否填充缺失值
8203
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8204
+ :param float quantile: 分位数 (0, 1) 之间
8205
+ :return: 指标数据
8206
+ :rtype: Indicator
8207
+ """
8208
+ def AGG_STD(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1, ddof: typing.SupportsInt = 1) -> Indicator:
8209
+ """
8210
+ AGG_STD(ind[, ktype=Query.MIN, fill_null=False, unit=1, ddof=1])
8211
+
8212
+ 聚合其他K线周期的标准差, 如计算日线时聚合分钟线收盘价的标准差
8213
+
8214
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8215
+ >>> ind = AGG_STD(CLOSE(), ktype=Query.MIN, fill_null=False, unit=1, ddof=1)
8216
+ >>> ind(k)
8217
+
8218
+ :param Indicator ind: 指标数据
8219
+ :param KQuery.KType ktype: 聚合的K线周期
8220
+ :param bool fill_null: 是否填充缺失值
8221
+ :param int unit: 聚合周期单位 (滚动聚合分组单位, 如使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8222
+ :param int ddof: 自由度(1: 样本标准差, 0: 总体标准差)
8223
+ :return: 指标数据
8224
+ :rtype: Indicator
8225
+ """
8226
+ def AGG_SUM(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1) -> Indicator:
8227
+ """
8228
+ 聚合函数: 总和, 可参考 AGG_STD 帮助
8229
+ """
8230
+ def AGG_VAR(ind: Indicator, ktype: str = 'MIN', fill_null: bool = False, unit: typing.SupportsInt = 1, ddof: typing.SupportsInt = 1) -> Indicator:
8231
+ """
8232
+ AGG_VAR(ind[, ktype=Query.MIN, fill_null=False, unit=1, ddof=1])
8233
+
8234
+ 聚合其他K线周期的方差, 如计算日线时聚合分钟线收盘价的方差
8235
+
8236
+ >>> kdata = get_kdata('sh600000', Query(Datetime(20250101), ktype=Query.DAY))
8237
+ >>> ind = AGG_VAR(CLOSE(), ktype=Query.MIN, fill_null=False, unit=1, ddof=1)
8238
+ >>> ind(k)
8239
+
8240
+ :param Indicator ind: 待计算指标
8241
+ :param KQuery.KType ktype: 聚合的K线周期
8242
+ :param bool fill_null: 是否填充缺失值
8243
+ :param int unit: 聚合周期单位 (上下文K线分组单位, 使用日线计算分钟线聚合时, unit=2代表聚合2天的分钟线)
8244
+ :param int ddof: 自由度(1: 样本标准差, 0: 总体标准差)
8245
+ :return: 指标数据
8246
+ :rtype: Indicator
8247
+ """
7989
8248
  @typing.overload
7990
8249
  def ALIGN(ref: DatetimeList, fill_null: bool = True) -> Indicator:
7991
8250
  ...
@@ -8968,11 +9227,16 @@ def Hours(arg0: typing.SupportsInt) -> TimeDelta:
8968
9227
  :param int hours: 小时数
8969
9228
  :rtype: TimeDelta
8970
9229
  """
8971
- def IC(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typing.SupportsInt = 1, spearman: bool = True) -> Indicator:
9230
+ def IC(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typing.SupportsInt = 1, spearman: bool = True, strict: bool = False) -> Indicator:
8972
9231
  """
8973
- IC(ind, stks, query, ref_stk[, n=1])
9232
+ IC(ind, stks, query, ref_stk[, n=1, spearman=True, strict=False]) -> Indicator
9233
+
9234
+ 计算指定的因子相对于参考证券的 IC (实际为 RankIC)
8974
9235
 
8975
- 计算指定的因子相对于参考证券的 IC (实际为 RankIC)
9236
+ IC 原本需要 “t 时刻因子值→t+1 时刻收益”,此处改为计算 “t 时刻因子值→t 时刻之前 N 天的收益”(比如过去 5 天的收益)。
9237
+ (否则当前值都会是缺失NA), 相当于原始预测 IC 右移 n 位。
9238
+
9239
+ 如需严格“t 时刻因子值→t+1 时刻收益“计算,请设置 strict=True (注意此模式下, 后n位为 NA)
8976
9240
 
8977
9241
  :param Indicator ind: 输入因子
8978
9242
  :param sequence(stock)|Block stks 证券组合
@@ -8980,10 +9244,11 @@ def IC(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typing
8980
9244
  :param Stock ref_stk: 参照证券,通常使用 sh000300 沪深300
8981
9245
  :param int n: 时间窗口
8982
9246
  :param bool spearman: 使用 spearman 相关系数,否则为 pearson
9247
+ :param bool strict: 严格模式
8983
9248
  """
8984
- def ICIR(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typing.SupportsInt = 1, rolling_n: typing.SupportsInt = 120, spearman: bool = True) -> Indicator:
9249
+ def ICIR(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typing.SupportsInt = 1, rolling_n: typing.SupportsInt = 120, spearman: bool = True, strict: bool = False) -> Indicator:
8985
9250
  """
8986
- ICIR(ind, stks, query, ref_stk[, n=1, rolling_n=120])
9251
+ ICIR(ind, stks, query, ref_stk[, n=1, rolling_n=120, spearman=True, strict=False])
8987
9252
 
8988
9253
  计算 IC 因子 IR = IC的多周期均值/IC的标准方差
8989
9254
 
@@ -8994,6 +9259,7 @@ def ICIR(ind: Indicator, stks: typing.Any, query: Query, ref_stk: Stock, n: typi
8994
9259
  :param int n: 计算IC时对应的 n 日收益率
8995
9260
  :param int rolling_n: 滚动周期
8996
9261
  :param bool spearman: 使用 spearman 相关系数,否则为 pearson
9262
+ :param bool strict: 是否严格IC模式
8997
9263
  """
8998
9264
  @typing.overload
8999
9265
  def IF(arg0: Indicator, arg1: Indicator, arg2: Indicator) -> Indicator:
@@ -9116,12 +9382,18 @@ def INDEXV(kdata: KData, fill_null: bool = True) -> Indicator:
9116
9382
  返回对应的大盘成交量,分别是上证指数,深证成指,科创50,创业板指
9117
9383
  """
9118
9384
  @typing.overload
9385
+ def INSUM(block: Block, mode: typing.SupportsInt, fill_null: bool = True) -> Indicator:
9386
+ ...
9387
+ @typing.overload
9119
9388
  def INSUM(block: Block, ind: Indicator, mode: typing.SupportsInt, fill_null: bool = True) -> Indicator:
9120
9389
  ...
9121
9390
  @typing.overload
9122
9391
  def INSUM(block: Block, query: Query, ind: Indicator, mode: typing.SupportsInt, fill_null: bool = True) -> Indicator:
9123
9392
  ...
9124
9393
  @typing.overload
9394
+ def INSUM(stks: collections.abc.Sequence, mode: typing.SupportsInt, fill_null: bool = True) -> Indicator:
9395
+ ...
9396
+ @typing.overload
9125
9397
  def INSUM(stks: collections.abc.Sequence, ind: Indicator, mode: typing.SupportsInt, fill_null: bool = True) -> Indicator:
9126
9398
  ...
9127
9399
  @typing.overload
@@ -9960,6 +10232,13 @@ def POW(data: typing.SupportsFloat, n: typing.SupportsInt) -> Indicator:
9960
10232
  :param int|Indicator|IndParam n: 幂
9961
10233
  :rtype: Indicator
9962
10234
  """
10235
+ @typing.overload
10236
+ def PRICELIST(dates: DatetimeList, value: typing.SupportsFloat, discard: typing.SupportsInt = 0) -> Indicator:
10237
+ ...
10238
+ @typing.overload
10239
+ def PRICELIST(size: typing.SupportsInt, value: typing.SupportsFloat, discard: typing.SupportsInt = 0) -> Indicator:
10240
+ ...
10241
+ @typing.overload
9963
10242
  def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_dates: typing.Any = None) -> Indicator:
9964
10243
  """
9965
10244
  PRICELIST([data=None, discard=0, align_dates=None])
@@ -9972,7 +10251,7 @@ def PRICELIST(data: typing.Any = None, discard: typing.SupportsInt = 0, align_da
9972
10251
  :rtype: Indicator
9973
10252
  """
9974
10253
  @typing.overload
9975
- def RANK(block: Block, ref_ind: Indicator, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
10254
+ def RANK(stks: collections.abc.Sequence, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
9976
10255
  ...
9977
10256
  @typing.overload
9978
10257
  def RANK(stks: collections.abc.Sequence, ref_ind: Indicator, mode: typing.SupportsInt = 0, fill_null: bool = True, market: str = 'SH') -> Indicator:
@@ -10079,6 +10358,19 @@ def REF(data: Indicator, n: typing.SupportsInt) -> Indicator:
10079
10358
  :rtype: Indicator
10080
10359
  """
10081
10360
  @typing.overload
10361
+ def REFX(n: typing.SupportsInt) -> Indicator:
10362
+ ...
10363
+ @typing.overload
10364
+ def REFX(ind: Indicator, n: typing.SupportsInt) -> Indicator:
10365
+ """
10366
+ REFX(ind, n)
10367
+
10368
+ REF增强(非安全引用, 勿用于回测)。用于获取指标中第n个周期的值, n为正数时从当前周期向前数, 为负数时从当前周期向后数。
10369
+
10370
+ :param Indicator ind: 指标
10371
+ :param int n: 周期数
10372
+ """
10373
+ @typing.overload
10082
10374
  def REPLACE(old_value: typing.SupportsFloat = ..., new_value: typing.SupportsFloat = 0.0, ignore_discard: bool = False) -> Indicator:
10083
10375
  ...
10084
10376
  @typing.overload
@@ -10662,19 +10954,19 @@ def SIN(arg0: typing.SupportsFloat) -> Indicator:
10662
10954
  def SLICE(data: collections.abc.Sequence[typing.SupportsFloat], start: typing.SupportsInt, end: typing.SupportsInt) -> Indicator:
10663
10955
  ...
10664
10956
  @typing.overload
10665
- def SLICE(start: typing.SupportsInt, end: typing.SupportsInt, result_index: typing.SupportsInt = 0) -> Indicator:
10957
+ def SLICE(start: typing.SupportsInt, end: typing.SupportsInt, result_index: typing.SupportsInt = -1) -> Indicator:
10666
10958
  ...
10667
10959
  @typing.overload
10668
10960
  def SLICE(data: Indicator, start: typing.SupportsInt, end: typing.SupportsInt, result_index: typing.SupportsInt = 0) -> Indicator:
10669
10961
  """
10670
- SLICE(data, start, end, result_index=0)
10962
+ SLICE(data, start, end, result_index=-1)
10671
10963
 
10672
10964
  获取某指标中指定范围 [start, end) 的数据,生成新的指标
10673
10965
 
10674
10966
  :param Indicator|PriceList data: 输入数据
10675
10967
  :param int start: 起始位置
10676
10968
  :param int end: 终止位置(不包含本身)
10677
- :param int result_index: 原输入数据中的结果集
10969
+ :param int result_index: 原输入数据中的结果集, 小于0时表示全部结果集
10678
10970
  """
10679
10971
  @typing.overload
10680
10972
  def SLOPE(n: typing.SupportsInt = 22) -> Indicator:
@@ -13579,6 +13871,10 @@ def dates_to_np(arg0: DatetimeList) -> numpy.ndarray:
13579
13871
  """
13580
13872
  将 DatetimeList 转换为 NumPy 元组
13581
13873
  """
13874
+ def dates_to_pa(arg0: DatetimeList) -> typing.Any:
13875
+ """
13876
+ 将日期列表转换为 pyarrow.Table 对象
13877
+ """
13582
13878
  def df_to_krecords(df: typing.Any, columns: collections.abc.Sequence[str] = ['datetime', 'open', 'high', 'low', 'close', 'amount', 'volume']) -> KRecordList:
13583
13879
  """
13584
13880
  df_to_krecords(df: pd.DataFrame[, columns: dict]) -> KRecordList
@@ -13641,6 +13937,37 @@ def get_date_range(start: Datetime, end: Datetime) -> DatetimeList:
13641
13937
  :rtype: DatetimeList
13642
13938
  """
13643
13939
  @typing.overload
13940
+ def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13941
+ ...
13942
+ @typing.overload
13943
+ def get_inds_view(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
13944
+ """
13945
+ get_inds_view(stks, inds, date[, cal_len=100, ktype=Query.DAY, market='SH']) -> pandas.DataFrame)
13946
+
13947
+ 方式1: 获取指定日期的各证券的各指标结果
13948
+
13949
+ :param stks: 证券列表
13950
+ :param list[Indicator] inds: 指标列表
13951
+ :param Datetime date: 指定日期
13952
+ :param int cal_len: 计算需要的数据长度
13953
+ :param str ktype: k线类型
13954
+ :param str market: 指定行情市场(用于日期对齐)
13955
+
13956
+ 方式2: 获取按指定Query查询计算的各证券的各指标结果, 结果中将包含指定 Query 包含的所有指定市场交易日日期
13957
+ get_inds_view(stks, inds, query, market='SH'])
13958
+
13959
+ :param stks: 指定证券列表
13960
+ :param list[Indicator] inds: 指定指标列表
13961
+ :param Query query: 查询条件
13962
+ :param str market: 指定行情市场(用于日期对齐)
13963
+ """
13964
+ @typing.overload
13965
+ def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], query: Query, market: str = 'SH') -> typing.Any:
13966
+ ...
13967
+ @typing.overload
13968
+ def get_inds_view_pyarrow(stks: collections.abc.Sequence, inds: collections.abc.Sequence[Indicator], date: Datetime, cal_len: typing.SupportsInt = 100, ktype: str = 'DAY', market: str = 'SH') -> typing.Any:
13969
+ ...
13970
+ @typing.overload
13644
13971
  def get_kdata(arg0: str, arg1: Query) -> KData:
13645
13972
  ...
13646
13973
  @typing.overload
@@ -13686,6 +14013,8 @@ def get_market_view(stks: collections.abc.Sequence, date: Datetime = ..., market
13686
14013
  :return: 指定股票列表最后行情数据
13687
14014
  :rtype: pandas.DataFrame
13688
14015
  """
14016
+ def get_market_view_pyarrow(stks: collections.abc.Sequence, date: Datetime = ..., market: str = 'SH') -> typing.Any:
14017
+ ...
13689
14018
  def get_spot_from_buffer_server(arg0: str, arg1: str, arg2: str, arg3: Datetime) -> list[SpotRecord]:
13690
14019
  """
13691
14020
  get_spot_from_buffer_server(addr: str, market: str, code: str, datetime: str)
@@ -13772,6 +14101,10 @@ def krecords_to_df(arg0: KRecordList) -> typing.Any:
13772
14101
  ...
13773
14102
  def krecords_to_np(arg0: KRecordList) -> numpy.ndarray:
13774
14103
  ...
14104
+ def krecords_to_pa(arg0: KRecordList) -> typing.Any:
14105
+ """
14106
+ 将KRecordList转换为parraw.Table
14107
+ """
13775
14108
  def open_ostream_to_python() -> None:
13776
14109
  ...
13777
14110
  def open_spend_time() -> None:
@@ -13784,12 +14117,22 @@ def positions_to_df(arg0: PositionRecordList) -> typing.Any:
13784
14117
 
13785
14118
  将持仓记录列表转换为 pandas DataFrame
13786
14119
 
14120
+ 注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
14121
+
13787
14122
  :param PositionRecordList positions: 持仓记录列表
13788
14123
  :return: 包含持仓记录的 pandas DataFrame
13789
14124
  :rtype: pandas.DataFrame
13790
14125
  """
13791
14126
  def positions_to_np(arg0: PositionRecordList) -> numpy.ndarray:
13792
- ...
14127
+ """
14128
+ 将持仓列表转换为Numpy
14129
+
14130
+ 注意: 其中的当前市值、利润、盈亏等计算值均以日线计算, 如使用日线一下级别回测时, 对未清仓的持仓记录需要自行重新计算!
14131
+ """
14132
+ def positions_to_pa(arg0: PositionRecordList) -> typing.Any:
14133
+ """
14134
+ 将交易记录列表转换为 pyarrow.Table 对象
14135
+ """
13793
14136
  @typing.overload
13794
14137
  def register_extra_ktype(ktype: str, basetype: str, minutes: typing.SupportsInt, get_phase_end: collections.abc.Callable[[Datetime], Datetime]) -> None:
13795
14138
  ...
@@ -13919,6 +14262,14 @@ def set_python_in_interactive(arg0: bool) -> None:
13919
14262
  ...
13920
14263
  def set_python_in_jupyter(arg0: bool) -> None:
13921
14264
  ...
14265
+ def spot_agent_is_connected() -> bool:
14266
+ """
14267
+ 判断行情数据接收代理是否已连接
14268
+ """
14269
+ def spot_agent_is_running() -> bool:
14270
+ """
14271
+ 判断行情数据接收代理是否在运行
14272
+ """
13922
14273
  def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.SupportsInt = 2, save_tick: bool = False, buf_tick: bool = False) -> None:
13923
14274
  """
13924
14275
  start_data_server(addr: str[, work_num: int=2])
@@ -13932,7 +14283,15 @@ def start_data_server(addr: str = 'tcp://0.0.0.0:9201', work_num: typing.Support
13932
14283
  :return: None
13933
14284
  """
13934
14285
  def start_spot_agent(print: bool = False, worker_num: typing.SupportsInt = 1, addr: str = '') -> None:
13935
- ...
14286
+ """
14287
+ start_spot_agent([print=False, worker_num=1, addr=""])
14288
+
14289
+ 启动行情数据接收代理
14290
+
14291
+ :param print: 是否打印日志
14292
+ :param worker_num: 工作线程数
14293
+ :param addr: 行情采集服务地址
14294
+ """
13936
14295
  def stop_data_server() -> None:
13937
14296
  """
13938
14297
  stop_data_server()
@@ -13940,7 +14299,9 @@ def stop_data_server() -> None:
13940
14299
  停止数据缓存服务
13941
14300
  """
13942
14301
  def stop_spot_agent() -> None:
13943
- ...
14302
+ """
14303
+ 终止行情数据接收代理
14304
+ """
13944
14305
  def systemweights_to_df(arg0: SystemWeightList) -> typing.Any:
13945
14306
  ...
13946
14307
  def systemweights_to_np(arg0: SystemWeightList) -> numpy.ndarray:
@@ -13953,6 +14314,10 @@ def timeline_to_np(arg0: TimeLineList) -> numpy.ndarray:
13953
14314
  """
13954
14315
  将分时线记录转换为NumPy元组
13955
14316
  """
14317
+ def timeline_to_pa(arg0: TimeLineList) -> typing.Any:
14318
+ """
14319
+ 将分时线记录转换为 pyarrow.Table 对象
14320
+ """
13956
14321
  def toPriceList(arg0: collections.abc.Sequence) -> list[float]:
13957
14322
  """
13958
14323
  将 python list/tuple/np.arry 对象转化为 PriceList 对象
@@ -13969,6 +14334,10 @@ def trades_to_df(arg0: TradeRecordList) -> typing.Any:
13969
14334
  """
13970
14335
  def trades_to_np(arg0: TradeRecordList) -> numpy.ndarray:
13971
14336
  ...
14337
+ def trades_to_pa(arg0: TradeRecordList) -> typing.Any:
14338
+ """
14339
+ 将交易记录列表转换为 pyarrow.Table 对象
14340
+ """
13972
14341
  def translist_to_df(arg0: TransList) -> typing.Any:
13973
14342
  """
13974
14343
  将分笔记录转换为 DataFrame
@@ -13977,6 +14346,10 @@ def translist_to_np(arg0: TransList) -> numpy.ndarray:
13977
14346
  """
13978
14347
  将分笔记录转换为NumPy元组
13979
14348
  """
14349
+ def translist_to_pa(arg0: TransList) -> typing.Any:
14350
+ """
14351
+ 将分笔记录转换为 pyarrow.Table 对象
14352
+ """
13980
14353
  def view_license() -> str:
13981
14354
  """
13982
14355
  view_license()
@@ -13987,6 +14360,10 @@ def weights_to_df(arg0: StockWeightList) -> typing.Any:
13987
14360
  ...
13988
14361
  def weights_to_np(arg0: StockWeightList) -> numpy.ndarray:
13989
14362
  ...
14363
+ def weights_to_pa(arg0: StockWeightList) -> typing.Any:
14364
+ """
14365
+ 将权息记录列表转换为 pyarrow.Table 对象
14366
+ """
13990
14367
  DEBUG: LOG_LEVEL # value = <LOG_LEVEL.DEBUG: 1>
13991
14368
  ERROR: LOG_LEVEL # value = <LOG_LEVEL.ERROR: 4>
13992
14369
  FATAL: LOG_LEVEL # value = <LOG_LEVEL.FATAL: 5>