hikyuu 2.1.0__cp310-none-win_amd64.whl → 2.1.2__cp310-none-win_amd64.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- hikyuu/cpp/boost_date_time-mt.dll +0 -0
- hikyuu/cpp/boost_serialization-mt.dll +0 -0
- hikyuu/cpp/boost_wserialization-mt.dll +0 -0
- hikyuu/cpp/core310.pyd +0 -0
- hikyuu/cpp/hikyuu.dll +0 -0
- hikyuu/cpp/sqlite3.dll +0 -0
- hikyuu/examples/notebook/006-TradeManager.ipynb +41 -39
- hikyuu/examples/notebook/008-Pickle.ipynb +27 -35
- hikyuu/extend.py +3 -1
- hikyuu/fetcher/stock/zh_stock_a_qmt.py +49 -0
- hikyuu/gui/HikyuuTDX.py +13 -7
- hikyuu/gui/data/MainWindow.py +126 -126
- hikyuu/gui/spot_server.py +16 -7
- hikyuu/gui/start_qmt.py +36 -0
- hikyuu/include/hikyuu/DataType.h +2 -1
- hikyuu/include/hikyuu/KRecord.h +1 -1
- hikyuu/include/hikyuu/Stock.h +1 -1
- hikyuu/include/hikyuu/StockManager.h +3 -0
- hikyuu/include/hikyuu/StrategyContext.h +7 -2
- hikyuu/include/hikyuu/analysis/combinate.h +1 -1
- hikyuu/include/hikyuu/config.h +0 -12
- hikyuu/include/hikyuu/data_driver/base_info/table/HistoryFinanceTable.h +2 -2
- hikyuu/include/hikyuu/doc.h +2 -2
- hikyuu/include/hikyuu/global/GlobalSpotAgent.h +1 -0
- hikyuu/include/hikyuu/global/GlobalTaskGroup.h +4 -2
- hikyuu/include/hikyuu/global/SpotRecord.h +52 -0
- hikyuu/include/hikyuu/global/agent/SpotAgent.h +14 -41
- hikyuu/include/hikyuu/hikyuu.h +1 -0
- hikyuu/include/hikyuu/strategy/{AccountTradeManager.h → BrokerTradeManager.h} +97 -95
- hikyuu/include/hikyuu/strategy/RunPortfolioInStrategy.h +36 -0
- hikyuu/include/hikyuu/strategy/RunSystemInStrategy.h +37 -0
- hikyuu/include/hikyuu/strategy/Strategy.h +174 -0
- hikyuu/include/hikyuu/trade_manage/FundsRecord.h +8 -8
- hikyuu/include/hikyuu/trade_manage/OrderBrokerBase.h +66 -14
- hikyuu/include/hikyuu/trade_manage/PositionRecord.h +12 -12
- hikyuu/include/hikyuu/trade_manage/TradeManager.h +9 -0
- hikyuu/include/hikyuu/trade_manage/TradeManagerBase.h +19 -0
- hikyuu/include/hikyuu/utilities/FilterNode.h +267 -0
- hikyuu/include/hikyuu/utilities/LRUCache11.h +230 -0
- hikyuu/include/hikyuu/{Log.h → utilities/Log.h} +91 -113
- hikyuu/include/hikyuu/utilities/Null.h +1 -0
- hikyuu/include/hikyuu/utilities/Parameter.h +2 -1
- hikyuu/include/hikyuu/utilities/ResourcePool.h +636 -0
- hikyuu/include/hikyuu/utilities/SpendTimer.h +10 -9
- hikyuu/include/hikyuu/utilities/TimerManager.h +25 -11
- hikyuu/include/hikyuu/utilities/any_to_string.h +142 -0
- hikyuu/include/hikyuu/utilities/arithmetic.h +71 -35
- hikyuu/include/hikyuu/utilities/base64.h +59 -0
- hikyuu/include/hikyuu/utilities/config.h +41 -0
- hikyuu/include/hikyuu/utilities/datetime/Datetime.h +42 -31
- hikyuu/include/hikyuu/utilities/datetime/TimeDelta.h +24 -13
- hikyuu/include/hikyuu/utilities/db_connect/DBCondition.h +48 -48
- hikyuu/include/hikyuu/utilities/db_connect/DBConnect.h +10 -0
- hikyuu/include/hikyuu/utilities/db_connect/DBConnectBase.h +5 -22
- hikyuu/include/hikyuu/utilities/db_connect/DBUpgrade.h +3 -3
- hikyuu/include/hikyuu/utilities/db_connect/SQLException.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/SQLResultSet.h +1 -1
- hikyuu/include/hikyuu/utilities/db_connect/SQLStatementBase.h +7 -7
- hikyuu/include/hikyuu/utilities/db_connect/TableMacro.h +1 -2
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLConnect.h +9 -9
- hikyuu/include/hikyuu/utilities/db_connect/mysql/MySQLStatement.h +18 -18
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteConnect.h +3 -3
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteStatement.h +2 -2
- hikyuu/include/hikyuu/utilities/db_connect/sqlite/SQLiteUtil.h +6 -6
- hikyuu/include/hikyuu/{exception.h → utilities/exception.h} +15 -16
- hikyuu/include/hikyuu/utilities/http_client/HttpClient.h +229 -0
- hikyuu/include/hikyuu/utilities/http_client/nng_wrap.h +517 -0
- hikyuu/include/hikyuu/utilities/http_client/url.h +25 -0
- hikyuu/include/hikyuu/utilities/{IniParser.h → ini_parser/IniParser.h} +10 -5
- hikyuu/include/hikyuu/utilities/ini_parser/__init__.py +1 -0
- hikyuu/include/hikyuu/utilities/md5.h +41 -0
- hikyuu/include/hikyuu/utilities/mo/__init__.py +1 -0
- hikyuu/include/hikyuu/utilities/mo/mo.h +48 -0
- hikyuu/include/hikyuu/utilities/mo/moFileReader.h +836 -0
- hikyuu/include/hikyuu/{global → utilities}/node/NodeClient.h +25 -18
- hikyuu/include/hikyuu/{global → utilities}/node/NodeError.h +1 -1
- hikyuu/include/hikyuu/{global → utilities}/node/NodeMessage.h +3 -2
- hikyuu/include/hikyuu/utilities/node/NodeServer.h +246 -0
- hikyuu/include/hikyuu/utilities/node/__init__.py +1 -0
- hikyuu/include/hikyuu/utilities/os.h +16 -15
- hikyuu/include/hikyuu/utilities/snowflake.h +110 -0
- hikyuu/include/hikyuu/utilities/string_view.h +70 -0
- hikyuu/include/hikyuu/utilities/thread/MQStealThreadPool.h +3 -3
- hikyuu/include/hikyuu/utilities/thread/MQThreadPool.h +3 -3
- hikyuu/include/hikyuu/utilities/thread/StealThreadPool.h +3 -3
- hikyuu/include/hikyuu/utilities/thread/ThreadPool.h +3 -3
- hikyuu/include/hikyuu/version.h +4 -4
- hikyuu/interactive.py +42 -137
- hikyuu/sqlite3.dll +0 -0
- hikyuu/strategy/__init__.py +0 -1
- hikyuu/strategy/strategy_demo1.py +53 -0
- hikyuu/strategy/strategy_demo2.py +47 -0
- hikyuu/strategy/strategy_demo3.py +24 -0
- hikyuu/trade_manage/broker.py +27 -11
- hikyuu/trade_manage/broker_easytrader.py +52 -6
- hikyuu/trade_manage/broker_mail.py +17 -20
- hikyuu/vcruntime140.dll +0 -0
- hikyuu/vcruntime140_1.dll +0 -0
- hikyuu-2.1.2.dist-info/METADATA +115 -0
- {hikyuu-2.1.0.dist-info → hikyuu-2.1.2.dist-info}/RECORD +105 -79
- {hikyuu-2.1.0.dist-info → hikyuu-2.1.2.dist-info}/top_level.txt +4 -2
- hikyuu/README.rst +0 -79
- hikyuu/include/hikyuu/strategy/StrategyBase.h +0 -156
- hikyuu/strategy/demo/__init__.py +0 -3
- hikyuu/strategy/strategy.py +0 -27
- hikyuu-2.1.0.dist-info/METADATA +0 -126
- /hikyuu/include/hikyuu/{global/node → utilities/http_client}/__init__.py +0 -0
- {hikyuu-2.1.0.dist-info → hikyuu-2.1.2.dist-info}/LICENSE +0 -0
- {hikyuu-2.1.0.dist-info → hikyuu-2.1.2.dist-info}/WHEEL +0 -0
- {hikyuu-2.1.0.dist-info → hikyuu-2.1.2.dist-info}/entry_points.txt +0 -0
|
Binary file
|
|
Binary file
|
|
Binary file
|
hikyuu/cpp/core310.pyd
CHANGED
|
Binary file
|
hikyuu/cpp/hikyuu.dll
CHANGED
|
Binary file
|
hikyuu/cpp/sqlite3.dll
CHANGED
|
Binary file
|
|
@@ -9,25 +9,25 @@
|
|
|
9
9
|
"name": "stderr",
|
|
10
10
|
"output_type": "stream",
|
|
11
11
|
"text": [
|
|
12
|
-
"2024-
|
|
12
|
+
"2024-08-20 16:00:57,364 [INFO] hikyuu version: 2.1.1_202408182226_RELEASE_windows_x64 [<module>] (D:\\workspace\\hikyuu\\hikyuu\\__init__.py:97) [hikyuu::hku_info]\n"
|
|
13
13
|
]
|
|
14
14
|
},
|
|
15
15
|
{
|
|
16
16
|
"name": "stdout",
|
|
17
17
|
"output_type": "stream",
|
|
18
18
|
"text": [
|
|
19
|
-
"2024-
|
|
20
|
-
"2024-
|
|
21
|
-
"2024-
|
|
22
|
-
"2024-
|
|
23
|
-
"2024-
|
|
24
|
-
"2024-
|
|
25
|
-
"2024-
|
|
26
|
-
"2024-
|
|
27
|
-
"2024-
|
|
28
|
-
"2024-
|
|
29
|
-
"CPU times: total:
|
|
30
|
-
"Wall time:
|
|
19
|
+
"2024-08-20 16:00:57.865 [HKU-I] - Using MYSQL BaseInfoDriver (BaseInfoDriver.cpp:58)\n",
|
|
20
|
+
"2024-08-20 16:00:57.883 [HKU-I] - Loading market information... (StockManager.cpp:481)\n",
|
|
21
|
+
"2024-08-20 16:00:57.890 [HKU-I] - Loading stock type information... (StockManager.cpp:494)\n",
|
|
22
|
+
"2024-08-20 16:00:57.897 [HKU-I] - Loading stock information... (StockManager.cpp:409)\n",
|
|
23
|
+
"2024-08-20 16:00:58.045 [HKU-I] - Loading stock weight... (StockManager.cpp:511)\n",
|
|
24
|
+
"2024-08-20 16:00:59.275 [HKU-I] - Loading KData... (StockManager.cpp:134)\n",
|
|
25
|
+
"2024-08-20 16:01:00.831 [HKU-I] - Preloading all day kdata to buffer! (StockManager.cpp:179)\n",
|
|
26
|
+
"2024-08-20 16:01:00.832 [HKU-I] - Preloading all week kdata to buffer! (StockManager.cpp:179)\n",
|
|
27
|
+
"2024-08-20 16:01:00.832 [HKU-I] - Preloading all month kdata to buffer! (StockManager.cpp:179)\n",
|
|
28
|
+
"2024-08-20 16:01:00.902 [HKU-I] - 1.63s Loaded Data. (StockManager.cpp:159)\n",
|
|
29
|
+
"CPU times: total: 625 ms\n",
|
|
30
|
+
"Wall time: 4.01 s\n"
|
|
31
31
|
]
|
|
32
32
|
}
|
|
33
33
|
],
|
|
@@ -78,7 +78,7 @@
|
|
|
78
78
|
" current borrow_cash: 0.00,\n",
|
|
79
79
|
" current borrow_asset: 0.00,\n",
|
|
80
80
|
" Position: \n",
|
|
81
|
-
" SZ000001 平安银行 2017-01-03 00:00:00
|
|
81
|
+
" SZ000001 平安银行 2017-01-03 00:00:00 1854 100.00 911.00 1029.00 118.00 12.95% 0.12%\n",
|
|
82
82
|
" Short Position: \n",
|
|
83
83
|
" Borrow Stock: \n",
|
|
84
84
|
"}\n"
|
|
@@ -148,21 +148,21 @@
|
|
|
148
148
|
" <th>SZ000001</th>\n",
|
|
149
149
|
" <td>平安银行</td>\n",
|
|
150
150
|
" <td>2017-01-03</td>\n",
|
|
151
|
-
" <td>
|
|
151
|
+
" <td>1854</td>\n",
|
|
152
152
|
" <td>100</td>\n",
|
|
153
153
|
" <td>911.0</td>\n",
|
|
154
|
-
" <td>
|
|
155
|
-
" <td>
|
|
156
|
-
" <td>
|
|
154
|
+
" <td>1029.0</td>\n",
|
|
155
|
+
" <td>118.0</td>\n",
|
|
156
|
+
" <td>12.952799</td>\n",
|
|
157
157
|
" </tr>\n",
|
|
158
158
|
" </tbody>\n",
|
|
159
159
|
"</table>\n",
|
|
160
160
|
"</div>"
|
|
161
161
|
],
|
|
162
162
|
"text/plain": [
|
|
163
|
-
" 证券名称 买入日期 已持仓天数 持仓数量 投入金额 当前市值 盈亏金额
|
|
164
|
-
"证券代码
|
|
165
|
-
"SZ000001 平安银行 2017-01-03
|
|
163
|
+
" 证券名称 买入日期 已持仓天数 持仓数量 投入金额 当前市值 盈亏金额 盈亏比例\n",
|
|
164
|
+
"证券代码 \n",
|
|
165
|
+
"SZ000001 平安银行 2017-01-03 1854 100 911.0 1029.0 118.0 12.952799"
|
|
166
166
|
]
|
|
167
167
|
},
|
|
168
168
|
"execution_count": 3,
|
|
@@ -259,7 +259,7 @@
|
|
|
259
259
|
},
|
|
260
260
|
{
|
|
261
261
|
"cell_type": "code",
|
|
262
|
-
"execution_count":
|
|
262
|
+
"execution_count": 6,
|
|
263
263
|
"metadata": {},
|
|
264
264
|
"outputs": [],
|
|
265
265
|
"source": [
|
|
@@ -271,7 +271,7 @@
|
|
|
271
271
|
},
|
|
272
272
|
{
|
|
273
273
|
"cell_type": "code",
|
|
274
|
-
"execution_count":
|
|
274
|
+
"execution_count": 7,
|
|
275
275
|
"metadata": {},
|
|
276
276
|
"outputs": [],
|
|
277
277
|
"source": [
|
|
@@ -298,28 +298,30 @@
|
|
|
298
298
|
},
|
|
299
299
|
{
|
|
300
300
|
"cell_type": "code",
|
|
301
|
-
"execution_count":
|
|
301
|
+
"execution_count": 8,
|
|
302
302
|
"metadata": {},
|
|
303
303
|
"outputs": [
|
|
304
304
|
{
|
|
305
305
|
"name": "stdout",
|
|
306
306
|
"output_type": "stream",
|
|
307
307
|
"text": [
|
|
308
|
-
"买入:SZ000001
|
|
309
|
-
"卖出:SZ000001
|
|
310
|
-
"买入:SZ000001
|
|
311
|
-
"卖出:SZ000001
|
|
312
|
-
"买入:SZ000001
|
|
313
|
-
"卖出:SZ000001
|
|
314
|
-
"买入:SZ000001
|
|
315
|
-
"卖出:SZ000001
|
|
316
|
-
"买入:SZ000001
|
|
317
|
-
"卖出:SZ000001
|
|
318
|
-
"买入:SZ000001
|
|
319
|
-
"卖出:SZ000001
|
|
320
|
-
"买入:SZ000001
|
|
321
|
-
"卖出:SZ000001
|
|
322
|
-
"买入:SZ000001
|
|
308
|
+
"买入:SZ000001, 价格: 9.33, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
309
|
+
"卖出:SZ000001, 价格: 9.16, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
310
|
+
"买入:SZ000001, 价格: 9.33, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
311
|
+
"卖出:SZ000001, 价格: 10.55, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
312
|
+
"买入:SZ000001, 价格: 10.56, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
313
|
+
"卖出:SZ000001, 价格: 10.35, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
314
|
+
"买入:SZ000001, 价格: 10.56, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
315
|
+
"卖出:SZ000001, 价格: 10.43, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
316
|
+
"买入:SZ000001, 价格: 10.58, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
317
|
+
"卖出:SZ000001, 价格: 11.12, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
318
|
+
"买入:SZ000001, 价格: 10.4, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
319
|
+
"卖出:SZ000001, 价格: 9.94, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
320
|
+
"买入:SZ000001, 价格: 10.31, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
321
|
+
"卖出:SZ000001, 价格: 10.12, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
322
|
+
"买入:SZ000001, 价格: 10.22, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n",
|
|
323
|
+
"卖出:SZ000001, 价格: 10.11, 数量: 1000.0, 信号来源: SystemPart.SIGNAL\n",
|
|
324
|
+
"买入:SZ000001, 价格: 10.13, 数量: 1000.0 预期止损价: 0.0, 预期目标价: nan, 信号来源: SystemPart.SIGNAL\n"
|
|
323
325
|
]
|
|
324
326
|
}
|
|
325
327
|
],
|
|
@@ -5,24 +5,29 @@
|
|
|
5
5
|
"execution_count": 1,
|
|
6
6
|
"metadata": {},
|
|
7
7
|
"outputs": [
|
|
8
|
+
{
|
|
9
|
+
"name": "stderr",
|
|
10
|
+
"output_type": "stream",
|
|
11
|
+
"text": [
|
|
12
|
+
"2024-08-20 15:45:43,093 [INFO] hikyuu version: 2.1.1_202408182226_RELEASE_windows_x64 [<module>] (D:\\workspace\\hikyuu\\hikyuu\\__init__.py:97) [hikyuu::hku_info]\n"
|
|
13
|
+
]
|
|
14
|
+
},
|
|
8
15
|
{
|
|
9
16
|
"name": "stdout",
|
|
10
17
|
"output_type": "stream",
|
|
11
18
|
"text": [
|
|
12
|
-
"
|
|
13
|
-
"
|
|
14
|
-
"
|
|
15
|
-
"
|
|
16
|
-
"
|
|
17
|
-
"
|
|
18
|
-
"
|
|
19
|
-
"
|
|
20
|
-
"
|
|
21
|
-
"
|
|
22
|
-
"
|
|
23
|
-
"
|
|
24
|
-
"2023-10-14 02:24:48.659 [HKU-I] - 0.03s Loaded Data. (StockManager.cpp:145)\n",
|
|
25
|
-
"Wall time: 1.16 s\n"
|
|
19
|
+
"2024-08-20 15:45:43.596 [HKU-I] - Using MYSQL BaseInfoDriver (BaseInfoDriver.cpp:58)\n",
|
|
20
|
+
"2024-08-20 15:45:43.615 [HKU-I] - Loading market information... (StockManager.cpp:481)\n",
|
|
21
|
+
"2024-08-20 15:45:43.621 [HKU-I] - Loading stock type information... (StockManager.cpp:494)\n",
|
|
22
|
+
"2024-08-20 15:45:43.628 [HKU-I] - Loading stock information... (StockManager.cpp:409)\n",
|
|
23
|
+
"2024-08-20 15:45:43.785 [HKU-I] - Loading stock weight... (StockManager.cpp:511)\n",
|
|
24
|
+
"2024-08-20 15:45:45.041 [HKU-I] - Loading KData... (StockManager.cpp:134)\n",
|
|
25
|
+
"2024-08-20 15:45:46.483 [HKU-I] - Preloading all day kdata to buffer! (StockManager.cpp:179)\n",
|
|
26
|
+
"2024-08-20 15:45:46.483 [HKU-I] - Preloading all week kdata to buffer! (StockManager.cpp:179)\n",
|
|
27
|
+
"2024-08-20 15:45:46.484 [HKU-I] - Preloading all month kdata to buffer! (StockManager.cpp:179)\n",
|
|
28
|
+
"2024-08-20 15:45:46.552 [HKU-I] - 1.51s Loaded Data. (StockManager.cpp:159)\n",
|
|
29
|
+
"CPU times: total: 516 ms\n",
|
|
30
|
+
"Wall time: 3.78 s\n"
|
|
26
31
|
]
|
|
27
32
|
}
|
|
28
33
|
],
|
|
@@ -42,21 +47,9 @@
|
|
|
42
47
|
},
|
|
43
48
|
{
|
|
44
49
|
"cell_type": "code",
|
|
45
|
-
"execution_count":
|
|
50
|
+
"execution_count": 3,
|
|
46
51
|
"metadata": {},
|
|
47
|
-
"outputs": [
|
|
48
|
-
{
|
|
49
|
-
"ename": "UnicodeDecodeError",
|
|
50
|
-
"evalue": "'utf-8' codec can't decode byte 0x9c in position 133: invalid start byte",
|
|
51
|
-
"output_type": "error",
|
|
52
|
-
"traceback": [
|
|
53
|
-
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
|
|
54
|
-
"\u001b[1;31mUnicodeDecodeError\u001b[0m Traceback (most recent call last)",
|
|
55
|
-
"\u001b[1;32m~\\AppData\\Local\\Temp\\ipykernel_7616\\6354363.py\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m 3\u001b[0m \u001b[1;32mwith\u001b[0m \u001b[0mopen\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"temp\"\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;34m'wb'\u001b[0m\u001b[1;33m)\u001b[0m \u001b[1;32mas\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m----> 4\u001b[1;33m \u001b[0mpickle\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdump\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mk\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mf\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
|
|
56
|
-
"\u001b[1;31mUnicodeDecodeError\u001b[0m: 'utf-8' codec can't decode byte 0x9c in position 133: invalid start byte"
|
|
57
|
-
]
|
|
58
|
-
}
|
|
59
|
-
],
|
|
52
|
+
"outputs": [],
|
|
60
53
|
"source": [
|
|
61
54
|
"import pickle\n",
|
|
62
55
|
"\n",
|
|
@@ -66,7 +59,7 @@
|
|
|
66
59
|
},
|
|
67
60
|
{
|
|
68
61
|
"cell_type": "code",
|
|
69
|
-
"execution_count":
|
|
62
|
+
"execution_count": 4,
|
|
70
63
|
"metadata": {},
|
|
71
64
|
"outputs": [],
|
|
72
65
|
"source": [
|
|
@@ -75,22 +68,21 @@
|
|
|
75
68
|
},
|
|
76
69
|
{
|
|
77
70
|
"cell_type": "code",
|
|
78
|
-
"execution_count":
|
|
71
|
+
"execution_count": 5,
|
|
79
72
|
"metadata": {},
|
|
80
73
|
"outputs": [],
|
|
81
74
|
"source": [
|
|
82
|
-
"k2 =
|
|
83
|
-
"hku_load(k2, \"temp\")"
|
|
75
|
+
"k2 = hku_load(\"temp\")"
|
|
84
76
|
]
|
|
85
77
|
},
|
|
86
78
|
{
|
|
87
79
|
"cell_type": "code",
|
|
88
|
-
"execution_count":
|
|
80
|
+
"execution_count": 6,
|
|
89
81
|
"metadata": {},
|
|
90
82
|
"outputs": [
|
|
91
83
|
{
|
|
92
84
|
"data": {
|
|
93
|
-
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9cAAAMTCAYAAACrDuSLAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMiwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy8o6BhiAAAACXBIWXMAAA9hAAAPYQGoP6dpAACl3ElEQVR4nOzdeXgTdeLH8U8PaAhHQIIIhYCIlnqhrYCuCN4CP3QFb7bifVQBLe6i4gEi4CKuqLBWwRMryCqeqAgiiLgCQqXIWqsIEiiHBDAgJaXH/P4YE5o2PdM2Sft+PU+eJjOTyXeSTJpPvleUYRiGAAAAAABAjUWHugAAAAAAAEQ6wjUAAAAAAEEiXAMAAAAAECTCNQAAAAAAQSJcAwAAAAAQJMI1AAAAAABBIlwDAAAAABAkwjUAAKhz+fn5Onz4cKiLAQBAnSFcAwAQRrZv367x48dr48aNlW5bUFCg2bNnB/2Yv/32m5555hkZhiFJcjqdevLJJ6t8/yVLlqiwsFCSdNppp/nKtHz5cm3atEmS9Prrr+vYY48NuqyhsHXrVqWlpcntdvstX7Roke677z5J0oYNG7Rq1apQFA8AECYI1wAAhJHt27frscceq1K4XrlypW655Rbdc889kqRt27YpKiqqSpe+ffv69uN0OpWWlqaioiJJ0qZNmzR27Fi/x9q6das++OADPfzww7r44ouVmJio/Px8FRQUaOTIkb6QWVhYqOLiYm3evFmXX365PvroI0nSqlWrdN5559XKcxRIfn6+nnrqKX3//fd+y8ePH1/l5yQqKkq//vprmX0/88wzWrhwoVq0aOG3/JdfftGcOXMkSd99953OO+88jRs3TsXFxb5tDh48qCeffFI///xz7R80ACCsEK4BAD7Lly/XkCFD5HA41KRJE7Vs2VLJycl+gePcc89V165dy91HZesLCgp0zDHHaPTo0b5lr7zyik455RRZLBZ16tRJY8eOLdOE2OPxaOzYsXI4HIqLi9NJJ50UsNY2NzdXw4YNU9u2bWW1WtWvXz+tXr26zHb//e9/de6556pFixZq06aNhg0bph07dpTZriplK/nY1113nW688cZyj782nXPOOXrllVc0ffp0PfjggzrmmGOUnZ1d5tK+fXuNHz/eb5k3FJanuLhYt9xyi84880zZbDb95S9/0axZsxQTE6N77rlHM2bM0IEDB9SkSRO9+eabev/99/Xbb7/57v/QQw9pyJAhuueee2QYhhYuXKiLLrqozp6Le++9V2+++aZOOOGEMuvat28f8HkpeXn99dcD7nfPnj2aNWuWHn/8ccXExPits1qtys/PlyRdf/31+uKLL5SRkaGcnBzfNs2bN5fL5dKQIUOUl5dXi0cMAAg3saEuAAAgPLz44ou688471bdvX40bN05t27bV9u3b9dFHH2nv3r0VBubqmD9/vn777TelpqZKkp577jndc889uvXWW/X444/rq6++0hNPPKG9e/fqhRde8N1v2LBh+vTTT/Xoo48qISFBL7/8sm644QY1bdpU1157rSTJ7XbrnHPOUVFRkaZMmSKLxaJJkybpggsuUGZmpo4//nhJ0urVq3X++eerT58+evXVV7V9+3Y98sgj+v7775WZmakmTZpUq2wrVqzQ7NmzlZGRoUOHDumGG26oleeqKq6//nr9+uuvWr9+vaKiotSjR48y28TGxqp9+/Zl1r322mu66aabfLe9x/3GG28oKipKf/nLX3TLLbfoxBNPVOvWrf3ue9FFF6l37966+uqr9csvv+if//ynli9frv3792vNmjW6+OKL1bRpU/3www9yuVzavn27brnlFt1yyy1++/n666/Vp0+foJ6DL774Qi+++KLWrVunuLi4gMcf6HkpaefOnQGXT5kyRYmJibryyivldDrlcDh865o3by6PxyPJfO+1bNlSzz77rFasWKH9+/f7jmvSpEl6//33NW7cOE2dOrWmhwkACHcGAACGYXTs2NHo0qWLUVBQUOF2/fv3N7p06VLj9X379jUuueQSwzAMY//+/UbLli2NoUOH+m0zfPhwIzo62nA6nYZhGMbSpUsNScZzzz3n2+bw4cNG9+7dje7du/uWjRs3zoiKijKysrJ8y37++WcjOjrauO222/zK2LlzZ+PgwYO+Za+88oohyXjzzTerVTbDMAybzWaccsopxoIFCwxJxg033FDu8Vfm22+/NSQZn376abXuV1xcXO66+Ph4Iz09vczy33//3cjOzjbeeecdQ5KxYcMGIzs72/j888+NqKioCt8LHTt2NObMmWM8//zzxgUXXGBccMEFxoknnmhIMk488UTfstdff90YOnSo0bdvX2Pz5s3G5s2bjSVLlhiSjC+//NLweDzVOs5A+vXrZwwZMiTgunHjxhnx8fGV7sP7Htu8ebNv2aZNmwyLxWKsWLHCOHjwoNGxY0fjtttuMx5//HHj9ttvN3r37m1IMlq2bGlIMqKjo40OHToYffr0MV5//XW//b/88suG1Wo1du3aFdSxAgDCF83CAQCSzL6hdW39+vVasWKF7r77bknmgFAHDhzQrbfe6rfd9ddfr+LiYi1atEiSWdsdExPj19y6SZMmuuaaa7Rx40b98ssvvu169eqlU0891bdd9+7dddZZZ+nTTz+VJLlcLi1fvlzXXXedrFarb7trr71WTZo08W1X1bJJ0rJly7R+/Xr93//9X7BPkc/AgQMD9gm2WCySpD/++EMPP/yw71JysK0LL7xQDz/8cKWPYbPZ1KNHD3Xp0kWSlJCQoB49esjhcMgwDL344ovauXOn32XHjh164YUXtGvXLp177rlKTU3V559/rscee0x79+6VxWLR0UcfrVtvvVWff/65TjrpJL3//vsqKipS165d1bVrV0VHRysqKkq9e/cOWNNcHT/99JOWL1+u22+/Paj9lGYYhm6//XYNGDBA3bp105QpU1RUVKS//e1vWrlypWJiYpScnCxJ+s9//qNNmzbJ4/Fo+/btWrlypYYPH+63v5SUFEnSW2+9VavlBACED5qFAwAkSddcc41mzpypyy+/XM8995y6detW7raGYeiPP/4IuM47KFYg//73v9WlSxdfCM3KypJkjjBd0imnnCJJvr6rWVlZOu6449SyZctyt+vcubOys7PLNDv2bvf111/r4MGDWr9+vQzDKPOYzZo103HHHef3mFUpW6BtasOsWbP8Bh3zio42fxcvKirSxo0bdfDgQS1YsEC33nprmabbNXX88cfr3nvv1QMPPKARI0aUWd++fXs9//zz6tChgw4fPqypU6dq4sSJ+ve//62nn35aXbt21d13362vvvpKbrdbxx57rF+//V9//VXt27f3/VAQjMWLFysuLk79+vULel8lFRUVafXq1dq/f78++ugjFRUV6c0331T//v3Vv39/SeaAZunp6erRo0eZbhMFBQW+ZvaS1LRpU/Xr10+LFy/WqFGjarWsAIDwQLgGAEgyR0QuLi7Wyy+/rM8++0wpKSl66KGH1L179zLbOp3OMkG3JG9NaElut1tvvvmmHn74YV9A9A6AZbfb/bY96qijJEm///67b7vS25Tebu/evSoqKqpwO7fbXe5jerfbvXt3tcpWVzp16lRhP2Gbzaa33npLv/76qxYsWFDp/lJTU3393CVzdOvSPwr8+uuv2rt3r3r37q0nnnhCTzzxRLn7i401v0IMHDhQ3377rWbPnq2rrrpKTz/9tPr376+xY8fq6quv1rPPPquHHnpIJ598snbu3KljjjlGWVlZtfaDRGZmpk488US/Vgil5ebmKioqqlr7jY2N1U8//aQWLVro5ptv1t69ezVs2LAy20hSRkaGJDNsb9q0Sb/88osKCwvL9ONOSkrSG2+8Ua1yAAAiB+EaACDJrLmdNWuWRowYoUmTJmn27NmaM2eOJk6cqH/84x9+2x5zzDF6++23A+5n5MiR2rdvX5nlr7/+ugoLC/1qlr1zI3vDtpc3CHmXFxYWltmm9Hbl7au625V8zKqULVKMHz9e11xzje/2scceK6fTqY8//liffPKJJLPG+pprrtEzzzyjDh06VLi/cePGafz48fr73/+u448/Xt27d9fQoUM1efJkXXbZZZLM4Ot9vk444QR99dVXuuqqq/Tf//631kYO/+2333T00UdXuE379u21bNmyCrdZvXp1mYHo2rdvr3fffVcLFy70TfE1b948/fOf/9SmTZu0f/9+SeaI8klJSTruuOP0l7/8Rd26dQs4anm7du18P94AABoewjUAwE/Pnj31n//8R99//72uueYajRkzRl26dNHVV1/t2yYuLi5gk2XJrFENFK7T09N19dVXq127dn7bSmYtcNu2bX3Lvff31hrbbLaANcUltyu5r0DbRUdHq02bNpVuV/Ixq1K2cGIYRrk1tIFGC58/f74effRRnXzyyZKkzZs3q2vXrr4a12+++SZgy4UrrrjCd/0vf/mLCgoKlJWVpffff1833HCDXC6Xb33btm19I49/8MEHOvfcc7VmzRo99dRTQR+vZI4V0KZNmwq3qelo4Zs2bdKtt96qp59+WoZh6NNPP1WTJk2Ulpam4447Tt27d9fVV1+tc845RxMnTpQkPfDAA/r444/1/vvvl9lfs2bNlJ+fr+Li4oj7cQYAUDk+2QEAAZ1yyilauHChJGnu3LlB7evzzz/Xjz/+qLvuustvuTfw/O9///Nb7r3ds2dP33YbN270zSlccruoqCidcsopatmypTp27FhmX97tevToobi4uHIf0+Px6JdffvF7zKqULZzcfffd5U4pFchNN92kPXv2aPr06ZLMpugltW7dWna7vcylZF/iv/71r2rXrp1OO+00GYahyy+/XO3atfNdvLW7w4cP1/z58/XUU0/Jbrfr7LPProUjNsN7yTBfm+677z7t27dPI0aMUNeuXXXLLbeoQ4cOGj58uM4++2y1b99effr00YoVKySZU249/fTTZQbB89q9e7eOOuoogjUANFB8ugMAJEk7duwos+zw4cOSzBq3YDz//PNKSkrSmWee6bd84MCBiomJ0Wuvvea3/PXXX1fLli01YMAASdLgwYPl8Xg0b9483zYFBQWaO3eu+vXrp/bt2/u2++qrr7Rp0ybfdr/88otWrFihq666SpLZ9DkhIUFz5sxRQUGBb7t58+YpPz/ft11VyxZqhmFIkv7xj39o3rx5vnmXq6J169Zq2rRpuesTExMDjli+ZMkS3zbLli3T119/LavVqpycHBmGIcMwNGHCBPXq1cvXAqB///7q0qWLnnzySd155521FjA7deqkrVu31sq+Srvtttv0+uuva/ny5XK73dq+fbvOOussv20GDhyoFStW6Nprr9U///lPzZ8/X+ecc07AH3mcTqc6d+5cJ2UFAIQezcIBAJLMaZiuueYanXPOOWrdurWcTqdmzJihpk2b+qbOqolt27bpww8/1MyZM8us69Spk0aOHKlnn31WrVq10nnnnadly5bptdde0/Tp032Dpl199dV6+umnNWLECLlcLnXt2lUvvfSSnE6n3nzzTd/+xo4dq//85z8aOHCgHnroIUVFRWnSpEnq0qWLRo8e7dvun//8p4YOHarLLrtMt912m5xOpx599FFdccUVOvfcc6tVtlDbsmWLJGnJkiVasmRJmVGrg7F27dqAfYcvvfRSv9uvvfaa4uLi9OGHH+qOO+7Qd999pylTpvj6cktScXGxOnfurJycnFodXb1///565plntGXLloAD6QVj0KBBvusHDhzQ4sWL9ccff2jIkCG+5YcOHVJxcbGWL1+ub775RieffLKWLFmiiy66SAcOHFDz5s192y5durRWp2sDAIQXwjUAQJJ0xx13aMmSJXr33XeVl5enjh07qm/fvpo3b15QTaBfeOEFtWrVStddd13A9U899ZTatGmjl156Senp6erevbtefvll3Xzzzb5tYmJi9Omnn+rvf/+7Jk6cKI/Ho169emnJkiU644wzfNt16dJFy5Yt0+jRo3XnnXcqLi5OAwYM0FNPPaVWrVr5trv88ss1b948Pf7447ruuuvUrl073X333Ro3bly1y1ZThw8f9rUMKOnQoUOSzGbq5U13JpmtCWJiYpSTk6MWLVpo4cKFOv3002tUFm/td2lWq1UtWrQoszwmJsbv9syZMzVs2DCNHz9eEydOVFFRkcaMGeM3PdY999yjpUuXqmfPnrrxxhvVtWvXGpe3pPPPP1/NmzfXhx9+qJEjRwbcprCwUD/++GOF+3E6nX63i4qKNG/ePH399df673//q/Xr18tms+m+++7TkCFDtHLlSj388MP68ssv1b9/f61cudJ335ycHB133HF+wfrHH3/Uxo0by/wwAQBoQAwAAOrI4cOHjfbt2xujR48OdVHCzt13321IqvFl6dKlvn1lZ2cbhmFUex/Z2dnGiy++aPztb38zWrZs6dvfjh07Kr3vuHHj/I7nyy+/NC6++GKjTZs2Rq9evYymTZsao0aNMjwej3H77bcbUVFRxmuvvWYcOHDASEpKMlq1amXMnj27Vp7Lv//970bXrl2NgoKCMuvGjRtXredk8+bNvvsmJycbQ4YMMZ555hnju+++Mw4ePGi8+OKLRlJSkhEVFWVcfvnlxo8//mgUFxcbgwYNMo4++mjj9ddfN3r37m3cfvvtfuW44YYbjOTk5Fo5XgBAeKLmGgBQZ9555x399ttvfvMrwzRx4kQ98MADNb5/yVHXvYOvZWdnV2sfBw8e1LPPPqsmTZoEHL37q6++CjhaeMmR4++//37NnTtXLpdLN998s+bMmaO2bdvqvffeU25urvr27asNGzbo9ddf1/XXXy9JWrhwoa6++moNHz5cxx57bLkjz1fVmDFj9MYbb2jGjBm69957y6yPj4/Xtm3bKtzHsmXLdN555/ktW7Nmjd/tgoICvf322zrzzDP15ptv+o1A/u677+rRRx/V/fffr+bNm2vMmDG+devWrdPcuXP9mskDABqeKMMopy0YAABBeuedd7R7927CdQM2a9YsNW3aVEOHDg3YD/1f//qXLrjggjL9rIuKijR//ny/oB6MpUuXavDgwVqxYkWtNDevLX/88YeSk5N11VVX+abrAgA0TIRrAAAAAACCxFRcAAAAAAAEiXANAAAAAECQCNcAAAAAAASpQY0WXlxcrO3bt6tly5aKiooKdXEAAAAAAPXEMAwdOHBAHTt2VHR0/dcjN6hwvX37dnXu3DnUxQAAAAAAhMjWrVvVqVOnen/cBhWuvVOAbN26Va1atQpxaQBI5rywixYt0sUXX6wmTZqEujhAg8b5BtQvzjmg9tTG+bR//3517tw54NSQ9aFBhWtvU/BWrVoRroEwUVBQIKvVqlatWvHFA6hjnG9A/eKcA2pPbZ5PoeoizIBmAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAOpNQVFBqIsA1AnCNQAAACp0uOiwlv26LNTFCEtTNk9Rzp6cgOv2Htqr73d9r4UbFyqvIK+eSxY+Nu7dqE5Pd/Ldvn3B7Rq/bHzoChRGsndna3/+/oDrzn3tXK3cttJ3u7C4UIZh+G5v3LtR5752bl0XEdVAuAYAIIKs37VeF79xsayTrDrmqWN00wc3aU/eHr9tXlz7oo599lg1m9RM579+vjbt2+Rbt/fQXt38wc1q+2Rb2f5p00VvXKT1u9b71v/6+68aPGew7E/a1fqfrfXXt/6qLb9vKVOOw0WHNXH5RA18c2CZdVvdWzV4zmA1n9xcHf/VUU/996mAxzL/h/nq+K+OZZZPXzVdCTMS1GxSM3V/rrteWPNChc/J/B/mK/HfibJMtKjXrF5au31tudve+P6NinosqsqXvy/6e5l9FBUX6bYPb1Onpzup+eTm6j2rt7789Uu/bX73/K6Ud1PU6olWsj9p15jFY1RsFPvW5+7P1ZB5Q9RicgvZn7Tr/sX3+62vyutc0vIty5U8M1mWiRad9PxJ+mzjZ37rN/y2Qf1e7admk5qp27Pd9EbWGxU+p6XtO7RPl791ud97pTKVvY6GYeixZY+p4786qvnk5hoyb4h2H9ztW3+46LBGfzZaR089Ws0nN9cV/7nCb31Jv+z9RU0fb6pbP7y13PJ87fxafV7qo7iJcer2bDdlrM/wW/9u9rvq+UJPWSZa1O3Zbpq4fKLfaxLIdzu/U9aBLHVs0VFnvnSmer7QU8dPP16dnu6kZpOaqf1T7XVxxsW6//P7lbkjs8z9l2xaoj4v9VHLJ1qqw786aNSno+Qp9PhtU9n7+7V1rylhRoLiJsap5ws99fFPH/utr85r/+jSR8ucAyXP31e+e6XM+hGfjKjwOSqtoKhAH/z4gc7ufHaVtq/KZ1Jlx7hq2yqd/crZsky0qMszXfTk10/6rc9x5WhAxgDf+TZm8RgVFhdWWK5N+zbpwtkXlnkfSdX7THrnh3d05ktnKv3bdNmftMv+pF3HPHVMwG3v+fQePbL0kXL31fWZruVeTnr+pAqPp7TqfmZs2rdJQ+YNUasnWqn55OYa9emogNvNzpqtqMei/J63T3/+VAkzEtT2qbZ6esvTfufAF5u/UMKMBOUX5ler/CFjNCBut9uQZLjd7lAXBcCfDh8+bLz//vvG4cOHQ10UoEE455VzjEnLJxlZO7OMBTkLjGOfOdYY9OYgwzDM8+0fr/3DiHs8zpi9braxJneN0feVvsZJ/z7JKCouMgzDMO777D7jlg9uMb7Z+o3xX+d/jQtnX2h0eKqD4faY/zu//PVLY/zS8ca3ud8aSzYtMU5+/mSj96zevscvLCo0pqyYYjimOYymjzc1Lnj9Ar/yFRYVGqc8f4pxyRuXGGu3rzVmrplpRD8WbczbMM+3zfwf5ht9ZvUxmj7e1Ih5LKbMMd7z6T3GBz9+YKzbsc54/MvHDY2X8clPnwR8Pv7r/K8ROyHWmPbNNGPdjnXG0HlDjaOnHm3s9+wPuP2B/APG7oO7jd0HdxsDMwYaE7+c6Lu9++BuY+aamUbyi8m+2wcPHyyzD0+Bx7j+3euNpZuXGt/mfmtcMe8Ko+XklsbOAzt92wzMGGgkv5hsfLP1G+Od/71jNJ/U3JiyYorvOTr9hdON/q/2N1ZuXWm8kfWG0WJyC2PCsglVep1L27R3k9F8UnNjzKIxxvqd643UBalGs4nNjM37NhuGYRhuj9s45qljjOHvDTeydmYZj3/5uBH9WLTxzdZvAu7vuGePM+L/FV+ty382/Kfar+OUFVOMo6YcZXz444fG186vjcQZicbAjIG+9aM+GWV0erqT8fFPHxtfbPrCSJieUOb95nX121cbGi/jlg9uCbje+bvTaD6puTHi4xHGmtw1xiNfPGJEPxZtfPnrl77nqOszXY3Z62Yb63euN2aumWnEPR5nPLniyYD780r9KNW4ePrFxv68/YbGy1i1bZWxYdcG473s94yT/n2SUVxcXOH9p6+abry09iVj3Y51xtzv5xqtnmhljFk0xre+svf3F5u+MKIfizaeW/mckbUzy3hg8QNG7IRY4yfXT77jqs5rf/fHdxtD5w01ft7zs++y79A+3/qpX081+szq47d+98Hd5R7fwIyBxuZ9m42f9/xsxP8r3jAMw1j480LjqClHGQVFBRU+N16VfSZVdoz7Du0zbE/YjFs+uMVYt2OdMXvdbMMy0WK8+t2rhmEYRlFxkdHt2W7G4DmDjbXb1xrvZ79v2J+0G+OWjgtYnp/3/Gzc8sEtRsvJLQ2Nl/FG1ht+66v7mWQYhvHkiieNJ756wjAM8zOq/dT2hmEYRv9X+/uOY/a62UaPGT2M3w/97leW/q/2r9LzWB3Vfd9sdW812k9tbwybP8xYuXWlsSZ3jfFRzkdltjtUcMjoMq2L3/O237PfaDulrfHm+jeNlVtWGsc/ebwx7etphmEYRn5hvpEwPcFYtHFR1cse4jxIuAZQpwjXQO1y/u70u/3m+jeN6MeijYOHDxqHDx82uk3pZoxYMMK3Pnt3tqHxMr7Y9EXA++fuzzU0XsbCnxcGfLz/bPiPofHyfaE7kH/A6DGjhzFr7Sxj+HvDy4SdD378wGgyoYmx649dvmXXvH2N0e/Vfr7bAzMGGmM/H2tMXzU9YLgu7cR/n2ikLUwLuG7IW0OMy+Ze5ru979A+I+7xOOOVzFcq3e9f5/7VmPbNNL9lc7+fa/SZ1afS+5b02x+/GRov44MfPzAMwzCydmYZGi8jc3umb5v7F99vOKY5DMMwjI9/+tiIeSzG2L5/u2/9pOWTDPuTdt+PIBW9zqWlLUwzeqb39N0uKCow4v8Vbzz6xaOGYRjGsyufNdo92c7IL8z3bdNnVh9j+HvDKzyuzzZ+ZkxfNb3CS8ngVZmSr2NRcZFhf9JuPP3fp33rP/35U0PjZWzau8lwe9xGzGMxfqH9a+fXhsbLyNqZ5bffRRsXGV2mdTF6zexVbrj+x6J/lAm7F82+yBjy1hDDMMwfTEq+Zw3DMG778DbjzJfOLPd48g7nGUdNOcqYNneaL1x7rd+53kiYnlDZU1LGXQvuMk5/4XTf7cre30+ueNJIejHJbx9t/tnG97xV97W/7p3rjNELR5dbvgc/f9AYOm9olY+ny7QuRvbubL9wPeStIYbGK+Dl/978v0r3WfozqbJjXL1ttaHx8gu3Q94aYty14C7DMI6cv+t3rvetT1uYVu6PWenfphuXzb3M+G7HdwHDdXU/k0qW2zACh+svNn1hdPxXR2Pjno2+7bpM62I4pjkMy0SL0fFfHY0b3rvB8BR4jI7/6mic9O+T/C4d/9WxnGczsOq+b4bNH2ac99p5lf6YNPbzscaV/7nS73lbvW210WtmL8MwzO+Mt790u3Hnh3cahmEYE7+caFz99tXVKnuo8yDNwgEAiCCdbZ39bltiLb6mq797ftemQ5t0yXGX+Nb3sPdQhxYdfP32At1fkoqMooCPV2QUyRJrUfOmzSVJLZq2UPbd2bo16VZFKarM9ks3L1VShyQd3fxo37Lzjz1fq7at8vUV/HjYx5p0wSS1aNqiSsdcVFykts3aBly39NelGtj9SNP01pbWSuqQ5NdPsTZc/fbVGjJvSMB13uffW8alm5eqffP2Or3D6b5tzj/2fDndTu04sEM/7P5Bx7Q4Rh1advCtP7fruXLluXxN+Ct6nUtb+utSDeg+wHc7NjpW/br008rclb715x97vprGNPUrT2XP0SvfvaIdB3botGNOC3iZ9NUk7fxjp2/7GatnyDHNoYOHDwbcX8nX8ftd38uV59LA44+8dv279Fd0VLRWblupn/b8pCKjyO85PKvTWYqLidPq3NW+ZQcPH9SdH9+pZwY8I2sTa7nH8sPuH3TaMacpKurIe/bcruf69hUXG+f3npXM57yoOPB5IUlT/ztVrZq20rHNji2zrnnT5sovKtuMNXNHptpMaaNV21YF3GeRUaS21iPv9cre35cmXKpff/9VSzYtUVFxkWZnzVaTmCY679jzfPevzmu/99Be2a32co9576G9sjcrf31lclw5+iDnA025cIqMcYaMcYbyH85XlKLkfsCtBcMWKL8wX12e6aJnVj4TcB+lP5MqO8aex/RUD3sPPf/t8yooKtDa7Wv19davdeWJV0qS2jVvp/O6nqeZa2fKU+jRxr0b9dFPH+mak64J+Ph3JN+hD679QKcdc1rA9dX5TNp+YLuOe+44fbXlK/2y9xfZn7Sr6zNd/bbZe2ivrnnnGs29Yq6OO+o4v3VLhi9Rn/g+enPom5IkQ4aaxTbThrs2+F1Kflb3ntVbaQvTApa95DFU9X1zIP+A5v8wX/eddZ/f+VXa+l3rlb4mXdMumea3vGPLjvp578/KceXoUMEhrdu/Tj3sPbR532Y9t/q5MtuHu9hQFwAAANSMYRh6+buX1Se+j6xNrNqwc4MkqWvrrn7bOWwObdu/LeA+Zq2dpWaxzXRmpzP9lhcVFylrV5YeX/64/vGXfyg2umpfGTb9vknHtvEPGw6bQ/lF+XLludSuebsKv4CV5Pa4NWP1DLnz3brp9JvKrN93aJ9+9/yuY1uXfbxtBwIfb011a9Mt4HKn26nRn41W/y799ZfOf5Fk9j0M9BxI0rb929S2WVu58lzKK8jzBULvgEa/HfxN3Y/q7nff0q9zaZv2bQr4HGTtyvKtH9R9UJn15b0nSnpl3Suanz0/4DpXnsvv9jEtjlFiu0TfDzZegV5H748IJcvdrEkztbO207b923zvxy2/b/E9H3kFeSosLtRvB3/z3eeehffopHYn6fIel5cbxiSprbWt39gDkvmcl9xXSb97ftc7P7yj4T2HB1yfuz9XT379pI5pEbhvbIumLQL+yNAqrpUS2ib4BWhJyi/M12e/fKZ5/5unt654S1LV3t897D30xAVP6MI3LlSUohQdFa1P/vaJLyBX97Xfc2iPHl32qP759T/V/ajuuuuMu3Tz6Tf7ztk9h/bovez3NGfDHB3b+lilnJqitDPT1CSmScD9lTbl6ylq0bSFNu/b7Fu248AONW/aXK3iWkkyfxzqYe+hzq38f2Aq7zOpsmNsGtNUc4bO0dmvnK0HlzwoQ4YePudh3w8QkvT65a/rjFln6N/f/luGDKWcmlLua1/R51d1P5M6tuyosX3H6pKMS/TEBU8oqUOSFgxboInLJ/q2OarZUfr2tm/VpXWXch+3JKfbqR4zevgt23Vwl+96gj2h3M8zr+q8b77b+Z3yi/JVWFyoXrN6afO+zeoV30vTB073nbueQo/+9u7f9HC/h9WpVSe/+8e3itfoM0frxOdPlGEYOr3l6brltFt03fvX6YGzH1DHlmXH5QhnhGsAACJQQVGB7vr4Li3dvFTLb1ouSb4v86UDmLWJNWAt2kuZL+mhLx7SswOe1VHNjvItv+3D2/TKuldUbBTr+lOv1wN9H6hyuf44/EeZmi1veQKVIZAtv2/RCTNO0OGiwzqmxTGaffnsgF+w/jj8h9/+Sz5e6eAnSSu3rdRZL5/lt+yDnA+U9lnZWpyox458gd58z2b988J/+q1/I+sN3fzhzeYXyo69NO/Keb4v3X8c/iNgmSTzORjQfYCaxDTRfZ/dp6kXT5Urz6WHv3hYkhQTFeN3v0Cvc6DnIeBr/ucAQJWtL8/xRx2v60+9Xv93wv8FXH/Z3MvULLaZ7/aVJ17pqw2UKn4d/zj8h6KjohUXG1e2XEX56tq6q87oeIYeXvqwTmh7gmwWm0Z+OlKGDN9zNG/DPH3000daf2flg6xdmXilLnvrMr227jUNO2WYVm5bqVmZsxQTHVNm251/7NTlb12uFk1blPvef2DJAzql/SllBliLnXDkq3WRUeR3+4aeN+jlv76slbf61/4lzEjQT3t+UtOYpnrigid0SfdLfM+R9zkp/Rx5399fbP5CaZ+l6V8X/0vnOM7R2z+8ravfvlqrbl2lBHtCtV/7WZfOUnRUtPbn79eHOR/qto9u06HCQxrR2xy07LFzH9ND5zyk/MJ8Ldm8ROOWjdNvB3/TUxcHHrSwtOioaM0YOENPfXNk+8wdmTrl6FN8t2OiY/RZiv+AfBV9JlV2jDv/2KnBcwfrb6f8Tbcm3ar1u9Zr9KLROunok3TtydcqryBPg+YM0pmdztQDZz8gp9upUQtHacqKKbq/7/1VOq6SZfE+funyBPpMkqTUXqmKjoqWzWJTW2tbNY1pqgnnTdDIT0bqu53f6Y4Fd6hl05Z+93nvmvcC7is6Klp/7fFXvX3V237LL5t7me/6G0MqH8ywOu+bHQd2SJKe+uYpTTh3gpo3ba4xi8do0JuD9L+7/qcmMU2UtjBNdqtd9555b8DHe6T/I7r3zHt14NABffvlt1r4y0I53U4NO2WYrvzPlVq5baXO6HiGXrrspQpbVoQDwjUAABFm2/5tuuada7Rp3yZ9ccMXOqPjGZLkCyqHiw77be8p9Ph9UfIUejTq01F6Pet1Pf9/z+v25Nv9tp9w3gSN7DNSm/dt1rSV05Q8M1mrbl3lq1mqSFxMnA4Xl318qewXzvJ0bNlRWXdmae+hvVq+Zbkun3e5/nXxv3TnGXf6P1YVj9frjI5naPc/joSh6+Zfp4HdB/rVUL2X/Z5eXPuiFqYs9C0r+cOD12UJl2ndHeu06+Auzf1+rk578TQtGb5EZ3Q8Q3GxcQHL5H0OOrTsoHlXztNNH9ykF9e+qOZNm2tk75Fau2OtX9Pk8l7n0uJiAj+e9zmobH1p2/Zv842S/vPen/XG+sBfxq1NrLr/8/vVq2Mv3feX+8qsr+h1jIuNU7FRrMLiQr9WEd5yRUVFac7QObrmnWvkeMah2OhYjeo9Sq3iWuno5kcra2eWbvvoNs2/er7at2gfsHwlXZpwqSaeN1F3LrhTN39ws7q07qKhPYZq0aZFftt9teUrXTv/WjlsDi2/ablaW1qXu88ZA2fomnf8mw4XPnpkhGnbP23aOHKj2jVvV2HZPhn2ifZ59un7Xd9rwvIJWrN9jeZcMadK7+8HlzyoG3veqNFnjZYk9YrvpcwdmXp8+ePKGJpR7de+ZFPnvo6+2pO3R+lr0n3h+sR2J/rW9+nUR0XFRZry9RRNvWhqlVqkzLp0lgqKCzRq4Sht2rdJ3dp00+JNi9WvS78K71fRZ1Jlxzjtm2lqY2mjmZfOVFRUlPp06qNdB3fp74v+rmtPvlavr3tdO//YqdW3rlazJs10VuezVFBcoDsW3KHUXqlV+tzzqu5nktcdZ9yhlzNf1lGWI581Z3U+Sx///LH6du6r3Xm7tTtvt6/LT+nWIV73fHqPvt/1fZmaa0l65ItH9Pj5j/stm/DlBE34coLv9qP9H9Wj/R+t1vvGO6r6pPMn+V7Hly97WSenn6xvtn2jn/b8pHd/fFfr7lin6KjyeyS3jGspS7RF+cX5GvP5GL059E2N+XyM+sT30VtXvqX7F9+vcUvH6d//9+9y9xEOCNcAAESQn/b8pPNeP0+nHH2Ksu7M8gtj3lrBbfu3qcfRR75cbd2/VVefdLUk6VDBIV2ScYl2/LFD39zyjZI6JJV5jA4tO6hDyw46tf2puvi4i3XUk0fprQ1vlQnhgcS3jNfPe3/2W7bVvVW2OFvAkBpIk5gm6mE3y/+Xzn/RoYJDmvDlhDLh2m61Ky4mTlv3b/V/vP1bldwhucx+Y6Nj/Wo9Dh4+qE6tOvktaxnXssx2gdgsNtksNp2kk3T+sefrp70/6elvntacK+YovmW8Pvn5kzLPgXSkGfSg4wdp5307tW3/NrVr3k4f5XykNpY2vib9Fb3OpcW3ig/4HHibfgZc795abtPQ3z2/6+utX5ep/Qrk802f6yvnVwHDdUWvY3zLeEnme9V7zPmF+dqdt9tXruPbHq/MOzK1649diouNU0FRgZ5e+bRO73C6nln1jP44/IcunXup7/EOFx3WCucKZazPUM6InDLNaB/q95D+cfY/tOPADnW2ddbIT0bq9GOO9Ol+L/s9XTv/Wt3T5x5NOn9ShU2dX7nsFeUeyK3wuXHYHNq0b1Ol4drbj/aMjmeoa+uuOn/2+Rp/7nh1P6p7pe/v9bvW69bT/acfS+qQpIUbzR+Hqvval5bUIUnz/jevwvUHCw5qz6E9FZ4zX235SpLZpLppTFNddeJVem7Vc5p0/iS9teEtLbtxWYXlqOgzqbJjXP/bevU8pqdf+E/qkKTcA7nae2iv1u9arxPanqBmTZr5rc8ryNPGvRsDfkaWp7qfSV7p36Zrd95uzfvfPM3dMFd2q10/jfxJM9fO1PU9r1exUax/rvhnpa2Itu7fqreufEunHXOaJi6fqE6tOunG027Uwo0L9c4P75TZ/q5ed/n+N3jLL1XvfeP9bCrZneWEtidIknb9sUuTvpqkPXl7dOyz/k3lb/7gZj2+/HHljPCfI/6tnW/pvK7n6WzH2Royb4hmDJyh2OhY3Xz6zfrbu3+r8PjDAQOaAQAQQYbNH6azOp2lT/72SZnAFd8yXkc3PVqfb/7ct+ynPT9p2/5tuuDYCyRJjyx9RNsPbNeqW1dV6UtjVJTZj7OigZ1K6uvoq9W5q+X2uH3Llmxeogu6XVCl+wcSGx0bcMC16KhondX5LC3etNi3zO1xa832Nb7jLY9hGMrZk1PlkFGdMvZ19NUW9xb9vOfIjwxLNi9RUocktWnWxrcsKipKnW2dZYm1KH1Nuq4+6WpfAKjodS6tr6Ov33NQVFykZb8u8z0HfTv31Rebv/B7DZdsXlLhcxQXE6czO50pt8etYfOH6dYPb/Vdbv7gZj38xcM6s9OZZfqHV/U5SuqQpGaxzbT4lyPl/nLLl4pSVJlazPYt2qu1pbWe//Z59bD30GnHnKbJ50/WD3f/oHV3rvNdzuh4hoYkDtG6O9eV20+zaUxTdWndRQfyD2jOhjm69uRrJZlNh69/73pNvWiqnrzoyUr7EFelj/EpR5/i6/deVd5a/KLioiq9v+NbxuuH3T/47eP7375XfCvzx4uavPYlrd6+usLXeHXuarWxtCn3h7MDhw9o6LyhenDJg37Lx5w9Ri9lvqRbPrxFSR2SdGr7U6tUHqnsZ1JlxxjwOdr1vZo3aS5bnE3xreK1ce9Gv5ra73d9ryhFqUOLDqqOmnwm5RXkadTCUbot6Ta5xri06tZVvsHavE475jStzl2tvIK8gPswDMP32fHVlq+04KcFytmTo6ydWVrw0wK/QQBLslvt6mHv4bt4w3V13je94nupSXQTv8HO/rf7f5LMkP359Z9rw10b/M5Vyazp/mSY/4+QP+z+Qcv2LtPk8yZLMmvLC4oLfM9TVfv2hxLhGgCACPHTnp+0dsdaXXvytdq0b5M27t3ou3jD7GXtLtOMb2fo7f+9rTXb1+iWD2/R4BMG65T2Zp/GOd/P0ZAeQ7T30F6/+3tHfX7ki0c0O2u2snZmafmW5Ro6b6iaxTbT0MShVSrjVSddpbbWtrrpg5uUtTNLM9fO1Pzs+RrzlzFVun/27myN+nSUlm5eqvW71uuFNS/oyf8+qduSbpNkflHt+0pffbP1G0nS6DNHa96GeXpxzYvK2pmlmz64SQltEzTo+EEVPYwW/bJIhcWFVf5S/+DnD+rBz82AMOf7OZr69VSt2rZKa7ev1d8X/V3Lfl2mW06/RZLUr0s/JXdI1s0f3qw129fonR/e0XOrntPYvmN9+3s582V9t+M7fZv7rW764CZlu7L1aP9HJVX+OhcbxRqQMUDvZr8rSRrVe5RW567WhC8naMNvGzTy05EqNop142k3SpJuTbpVv3t+14hPRmjDbxv0+JeP6/vfvteoPqMqPe5DhYeU1CHJb+Thd69512+UcK93s9/VgIwBKjaKK30dmzVpptQzUvXoskf12cbP9LXza92z8B7dkXyHL6i9/+P7+u/W/2rDbxs0ZcUUTfl6ip4b8JwksyazZCjoYe8haxOrbHE29bD3UJOYJn6v2c4/dmru93O14bcN+nzT5xrw5gD1bN/TV2v3Yc6HKjKKNLD7QL/nu3Toqor9+fv1xeYvdI7jHH32i9l3ePfB3Zrz/Rz9svcXnfXyWfpl7y+SpOvfu14LflqgDb9t0Ps/vq9bP7pVfR19ldguUVLl7++RvUfqhbUv6MU1L2rdznUat3ScFm5cqBG9RlTptS/5mknSje/fqKWblypzR6Ye/uJhvZH1hsaec+R9O/KTkVq4caGydmbpX//9l57875N6oO8DAZv7/vr7rzp4+KD+mvBXfT78c7913Y/qrht63qB5/5unf/zlH37rSr+/K/tMquwYU89I1YbfNihtYZq+2/GdZmfN1uQVk5V6RqpiomN0Q88b5Cn06Mb3b9Sa7Wv0/o/va/Si0brixCvUoWWHMq9ZZar7mfRt7rdy2By+2QPc+e4yMylYm1jVr0s/vb7u9TL3zy/K1x0L7tBZnczxJL7b+Z1WOFdoy+9b9NPen7TCucIXdiXphvdv0IzVMyo8huq8b1pbWuuW02/RPQvv0Sc/f6IVzhW6+YObdWG3C9XzmJ467qjjypyrknkOlx79fNRno3Rdh+uOhHxHXz205CF9t+M7Pb78cV3c7eIKyx0OaBYOAECE8Aaaq96+qsy66QOn647T79D/2f9PR3c9Wnd9cpc8hR79NeGvmjFoht8+nvrmKb8BhSTpisQr9M7V76hr666a/NVkbXFvURtLG/Xr0k/f3PJNlfq1SuaXwE//9qlu++g29X6pt45tfazmXjFXfTr1qdL921rbavPvm3XV21fpUOEhdT+qu6ZeNFV3JN8hyay9yHZla3ee2Xf60oRL9eyAZzVh+QTtO7RP5x97vhYMWxBwoCqvHQd26M6P79RdZ9zlN9VMRX7Zd+SL9bGtj9Vzq57ThOUT1CS6iU5tf6o+S/lMF3a7UJJZs/beNe+ZQemVvmrfor2euvgpXXHiFb59vJP9jkYtHKXY6Fidf+z5WnHTCl9ta2Wv821Jtynbla3tB7ZLkk7vcLrmXjFXD3z+gCZ/NVm943trUcoitYwzB0GKbxWvj677SCM+HaFX1r2ik9qdpE+GfVLl0YcX/bLIrw9nkVGkdtayTZ23H9iubFe2CooKKn0dJWnyBZN1qPCQrn7nasVExSjl1BRNvWiqb/36Xev1zMpndKjwkE475jR9cO0Huui4i6pUZsn/NSssLtTEryZq496NOqrZUbr6xKs18fyJvlC484+d8hR6dMKME8rs5/vU73Xy0SdX+FjeGr5XvntFY5eM1a1Jt2pUn1H6++K/65e9v2h33m79+9t/q4e9h7J3Z8udb/4Y1jqute5ccKdceS7Ft4rXFYlX6KFzHvLtt7L396g+o2TI0JP/fVK5+3N1fNvjNWfoHN8gdJW99iVfs7jYOOUeyNWQeUNUbBTrpKNP0sfDPvabLu1gwUH97d2/mc9V2xM0c7DZbDmQrq27+prnb9y70W/dK9+9ojfWv6HBJwzW9e9dr+cGPudrRVBQVOD3/q7sM6myY0zumKyPh32sh754SOlr0tWueTvd2+dePdL/EUnmtHdLhi/R3xf9Xf1e7acWTVvompOu8Q1i6M53+71mlanuZ9LXW7/W2Z3P9t3ed2if2lja+G2Tuz9XN512k1LeS9HgEwars62zFl1vjhcQFxOnn0b+JMn8kWhUn1EVNgvP3p2to60Vt4ap7vvmmQHPKCY6RinvpqiguECDTxisGQMrDvClzc6aLU+hRxe1O3KOzxg0Qynvpqj/a/01+ITBfj/0hKsowzvpZAOwf/9+2Ww2ud1utWpV9cEHANSdgoICffLJJxo0aJCaNAn/5jxAJKvy+XbZZdKHH9ZfwcLIl79+qevfu14J9gR9POzjMuH6rQ1v6ZmVz5QZ0bkx2fDbBl3+1uXaOGqjsndnK2tXli/4SGb4+einj5TUIUlPf/O09h7aq4yhGSEscWj8+vuvunD2hfpXl38pLjFOA+cO1IntTtSk8yfptXWv6Y0hb2jcsnFavGmxLjz2Qu3z7NNrl78W6mKHxMa9G3Xua+dq+U3Lde/Ce7Vy20rNv3q+zulyjl5b95pGfDJCCfYEjT5ztP52avj3q61N579+vq4+6WpddeJVMmRowpcTFBcTp6kXT9WJ/z5RHVt2VOaOTH1xwxd6KfMlffLzJ/ryxi/V2dZZG/du1K0f3urrsz54zmD9b/f/FBcTpz2H9ig2Ola2OJsOFhzUJcddopcueym0B1uJ2vjOGOo8SM01AABoFIqKi5T2WZoGnzBYzwx4psq11o1ZYrtEXxNlryYxTTR2yVjtPbRXbZq10SuXvRKi0oWPHvYeerDvgxp/7ng1jWmqHQd26L5F92n6wOnanbdbszJn6T9X/SfUxQy5Bz5/QHarXdl3Z/vm+r7xtBs16PhBevzLx5WzJ6eSPTQsRcVFynZl66xOZ+nRpY/qhbUvKNGeqAXDFsjtcevA4QM6u/PZevuqt9WmWRs9O+BZ9Wzf09enPkpRfjXiMdExev+a99XzmJ5+j1PegGaofdRcA6hT1FwD9Yea68p5Cj3lTmMDVFdF51zJQaZgKjaKK5yOqTEqKCpQbHRswPfK4aLDjepHQGquAQAAIgjBGvWFYF0WwbqsikbAbkzBuqHgHQ4AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAEImdUFqqIsAAECtIFwDAICQyT2QG+oiAABQKwjXAAAAAAAEiXBdnlSaqQEAAAAAqoZwXZ5cmqkBAAAAAKqGcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNd1LTU11CUAAAAAANQxwnVdy80NdQkAAAAAAHWMcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAMpKTQ11CQAAiCiEawAAUFZubqhLAABARCFcAwAAAAAQJMI1AAAAAABBIlwDAAAAABAkwjUAAAAAAEEiXAMAAAAAECTCdRBSFzBNCQAAAACgBuF63rx5OvXUU2W1WuVwODRhwgQZhiFJWrJkifr06aOWLVuqQ4cOGjVqlDwej9/958+fr8TERFksFvXq1Utr1671W798+XIlJyfLYrHopJNO0meffRbE4dWt3ANMUwIAAAAAqEG4/vHHHzV27FitXLlSDz30kCZMmKAXXnhBkpSdna3bb79dK1as0LRp0/T6669r3Lhxvvt+8803uvbaa3XHHXdo1apVcjgcGjRokA4cOCBJ2rx5swYNGqQLL7xQ3377rfr3768hQ4bo119/rZ2jBQAAAACgDlQ7XI8bN07XXnutTj31VN1xxx265JJLtHjxYknSiBEjdMstt6hnz5669tprlZKS4lsnSVOnTtWgQYN07733qmfPnnr55Zfldrv1zjvvSJKmT5+u7t27a8qUKTrllFP03HPP6aijjtKrr75aS4cLAAAAAEDtC7rPdVFRkdq2bVuldUuXLtXAgQN9t1u3bq2kpCStXLnSt37AgAG+9bGxserXr59vPQAAAAAA4Si2pnc8ePCg3nrrLa1atUpTpkzxW5efn6/PPvtM8+bN01tvvSVJ2rdvn37//Xcde+yxfts6HA5t27ZNkrRp06aA67OysgKWIT8/X/n5+b7b+/fvlyQVFBSooKCgpocmSYopLlZRJfsoNoorfZyq7AdoyLznSLDnJIDKVfV8q8r/pvr6/1WV/6VAuOJ/HFB7auN8CvW5WKNwbbFYlJ+fr1atWik9PV09e/b0rUtISNBPP/2kpk2b6oknntAll1wiSfrjjz8kSVar1W9fVqtVLpfLt02g9SUDdElPPPGEHnvssTLLFy1aVGY/1dX7t9+0+pNPKtzmt12/6ZNKtqnKfoDGoGQXEQB1q7LzrSr/m+rr/1dV/pcC4Y7/cUDtCeZ8ysvLq8WSVF+NwvW6devkdru1Zs0ajRo1Shs2bNDkyZMlSZ988on27dun77//XhMmTNCaNWs0Z84cxcXFSZIOHz7sty+Px+MLwnFxcRWuL+3BBx/U6NGjfbf379+vzp076+KLL1arVq1qcmg+MbNmadCgQRVuM+vtyrepyn6AhqygoECLFy/WRRddpCZNmoS6OECDVtXzrSr/m+rr/1dV/pcC4Yr/cUDtqY3zyduSOVRqFK579OghSerTp4+sVqtuu+02PfLII2rWrJmOO+44SdIZZ5yhrl276vzzz9f48ePVvXt3xcXFaevWrX772rp1q5KTkyVJ8fHxAdd369YtYDni4uJ8ob2kJk2aBP8BFx2t6Er2ER0VXfnjVGE/QGNQK+clgCqp9Hyryv+mevr/VaX/pUCY438cUHuCOZ9CfR4GPaBZbGysDMNQUVFRwHWSObBZdHS0zjrrLL9qfm/t9wUXXCBJ6tu3r9/6oqIiLVu2zLe+1qSm1u7+AAAAAACNWrXC9f79+zV8+HAtWrRIGzZs0JtvvqkxY8bouuuuU4sWLXT99ddrwYIF2rBhg95//33deuut6tu3rxITEyVJo0eP1rx58/Tiiy8qKytLN910kxISEnzNwUaNGqXVq1drwoQJ2rBhg0aOHKni4mLdeOONtXvUubm1u78gpC4g6AMAAABApKtWs3CLxaKCggINHz5cbrdbXbp00ciRI3XfffdJMqfWuvPOO+VyuRQfH68rrrhCDz30kO/+l156qZ599llNmDBB+/bt0/nnn68FCxYoJiZGknT66adr7ty5euCBBzR58mT17t1bixYtUsuWLWvxkCvgdEp/Dq4mt1vKzDSv2+2Sw1EnD5l7IHyCPgAAAACgZqoVrps2baq5c+eWu3769OmaPn16hfu4++67dffdd5e7/sorr9SVV15ZnWLVDqdTSkyUSo4w92dfcFmtUnZ2nQVsAAAAAEBkq/E81w2Oy2UG64wMM2R7ZWdLKSnm+qqG60A14HVY+w0AAAAACC3CdWmJiVJSUs3vX14NOLXfAAD4ON1OufJccnvcytxhdsOyW+1y2Pg/CQCITITr2haoBrwmtd8AADRQTrdTCTMS5Cn0SJKSZ5rdsCyxFuWMyCFgAwAiEuG6rgRbAw4AQAPlynP5gnVJnkKPXHkuwjUAICIFPc81AAAAAACNHTXXIUJfMwAAAABoOAjXIUBfMwAAAABoWGgWHgKV9TUDAAAAAEQWwjUAAAAAAEEiXAMAAAAAECTCNQAAAAAAQSJcAwAAAAAQJMI1AAAAAABBIlwDAAAAABAk5rkGAKAxcDol15/TPbrdUmamed1ulxyOqm8DAAACIlwDANDQOZ1SYqKUl3dkWXKy+ddqlbKzzeuVbVMqYKcuSFX64PQ6LDgAAJGDcA0AQEPncpmhOSPDDNBe2dlSSsqR2urKtikVrnMP5NZD4QEAiAyEawAAGovERCkpKfhtAABAGQxoBgAAAABAkKi5rian2ylXntl8zu1xK3NHpuxWuxw2BnoBADQA3v7X5d0GAAABEa5Lq+BLhdPtVMKMBHkKPb5lyTOTZYm1KGdEDgEbABC57HZz4LKUlLLrrFZzPQAAKBfh2qsKXypceS6/YO3lKfTIleciXAMAIpfDYf6g7B3cLC1NmjbNvM5UXAAAVIpw7VWVLxU7XKErHwAAdc3hOBKibbY6G9jMbrXLEmsp84O1JdYiu5UacgBAZCJcl1RPXyoAAAiJMOlP7bA5lDMiR648l9IWpmnaAPPHbMYwAQBEMsI1AAANXRj2p3bYHHLYHLJZbErqwI/ZAIDIR7gGAKChoz81AAB1jnANAEBjQNcnAADqVHSoCwAAAAAAQKQjXAMAAAAAECTCNQAAAAAAQWo8fa6dziMDubjdUmameZ2BXAAAAAAAQWoc4drplBITpby8I8uSk82/Vqs5gmrpgB0fX3/lAwAAAABEtMYRrl0uM1hnZJgh2ys725zz0+UqG67T0+u3jAAAAACAiNU4wrVXYmJQU4/YrXZZYi3yFHr8lltiLbJb7cGWDgAAAAAQoRpXuA6Sw+ZQzogcufLMvttpC9M0bcA02a12OWz02wYAAACAxopwXU0Om8MXpG0Wm5I61LwmHAAAAADQMDSucJ2dXfFtAABQIafb6WvB5fa4lbkjkxZcAACosYRru90cFTwlpew6q9VcDwAAKuR0O5UwI8Fv7JHkmcmyxFqUMyKnRgE7viWzcwAAGobGEa4dDrOW2jvPdVqaNG2aeZ15rgEAqBJXnqvMoJ6S5Cn0yJXnqlG4Th/M7BwAgIahcYRryQzQ3hBtswU1ajgAABEtvo5ri53OIz9oT54sjR3Lj9kAgAav8YRrAABgSq/D2mKn05z6Mi/vyLL5881uWNnZBGwAQIMVHeoCAACA2nPqCy+EtgAulxmsMzKktWvNS0aGucxbmw0AQANEzTUAAA2IZc+eUBfBlJhIFywAQKNCzTUAACirrvtlAwDQwFBzXVdKzqHNfNoAgEhTl/2yAQBogAjXta28ObWZTxsAAAAAGiyahdc275za3kFc+vUz/zJCKgAAAAA0WNRc1wXm1AYAAACARoVwDQAAwpLT7ZQrz3/6LrvVLoeNlmAAgPBDuAYAAGHH6XYqYUaCPIUev+WWWItyRuQQsAEAYYc+13WNqUwQrlJTQ10CALXJ6ZSysszrWVlSZqa5LEK58lxlgrUkeQo9ZWqzAQAIB9Rc1zWmMkG4ys0NdQkA1BanU0pMlAxDnv79zcE0Dx0yZ6pgQE0AAOoFNdcAAEQ6l0vKy5NmzdL6O++Uli+XMjLMZS5qeQEAqA/UXAMA0FAkJJitUnr2lKL5/RwAgPrEf14AAAAAAIJEuAYAABEvdQGDNAIAQotwDQAAIl7uAQZpBACEFn2ugcbG6TQHOHK7zal6JMluZzRhAAAAIAiEa6Ax8U7Xk5dn3k5ONv8yXQ8AAAAQFJqFA42Jd7qejAxp7VrzwnQ9AAAAQNCouQYao8REKSkp1KUAAAAAGgxqrgEAAAAACBI11wD8ON1OufLKNhG3W+1y2OiTDQAAAARCuAbg43Q7lTAjQZ5CT5l1lliLckbkELABAACAAGgWDsDHlecKGKwlyVPoCVijDQAAAIBwDQAAAABA0BpnuI6PD3UJAAAAAAANSOMM1+npoS4BAAAAAKABaZzhGgAAAACAWkS4BgAAYcdutcsSaymz3BJrkd1qD0GJAACoGFNxBSG+JX23AQCoCw6bQzkjcuTKcyltYZqmDZgmyQzdTAkIAAhHhOsgpA+m7zYAAHXFYXPIYXPIZrEpqUNSqIsDAECFaBYOAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAKrEbrXLEmsps9wSa5Hdag9BiQAACB+xoS4AAACIDA6bQzkjcuTKc0mS0hamadqAabJb7XLYHPVeHqfb6SuL2+NW5o5MSQpZeQAAjRvhGgAAVJnD5vAFV5vFpqQOSSEph9PtVMKMBHkKPb5lyTOTJZk16TkjcgjYAIB6RbNwAAAAAACCRM01AACIOOU1UZdoFg4ACA3CNQAAiEjh0kQdAACJZuEAAAAAAASNcA0AAAAAQJAI1wAAIKzFt4wPdREAAKgU4RoAAIS19MHpoS4CAACVIlwDAAAAABAkwjUAAGgUUhekVmGjKmwDAEAATMUFNEbZ2YGvA0ADlnsgtwobVWEbAAACIFwDjYndLlmtUkqK/3Kr1VwnV0iKBQAAAEQ6moUDjYnDYdZUr10r9etn/l271lzmcMhutcsSawl4V0usRXarvZ4LDAAAAEQGaq6BxsbhMC8nniglJfmvsjmUMyJHrjyzBjttYZqmDZgmSbJb7XLYHPVeXAAAACASEK6Bxio98NQ2DpvDF6JtFpuSOiQF3A4AKhRJYzs4nZLrz24xbreUmWl2lXHwgyIAoOoI1wAAoPZUOrZDmHE6pcREKS/vyLLkZLO8f3aZkSSn2+lr1eNFix4AQEmEawAAUHu8Yzt4a4LT0qRp08K3JtjlMoN1RoYZsiWz/Ckp5jqHQ063UwkzEuQp9Pjd1RJrUc6IHAI2AEAS4RoAANQ279gOkmSzlRnfISwlJpZbTleeq0ywliRPoUeuPBfhGgAgiXANNCwl+w16hWttEQAAANCAEK6BhiJQv0GpTL/BWnko+h4CAAAAfgjXQENRhX6DtYG+hwAAAEBZhGugoamg32BtoO8hAK/4lvGhLgIAAGEjurp3mDdvnk499VRZrVY5HA5NmDBBhmFIkrZs2aIrrrhCrVq1Utu2bTV06FBt2bLFd99NmzYpKirK73LyySf77X/58uVKTk6WxWLRSSedpM8++yzIQwRQU3xxBlCR9MHpoS4CAABho9o11z/++KPGjh2rE088Ud98843uvvtutWvXTqmpqbr//vvVrVs3LVu2TG63W/fdd58uvfRSrVu3TtHR0dq7d6+io6P1448/KioqSpIUFxfn2/fmzZs1aNAg3X333XrttdeUnp6uIUOG6IcfflDXrl1r7aABVA1fnAFEupJjRLg9bmXuyGSMCABAnah2uB43bpzv+qmnnqoPP/xQixcvVmpqqqZOnarOnTv71s+YMUNnn322fv75ZyUkJGjv3r1q3bq1jj/++ID7nj59urp3764pU6ZIkp577jl9+OGHevXVV/XYY49Vt6gAAKARCzRGRPLMZMaIAADUiaD7XBcVFalt27aS5BesJclisfi2kaS9e/fKbreXu6+lS5dqwIABRwoXG6t+/fpp5cqVAbfPz89Xfn6+7/b+/fslSQUFBSooKKjB0dSP4qJiNYtuVu66cC47wlhxsdSsmfnX+x4KtCzYh6nm+9d7m/c1UIf+PNcLiosl/Xm+1cH5XxMxxcUqqofHLzbKfv78duA3RRVHlf3MKjbXdbB2qNJnJ/+3UR7+xwG1pzbOp1Cfi1GGt8N0NR08eFBvvfWW/v73v2vZsmXq2bNnmW1SU1O1YMECbd68WbGxsfr3v/+tkSNHKi4uTvHx8brwwgv1+OOPq127dpIkm82mJ598UnfccYdvHw888IA++ugj/e9//yuz//Hjxwes0Z4zZ46sVmtNDgsAANSi3pMmafVDD9X540zaNEkPdav7xwEAhK+8vDwNGzZMbrdbrVq1qvfHr1HNtcViUX5+vlq1aqX09PQywdowDE2YMEEzZ87U+++/r9hY82H++te/6swzz1R0dLSysrL0yCOPaN26dfr6668VExOjP/74o0wotlqtfrXTJT344IMaPXq07/b+/fvVuXNnXXzxxSF5Mqsqa1eW+r3aL+C65TctV8/2ZX+oACqVlSX16yctXy55z8lAy4J9mGq+fwsKCrR48WJddNFFatKkSa2UAUApf57rBcuWafGOHeb59sMPtX7+10TMrFkaNGhQnT/OrLfLPk6VPq+q8NnJ/22Uh/9xQO2pjfPJ25I5VGoUrtetWye32601a9Zo1KhR2rBhgyZPnixJ+v3333XDDTdo6dKlev/993XppZf67tepUyd16tRJknT66afruOOOU79+/ZSZmalevXopLi5Ohw8f9nssj8dTbi10XFyc34BoXk2aNAnrD7jomGgdKj5U7rpwLjvCWHS0dOiQ+df7Hgq0LNiHqeH7N9zPSyCilTzX9ef5Vgfnf03LFl0Pjx8dVfbzp0qfV1X47OT/NirD/zig9gRzPoX6PKxRuO7Ro4ckqU+fPrJarbrtttv0yCOP6I8//tC5554rq9Wq7777Tscdd1yF+0n6cy7eLVu2qFevXoqPj9fWrVv9ttm6dau6detWk2ICAAAAAFAvqj3PdWmxsbEyDENFRUVKTU2VzWbTV199VWmwlqTVq1dLkrp37y5J6tu3rxYvXuxbX1RUpGXLlumCCy4ItphAg5K6IDXURQBqjPcvAABoiKpVc71//36NGDFCKSkp6tixo7KysjRmzBhdd911io6O1gcffKCpU6dq27Ztfvdr06aN2rZtq6eeekodO3bUySefrB9++EFjxozRwIEDddppp0mSRo0apd69e2vChAkaOnSonn/+eRUXF+vGG2+sreMFGoTcA7mhLgJQY7x/AQBAQ1StcG2xWFRQUKDhw4fL7XarS5cuGjlypO677z7t2rVLhYWFSktLU1pamt/97rvvPj311FOyWq0aM2aMXC6XHA6Hhg8frocffti33emnn665c+fqgQce0OTJk9W7d28tWrRILVu2rJ2jBQAAAACgDlQrXDdt2lRz584NuM7hcKiyWb3uuusu3XXXXRVuc+WVV+rKK6+sTrGACqUuSFX64PRQFwMAGqf4+FCXAACAehF0n2sg3NEEFXUitZJ+w5WtBxqLdH7cBAA0DoRrAKiJ3Ep+tKlsPYBaFd+SGnIAQGgRrkPAbrXLEmsps9wSa5Hdag9BiQAAiGx0/wEAhFqN5rlGcBw2h3JG5MiV5/Jbbrfa5bA5QlQqALXC6ZRcLsntljIzzWV2u+Tg3EbwGEMCAIDwRbgOEYfNQZAGGhqnU0pMlPLyzNvJyeZfq1XKziZgI2iMIQEAQPiiWTgA1BaXywzWGRnS2rXmJSPDXOZyVX5/AAAARCxqrgGgqrxNvqUjzb4DNflOTJSSkuq/fAD8eMc48RR6/JYzxgkAoC4QrhHZUlOZ5gX1o3STb8ls9k2TbyBslR7jJG1hmqYNmMYYJwCAOkG4RmRjuiPUl5JNvhMTzWXZ2VJKirmOcA2EpZJjnNgsNiV1oFUJAKBuEK4BoDpo8g0AAIAACNcAAADZ2YGvAwBQRYRrAADQeNnt5tgJKSn+y61Wcx0AAFXEVFwAECKpC1JDXQQADodZU+2dPq9fP/MvAxUCAKqJmmsAqG1VbF6ae6DxDMjndDt9Iza7PW5l7siUJEZtRnhwOI4EaZuNcRUAADVCuAaA2kLz0oCcbqcSZiT4zTWcPDNZkjnfcM6IHAI2AACIeDQLB4DaUrJ5qbdpKc1L5cpz+QXrkjyFHl+NNgAAQCSj5hpAtditdlliLWXCkiXWIru18dbO+nibl1bQtNTbRJrm0UD9im8ZH+oiAAAaMMI1gGpx2BzKGZHjq21MW5imaQOmEQ6rqHQTaZpHA/UnfXB6qIsAAGjAaBYO1KfUhjE6tMPmUFKHJCV1SJLNYlNShyRCYRWV10Sa5tEAAACRjXAN1KfcxjM6NAAAANCY0CwciBCBpjKiKTYAAAAQHgjXYaxkmPIiTDVO5U1lRD9dhJ3UVCmdfq0AAKDxIVyHqUBhSmLQo8aqsn66oXw/MPou/ATo+lDeCPMSo8wDAICGg3AdpsI5TAElMfouKlPeCPMSrXEAAEDDQbgGAATP6ZRcLsntljLNubtlt5tzfssM2N4Q7R1hHgAAoCEhXAMAguN0SomJUl6eeTvZnLtbVquUne0L2AAAAA0ZU3EBqHMvbH0h1EVAXXK5zGCdkSGtXWteMjLMZS7m7gYAAI0DNdcA6tyegj2hLgLqQ2KilERzbwAA0DhRcw0AAAAAQJAI10C4SU0NdQkAAAAAVBPhGgg3AeYJBgAAABDeCNcIX42pBtfpNKcvysw8MpWR0xnqUiEY8fGhLkHYim/Jc4MwxrkLAKghBjRD+GosNbilpzGSzKmMmMYosqWnh7oEYSt9MM8NwhjnLgCghqi5BkKNaYwAAACAiEfNNSKP03kkdHqbUNvtkV/DyzRGAAAAQMQiXCOy0IQaAAAAQBgiXCOyeJtQP/yw1KWLuWzLFmniRHMd4RpAOCnZ0sarIbS0AQAAZRCuEVnsdrOWeuJE/+VWq7muvgX64izx5RlA4JY2Ei1tAABooAjXiCwOh/ml1Bto09KkadNCE2bL++Is8eUZgP9ghYmJ5rLsbCklhZY2AAA0QIRr+EtNDf9pSByOI19KbbbQDQIW6IuzFPovz9nZga8DCA0GKwQAoFEgXMNfZXNL13X4DjQSuBTezazD5Yuzt8l8Sor/8hA1mXe6nXLluVRcVCxJytqVpaNbHi2HLUxfRwAAACAIhGtUT2XhOxjljQQu0cy6Kko2mfc2l5dC8sOE0+1UwowEeQo9ahbdTP3b9Fe/V/vJiDaUMyKHgA2UI3VBqtIHh3nrIQAAEFB0qAsA+JRsZr127ZFLRoa5PNDAYfDncJi16N7m8klJIflBwpXnkqfQ47t9Z+c7JUmeQo9cebyO1ZG6IDXURUA9yj1Qhz9gAgCAOkXNNcJPuDSzri2haOoeH183+0W9I2wBAABEBsI1GiRvf19JcnvcytyRKbvVXv/NkavS1L0K7Fa7LLEWv9pgSbLEWmS3BuhPHe6D0gEAAAANDOEaDU7J/r5eyTOTZYm11H9/36qMKF4FDptDOSNyfD8YpC1M07QB00LzgwGAWhU2PwYCAICgEK7R4JTu7+vl7e8bki+stdDU3WFz+Mpus9iU1KEBNZ0HGqmw+jEQAAAEhQHNAAAIkcp+DAQAAJGDcA0AAAAAQJAI10AEim/JaOAAAABAOCFcAxEofTCjgQMAAADhhAHNAAAIc94Rxb2jiUtiRHEAAMIM4RqoitTU4OaOLj2fdRXntwaA0iOKJ89MliRGFAcAIMwQrhEawYbV+pabW7P72e2S1WrOaV2a1Wqur+Jc1wAap7CcXhAAAJRBuEbVOJ1mCHS7pUyzSaLsdslRwy91NQ2rkcbhMGupvQE6LU2aNs287n3+CNcAAABAxCNco3JOp5SYKOXlmbeTzSaJslrN4FjTgN1YOBxHniObTUpKCrxdyabiNBtHGEpdkMpgegAAAOUgXKNyLpcZrDMyzJAtmeEvJcVcR7gOTnlNx73NxoEwkXugkbQ4AQAAqAHCNaouMbH8WlfUXHlNx4Npdg8AAACgXhGugXBQ1abjiHh2q12WWEuZAaossRbZrbRUaGx4PwAA0HAQrgGgHjlsDuWMyJErz6W0hWmaNsAc4I45ixunku8HSb73BO8HAAAiD+EaAOqZw+aQw+aQzWJTUgdaKTR23veDJN4TAABEMMI1jkyzJR2ZaitS+vvGx4e6BEBkK3n+T54sjR0bOec/AABAGCFcN3alp9mSzKm2ImWarXSmBQJqLND5P39+5Jz/AAAAYSQ61AVAiJWcZmvtWvOSkWEu89ZmAWiYOP8BAABqDTXXjUlqavk1vUyzBTRelZz/TrdTrjyX3B63MndkSmIANgAAgNII141Jbm7567KzA18H0Kg53U4lzEjwTRWVPDNZkjlVVM6IHAI2AADAnwjXjZ3dbvavTEnxX261musANGquPFeZOZglyVPokSvPRbgGAAD4E+G6sXM4zJpqb//KtDRp2jRGCwZQ77zNz0ui+TkALz4jAIQ7wjXMEO0N0jYbfa8B1LvSzc+9aH4OQOIzAkBkYLRwAAiR+JbM0+5VWfNzAI0bnxEAIgHhGgBCJH0w87QDAAA0FIRrAAAAAACCRLgGAAAAACBIhGsAAAAAAIJEuEatS12QGuoiACiF8zJy2a12WWItZZZbYi2yW+0hKBEAAAiEqbhQ63IP5Ia6CEBEKzmXq9vjVuaOTEnBzefKeRm5HDaHckbkyJXnUtrCNE0bME0S8/sCABBuCNdAuIlneqbGLNBcrskzkyUxn2tj5rA55LA5ZLPYlNQhKdTFAQAAARCuUXXZ2YGv/8lb21ZbNW2NVjrTMzVm5c3lKh2Zz5VzCgAAIPwQrlE5u12yWqWUFP/lVqu5TmVr26hpAwAAANCYMKAZKudwmDXVa9dK/fqZf9euNZc5zNBcXm2bt6YNAAAAABoyaq5RNQ6HebHZpKRG1N/P6ZRcLsntljLNpu6y230/KgAAAACARLgGyud0SomJUl6eeTvZbOouq7Xi/ucB+qMDAAAAaNgI10B5XC4zWGdkmCFbMoNzSoq5rry+6JJff3REoNRUBpYDAABAtRCuGzpvs2bpSNPmcG/WHG41wYmJgZvCe/uie5/ftDRpmjn/bNg/x6hYLnNCIzTiWzIVHwAAkYpw3ZCVbtYsmU2bvc2awy38RWJNsLcvutT4+qMDqHXpg2kxAQBApGK08IasZLNm7wjfGRnmMlcYjuBdclTyCkYmB+AvdUFqqIsAAADQ6FFz3RiU16w5HJWsCT7xxMgpNxBCuQeCbMZe0QB9AAAAqBLCNcIXA0oBdau8rhjh2g0DAAAgjNEsHKhP8QxWhDBSXlcMumEAAABUG+EaSK3H/qrUxiPcOBxm94ukpCOD8kVIsG6Mfc0ZTRwAgPBFuAaYdgmISEH3NY9AjCYOAED4os81AFQHg3/VCbvVLkusRZ5Cj99yS6xFdiv9vwEAQPgjXMMffYKBwCJw8C+n2ylXnjntntvjVuaOTNmtdjls4dfs22FzKGdEjq+8aQvTNG3AtDovb+qCVGqDAQBArSBcwx99goHAvIN/lZ4j3m4Pyz7KTrdTCTMS/GqCk2cmyxJrUc6InLAN2N5y2Sw2JXWo+6n4GmPTcgAAUDcI1wBQVSXnYQ9zrjxXmSbWkuQp9MiV5wrLcA0AABDJGNAMAAAAAIAgEa4BAAAAAAgS4bqhqM+5mgEgRJxupzJ3ZCpzR6ZvkDan2xnqYoWPnBzzb1YWo9kDAFDP6HPdUDBXM4AGLhIHaas33tHsb7tNp/bvL335pXToUFiPZg8AQENDzTVQW5jGDKhTlQ3S1qh5R7NfvlyWPXuk5cultWvNZREyCB8AAJGOmmugtjCNGYBQcjikDh3M6z17Sk2ahLY8AAA0MtRcA0AYsVvtssRaAq6zxFpkt9LEFwAAIBxRc43643RKrj+bbrrdUmamed1up9ki8CeHzaGcETm+Zs5pC9M0bcA0SWbwbtT9igEAAMIY4TpMeWuvSvcvDNeaq0rL63RKiYlSXt6RlcnJ5l+rlX6BQAkOm8MXom0Wm5I6JIW4RBEqNZXuGgAAoN4QrsNU6dorr3CtuSpZ3oA1bb9kmsE6I8MM2V7Z2VJKilmjTbgGUJuYRQEAANQjwnUYK1l7FQm85a2wpi0xUUqiFg6oa5HW+gUAACDSEa4BoAEqr+92uLZ+AQAAiHSEawBooOq973Z2duDrAAAAjQDhGgCkwKPZM5J91djt5sCEKSn+y61Wc10YcrqdcuW55Pa4lbnDnLmAWn0AABCMas9zPW/ePJ166qmyWq1yOByaMGGCDMOQJG3ZskVXXHGFWrVqpbZt22ro0KHasmWL3/3nz5+vxMREWSwW9erVS2vXrvVbv3z5ciUnJ8tiseikk07SZ599FsThAUAVeEezT042L8uXm38TE811qJjDYdZUr13rfwnTWQCcbqcSZiQoeWayljuXK3lmspJnJithRoKcbl5vAABQM9UO1z/++KPGjh2rlStX6qGHHtKECRP0wgsvSJLuv/9+devWTcuWLdM777yjX3/9VZdeeqmKi4slSd98842uvfZa3XHHHVq1apUcDocGDRqkAwcOSJI2b96sQYMG6cILL9S3336r/v37a8iQIfr1119r74gbEqfTrF3LzDxS05aZSRgAqsvlOjKavTcYZmSYy1yuyu8PM0QnJflfwjBYS5Irz1VmoDdJ8hR6yszQUCuys498PtNcHgCABqvazcLHjRvnu37qqafqww8/1OLFi5WamqqpU6eqc+fOvvUzZszQ2WefrZ9//lkJCQmaOnWqBg0apHvvvVeS9PLLL+uYY47RO++8o5tuuknTp09X9+7dNWXKFEnSc889pw8//FCvvvqqHnvssSAPtYGpyrzRAKqH0exRmyKwuTwAAKi5oPtcFxUVqW3btpLkF6wlyWKx+LaRpKVLl+qJJ57wrW/durWSkpK0cuVK3XTTTVq6dKkGDBhwpHCxserXr59WrlwZbDEbnpI1beXNGw0ACB1vc/nSn8d13Jff8+f/ZAAAUL9qHK4PHjyot956S6tWrfLVNJc2a9YsderUSSeccIL27dun33//Xccee6zfNg6HQ9u2bZMkbdq0KeD6rKysgPvPz89Xfn6+7/b+/fslSQUFBSooKKjpoUWG4mKpWTMpIUE65ZSyy/9siu+77n0+Sq6vwXMUU1ysokruV2wUl33+y3vcIMsT8PGLitUsulm560qXrdxjClS2OihvQ1TyNSj9N9BrEHJh/FoHPJ/qaJvoDh1UXGqb6p5PtSVQeWvr3K7XY+rQwbyUVkfPW0FBgdbfeafah9s5FuFCdR7giHB9DbyPy3sACF5tnE+hPhejDO9oZNVgsViUn5+vVq1aKT09XcOGDfNbbxiGJkyYoAkTJuj999/XpZdeqq1bt8rhcGj58uU655xzfNvefPPNcjqd+vzzzxUTE6PXXntN119/vW/9hAkTNHv2bG3cuLFMOcaPHx+wuficOXNktVqre1iogt6TJmn1Qw9VuM2kTZP0ULeKtwknVTkmIFSqcj7V1jbhpDbKy7kNAEDjkpeXp2HDhsntdqtVq1b1/vg1qrlet26d3G631qxZo1GjRmnDhg2aPHmyJOn333/XDTfcoKVLl/qCtSTFxcVJkg4fPuy3L4/H4wvCcXFxFa4v7cEHH9To0aN9t/fv36/OnTvr4osvDsmTWa+ysqR+/cxRjXv2DLxcKrtNeferophZszRo0KAKt5n1doBtqlLeGpQnkKxdWer3ar+A65bftFw92/s/TrnHFKhsdVDehqjka9AsupleOfkV3bzhZh0qPhTwNQi5MH6tP/n0Ew0aWINzrgbbBFLd86m2BCpvbZ3boTqm+lBQUKDFixfroosuUpMmTUJdnAajIb9nIkW4vgacc0DtqY3zyduSOVRqFK579OghSerTp4+sVqtuu+02PfLII/rjjz907rnnymq16rvvvtNxxx3nu4/dbldcXJy2bt3qt6+tW7cq+c+BuOLj4wOu79atW8ByxMXF+UJ7SU2aNGn4H3DR0dKhQ+bfksdacrlkXs/JOXI7Jyfw/arxuNGV3C86Krrs81+V8tbSaxYdE61DxYfKXReobAGPKVDZ6qC8DVGg1+BQ8SEdKj4U+DUItTB+rV+87MVKtwl4ztVgm4D3q+75VEsClbfKZfHOWX7ggKK//95cVqKfc6iOqT41iv+D9agxvGfCXbi/BpxzQO0J5nwK9XlY7am4SouNjZVhGCoqKlJqaqpsNpu++uorv2AtSdHR0TrrrLO0ePFi3zJv7fcFF1wgSerbt6/f+qKiIi1btsy3HtVUcqRa7/y9KSmMVAug4So5Z7l3vnLmLAcAAPWgWjXX+/fv14gRI5SSkqKOHTsqKytLY8aM0XXXXafo6Gh98MEHmjp1qm+AMq82bdqobdu2Gj16tIYMGaJ+/frpzDPP1GOPPaaEhARfs71Ro0apd+/emjBhgoYOHarnn39excXFuvHGG2vtgBuV0iPVpqVJ06bV+Ui1ABAygWZSKDmLAp99AACgjlQrXFssFhUUFGj48OFyu93q0qWLRo4cqfvuu0+7du1SYWGh0tLSlJaW5ne/++67T0899ZQuvfRSPfvss5owYYL27dun888/XwsWLFBMTIwk6fTTT9fcuXP1wAMPaPLkyerdu7cWLVqkli1b1t4RNzYOx5EvkzYbc/iWtGOHeXG7pcxMc1l5I/uiWuxWuyyxFnkKPX7LLbEW2a20mqgNTrdTrjzzhzO3x63MHeZ72G61y2FrmAGyWu8r5iwHAAD1rFrhumnTppo7d27AdQ6HQ1UZePzuu+/W3XffXe76K6+8UldeeWV1itW4ZWdXfBvle/FFyTva/J/9/jVunDR+fMiK1FA4bA7ljMiRK8+l4qJi5a7N1fKbluvolkc32OBXn5xupxJmJPiFzOSZ5nvYEmtRzoicBvk8l3xfSVLawjRNGzCtQf+gAAAAIkeN57lGiJXsT10afaqr5o47pMsuO9JcXqLWuhY5bA45bA4VFBQoV7nq2b5nyAeZaChcea4ytbdenkKPXHmuBhs2ve8rSbJZbErqQO00AAAID4TrSFVef2opvPtUh1NNu7cJOM3lEWHKax4t0fQeAAAgVAjXkSyS+lNT044wkbogVemD00NdjKCU1zxaqv0+1/SfBwAAqBrCNepHpNa0o8HJPZAb6iLUivpqHl0yyNdliC8tvmV8ne0bAACgLhCuUX/qqaadmjagdnmDfH32cQ66dUHJLicM9AgAAOoB4RoNTq2PKMyXdCBylNcFhe4nAACgjhGu0SDVSpNZvqQDkadkFxS6nwAAgHoUHeoCAGHL+yV97VqpXz/z79q15jK+pNe/1NRQlwCRwuEwu514u58kJXHOAgCAOkfNNVARbz/xcB+NvTHIbRgDkQEAAKBhouYaAFAljOANAABQPsI1AKBKIn1+cAAAgLpEuAbQcNAvu1zUOgMAANQtwjWAhoN+2eWi1hkAAKBuEa4BAAAAAAgS4RoAAAAAgCARrgEAAAAACBLhGgAAAACAIBGuUesYlRhAfeCzBgAAhJPYUBcADQ+jEqNWOZ2SyyW53VJmprnMbpccDv/1UvnboEHiswYAAIQTwjVCI77+apyo3YpgTqeUmCjl5Zm3k5PNv1arlJ1tXi+5PtA2jSBg8x4H6pbdapcl1iJPocdvuSXWIrvVHqJSAQDCDeEaoZFefzVO1G5FMJfLDM4ZGWaIlszAnJJypLa69PrS2zSCcM17HKhbDptDOSNy5Mpz+S23W+1y2Br+ZwwAoGoI1wDCX2KilJRU8/UAECSHzUGQBgBUiAHNgHpsog4AAACgYSJcA/XYRB0AAABAw0S4BgAAAAAgSIRrAAAAAACCRLhG9dA/GQAAAADKIFyjeuifDABA0FIXpIa6CACAWsZUXAAaPKfb6Zuf1u1xK3NHpiTmqEUVpabywyJqXe6B3FAXAQBQywjXABo0p9uphBkJ8hR6fMuSZyZLkiyxFuWMyBHxGhXKJQQBAIDK0SwcQIPmynP5BeuSPIUeX402AAAAEAzCNQAAAAAAQaJZOIDIl51d8W0AAACgjhGuAUQuu12yWqWUlLLrrFZzvWj2DQAAgLpHuAYQuRwOs5ba9WeATkuTpk0zr9vt5vodhGsAAADUPcI1gMjmcJgXSbLZpKSk0JYHAAAAjRIDmgFo0OxWuyyxloDrLLEW2a32ei4RAAAAGiJqrgE0aA6bQzkjcnxTbqUtTNO0AWbTcbvVLofNIfplAwAAIFiEawANnsPm+DNESzaLTUkdaDreKMTHh7oEAACgEaFZOICQS12QGuoioCFKTw91CQA/TrdTmTsylbkjU26P23fd6XaGumgAgFpAzTVQFdSA1ancA7mhLgIA1J7U1DI/7jjdTiXMSJCn0ONbljwzWZI5/kPOiBxfCxsAQGSi5hqoCmrAAABVlVv2B0NXnssvWJfkKfT4xoUAAEQuwnVjQu0rAAAAANQJmoU3JtS+AopvWcGPTNnZga8DAAAAlSBcA2hU0gcH+JHJbpesViklxX+51WquA4AIlrogNfBnHwCgVtEsHAAcDrOmeu1a89Kvn/k3O9tcB1QmlRHvIcnplDIzJbfb/JuZaS4LMQaNBID6Qc01AEhmiPYGaZtNSmIubFRDgAGs0Mg4nVJiopSXZ95ONkcCl9Vq/lDXJHRFAwDUD8I1gJBxup1y5bl8871Kkt1qD/10NAz+B6C6XC4zWGdkmCFbMkN1Soq5rkNoiwcAqHuEawAhUXrO17Ca75XB/wDUVGIiLV9gcjrNH1ZKstvpbgQ0YIRrACFR3pyv3vleQ157DQBATZXuJuDl7SZAwAYaJAY0AwAACEOpCxgoL2KV7CbgHSwzI8NcVro2G0CDQc01AABAHbNb7bLEWgK22LHEWmS3lp32j1G+GwC6CQCNCuEaAACgjjlsDuWMyJErz6y1TFuYpmkDpkkKk4EcAQBBI1wDAADUA4fN4QvRNotNSR2o0QSAhoQ+1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABIlwDQAAAABAkAjXAAAAAAAEiXANAAAAAECQCNcAAAAAAASJcA0AAAAAQJBiQ10AAAAAoDFyup1y5bn8ltmtdjlsjhCVCEAwCNcAgEbFbrXLEmuRp9Djt9wSa5Hdag9RqQA0Nk63UwkzEgJ+FuWMyCFgAxGIcA0AaFQcNodyRuTIledS2sI0TRswTRK1RQDqlyvPVSZYS5Kn0CNXnovPIyACEa4BAI2Ow+aQw+aQzWJTUoekUBcHAAA0AAxo1lDEx4e6BAAAAADQaFFz3VCkp4e6BADQcDidkuvPQYbcbikz07xut0sOmmoCAICyCNcAAJTkdEqJiVJe3pFlycnmX6tVys4mYCN8pKbyAzsAhAnCNQAAJblcZrDOyDBDtld2tpSSYq4nXCNc5OaGugQAgD8RrgEACCQxUUpisDMAAFA1DGgGAAAAAECQCNcAAAAAAASJZuEAgEYrviXTGKJhcrqdcuWZI967PW5l7siU3WqXw8Z4AQBQVwjXAIBGK30woywjvAQKxZKqFYydbqcSZiTIU+jxLUuemSxLrEU5I3II2ABQRwjXAADUBHNho5aVF4olVSsYu/Jcfvvw8hR65MpzEa4BoI4QrgEAqC7mwkYdKC8US6WCcaAfdvhRBwBCjnANAEAg2dnl32YubIRKeT/s8KMOAIQc4RoAgJLsdjOopKSUXWe1muu9tYbMhY36FuiHHX7UAYCwQLgGAKAkh8MMK94AnZYmTZtmXvc2vfWuA0KFH3YAIOwQrgEAKM3hOFIDaLMRYgAAQKWiQ10AAAAAAJVITQ11CQBUgnANAAAAhLvc3FCXAEAlCNcAAAAAAASJcA0AAAAAQJAI1wAAAAAABInRwgEAAGpLdnbg6wCABo9wDQAAECy7XbJapZQU/+VWq7kOANDg0SwcAAAgWA6HWVO9dq3Ur5/5d+1ac5l3znQAQINGzTUAAEBtcDjMi80mJSWFujQAgHpGuAYAAADCldMpuVyS2y1lZprL7HZaRABhiHANAAAAhCOnU0pMlPLyzNvJyeZfq5UuB0AYIlwDAFBTpUeDZnRoALXJ5TKDdUaGGbIl83MmJcVcR7gGwgrhGkDDER8f6hKgIQr0vipvZGiJ0aEB1L7ERPrxAxGAcA2g4UhPD3UJ0BAFel95R4Z2uczbaWnStGnmdfpCAgDQKBGuAQCoCe/I0BKjQwMAAOa5BgAAAAAgWIRrAAAAAACCRLgGAAAAcERqaqhLAEQkwjUAAACAI3JzQ10CICIRrgEAAIB6ZrfaZYm1lFluibXIbmU6PyASMVo4AAAAUM8cNodyRuTIledS2sI0TRtgTudnt9rlsDGdHxCJCNcAwl92duDrAADUUOqCVKUPDjCPfT1y2Bxy2ByyWWxK6sB0fkCkI1wDCF92u2S1Sikp/sutVnMdAAA1lHuAfsUAahfhGkD4cjjMmmqXS0pLk6aZTeZkt5vrAABo5Jxup1x5rjLLaV4O1D/CNYDw5nCYF5tNSqLJHAAAXk63UwkzEuQp9JRZZ4m1KGdEDgEbqEfVHi183rx5OvXUU2W1WuVwODRhwgQZhuG3zaZNm3ThhRcqIyOjzPKoqCi/y8knn+y3zfLly5WcnCyLxaKTTjpJn332WQ0OCwAAAGjYXHmugMFakjyFnoA12gDqTrXD9Y8//qixY8dq5cqVeuihhzRhwgS98MILkqSNGzfq1ltv1WmnnaYlS5aUue/evXsVHR2tn376ST///LN+/vlnffrpp771mzdv1qBBg3ThhRfq22+/Vf/+/TVkyBD9+uuvNT9CAAAAAADqWLXD9bhx43Tttdfq1FNP1R133KFLLrlEixcvliR9/vnn2r17t5YvXx7wvnv37lXr1q11/PHHq3v37urevbs6d+7sWz99+nR1795dU6ZM0SmnnKLnnntORx11lF599dUaHh4AAPUgPj7UJQAAACEWdJ/roqIitW3bVpJ0xx136M477yx3271798pewQi/S5cu1YABA44ULjZW/fr108qVK4MtJoAwY7faZYm1lGnOZom1yG5lJHBEmPTQTucDAABCr8bh+uDBg3rrrbe0atUqTZkyRZIUFRVV4X327Nmjn3/+Wc2aNVN8fLwuvPBCPf7442rXrp0ks0/2scce63cfh8OhrKysgPvLz89Xfn6+7/b+/fslSQUFBSooKKjpoQGoRd5zsfQ52cHaQT/c+YP2HNqj0YtH6+mLnpYktW3WVh2sHcpsH1NcrCLOa6BC5Z1vqF9V+bwqNorLvE5tmrZRm6ZtfD86Hi4+rKbRTSWZPzy2adpGBcV7pGbNpOJiyXv/4mK/ZcVFxWoW3Szw4xaVfdxIUBfHFOg1qK5yz7lSr0m5yyorSyX7KS5Suc+LVPPnhv+5CIXa+B8W6s+3KKP0aGRVYLFYlJ+fr1atWik9PV3Dhg0ru+OoKL3xxhtKKTE/7bZt27Rr1y5FR0crKytLjzzyiOLj4/X1118rJiZGMTExeu2113T99df77jNhwgTNnj1bGzduLPMY48eP12OPPVZm+Zw5c2S1Wqt7WABCZNKmSXqo20MVbtN70iStfqjibQAgHFTl86oqn3svbH1Bd3Yuv0UgglOV16C+hNtrzf9cRKq8vDwNGzZMbrdbrVq1qvfHr1HN9bp16+R2u7VmzRqNGjVKGzZs0OTJkyu9X6dOndSpUydJ0umnn67jjjtO/fr1U2Zmpnr16qW4uDgdPnzY7z4ej6fcoPzggw9q9OjRvtv79+9X586ddfHFF4fkyQRQVkFBgRYvXqyLLrpITZo0CbjNrLdnadCgQRXuJ2ZW5dsAjV1VzjfUvap8XlXlc2+QAqzPypL69ZOWL5d69gy4LGtXlvq92i/gPpfftFw92/es0nGEk7o4pqq8BpUp95yrwutUUsDXugr7yTpG5T4vUs2fG/7nIhRq43+YtyVzqNQoXPfo0UOS1KdPH1mtVt1222165JFH1KxZ+c1SAkn6c87aLVu2qFevXoqPj9fWrVv9ttm6dau6desW8P5xcXGKi4srs7xJkyZ8qQDCTEXnZXRUdOXnbHS0ojmvgSrh/2CIVeHzqkqfe+XsW4cOmX+99y+1LDomWoeKDwW+e0wNHzfE6uKYavwaBFDmnKvC61S1Qla8n+gYlfu8SEG83vzPRQgF8z8s1J9v1R4tvLTY2FgZhqGioqJq33f16tWSpO7du0uS+vbt6xt5XDIHS1u2bJkuuOCCYIsJAAAAAECdqVbN9f79+zVixAilpKSoY8eOysrK0pgxY3TdddepRYsWld7/qaeeUseOHXXyySfrhx9+0JgxYzRw4ECddtppkqRRo0apd+/emjBhgoYOHarnn39excXFuvHGG2tybAAaEqY6AgAAQBirVri2WCwqKCjQ8OHD5Xa71aVLF40cOVL33Xdfle5vtVo1ZswYuVwuORwODR8+XA8//LBv/emnn665c+fqgQce0OTJk9W7d28tWrRILVu2rN5RAWh4mOoIAAAAYaxa4bpp06aaO3dulbYNNAj5XXfdpbvuuqvC+1155ZW68sorq1MsAACAiBLfktY4qIbs7MDXQyh1QarSB/PDN1BSjee5BgAAQM0QSlAldrtktUolpraVZC6z2yW5QlIsSco9kBuyxwbCVdADmgEAAACoAw6HWVO9dq05/dbateYlO9tcByCsUHMNAAAA1IXaaM7tcJgXm036cxpbAOGJcA0AAICGJTU1tANhVtqcG0BDRLNwAAAANCy5Ie4PXLI5d8km3TTnBho0aq4BAADQaDjdTrnyXHJ73MrckSlJslvtcthqOfR6m3NLNOkGGgnCNQAAABoFp9uphBkJ8hR6JEnJM5MlSZZYi3JG5NR+wAbQqNAsHEDIMd8rAKA+uPJcvmBdkqfQI1de6Ka1AtAwEK4BhBzzvQIAItWpL7wQ6iKEpdQFqaEuAlDvaBYOAAAA1JBlz57KN4qPgBZaTqfk+rP23u2WMjPNkc1rOABb7oEQDyoHhADhGgAAAKhLoZwWrCqcTikxUcrLO7IsOdmcOowRzoEqo1k4AAAA0Ji5XGawzsg4Mn1YRoa5zEVfdKCqCNcAAAAAzNrrpCTzkpgY6tJIou82IgvhGgAAoDZFQv9aIELQdxuRhHANAABQm8K9fy0AoE4woBkAAACASjndTt984G6PW5k7MmW32uWwMeAZIBGuAQAAAFTC6XYqYUaCPIUe37LkmcmyxFqUMyKHgA2IZuEAAABAQAymdYQrz+UXrL08hR5fbTbQ2BGuAQAAgAAYTAtAdRCuAQAAAAAIEuEaAAAAAIAgMaAZAAAAgFrhHVHcO5q4JEYUR6NBuAYAAIg02dmBrwMhVHpE8eSZyZLEiOJoNAjXAAAAkcJul6xWKSXFf7nVaq4DQqiyEcUJ12jo6HMNAAAQKRwOs6Z67Vrz0q+f+Tc721yHCtmtdlliLWWWW2Itslv5caIiPHdA5ai5BgAAiCQOx5EgbbNJSUmhLU8EcdgcyhmRI1eeS2kL0zRtwDRJEdInOD4+pA9f8rmT5Hv+IuK5A+oJ4RoAAAANg9MpuVyS2y1lmoNpyW73q9V32Bxy2ByyWWxK6hBBP0ykp4e6BL7nTlLkPX9APSBcAwAAIPI5nVJiopSXZ95ONgfTktVKs3kA9YI+1wAAAIh8LpcZrDMyjvRJz8gwl7lcoS4dgEaAcA0AANCIpS5IDXURaldiotkPPSnJvF5NTrdTmTsylbkj0zdXc+aOTDndzjoobCOX2sDee2j0aBYOAADQiOUeyA11EcJG6XmaJeZqrlO5vPfQsFBzDQAAAKj8eZqlI3M1wxTfMrSjlwPhiJprAAAAoDq8o5IXF5u3s7Kko49uVIOmpQ+uu9HLnW6n74cMb9N8KUKmTEOjRrgGAAAAqqrkqOTNmsnTv7/Ur58UFcWo5LWApvmIZIRrAAAAoKpKjkqekKD1ubnqlJIipaSY6wjXQalK0/ywDNfe1gwllZpjHQ0f4RoAAACorsRE6ZRTzEG5EhJCXRqEUuk51r2YY73RYUAzAAAAAKgp5ljHn6i5BgAAaEDsVrsssZYyTWstsRbZrfYQlQpoBLxzrAdQcpC2khikrWEhXAMAADQgDptDOSNyynyR50s8EBqBBmnzYpC2hoVwDQAA0MA4bA6+rAMlpaZK6XU3fVhFInaQNlQbfa4BAAAANGy5uaEuARoBwjUAAAAAAEEiXAMAAAAAECTCNQAAAAAAQSJcAwAAAAAQJMI1AAAAgMiVmhrqEgCSCNcAAAAAIhkjgSNMEK4BAAAAAAgS4RoAAAAAgCARrgEAAFCxBtinNb5lfKiL0Hg5nVJmpuR2m38zM81lQISLDXUBAAAAUP+cbqdceS65PW5l7siUJNmtdjlsjrIbN8A+remD04PbQXa2VFxsXs/JCb5AjYXTKSUmSnl55u3kZPOv1Wo+p02qsR+Xy7zuDemSZLdLjgDvYaAeEK4BAAAaGafbqYQZCfIUeiRJyTPNgGOJtShnRE7ggA2T3W4GwZQUqVkzndq/v/Tll+Yyuz3UpatcaqqUHuQPC8FwucxgnZFhhmzJDNUpKea6DlXYR+mALpUN6QRshADhGgAAoJFx5bl8wbokT6FHrjwX4boiDocZ3lwuqbhYlrvukpYvl44+OjICXbi0QkhMlJKSanbfQAFd8g/pkfBaBCvUP5SgDMI1AAAAUB0Oh3kpKDBv9+wpNalqe2ZIMoNwoOvVUVlAD9R0vCE1Gw+XH0rgQ7gGAAAAUD9KNqsvydes3lU7j1Ne03GajaMOEa4BAAAA1I+SzerT0qRp08zl3hrlHbUUrr1Nxx9+WOrSxVy2ZYs0cWLjaTaOeke4BgAAAFB/vM3qbbaa97uujLeGfOJE/+WRMvAcIhLzXAMAAABoWLw15GvXmpd+/cy/NAlHHaLmGgAAIFLFx4e6BI2ep23bUBchbNitdlliLWVGorfEWmS3hqC22FtDLtVtLTnwJ8I1AABApGIanpBbf+ed6hTqQoQJh82hnBE5cuW5lLYwTdMGmP2p7VY707uhUaBZOAAAABCBvDXFgYSqtthhcyipQ5JsFpuSOiQpqUNSxATr1AWpoS4CIhw11wAAAEAEKllTLIna4iDlHmhY80anLkhV+mBat9QnwjUAAAAQoRw2hy9Ee2uLAanh/VgQCWgWDgAAAABAkKi5BgAAQGBOp+RySW63lJlpLrPbmcooTMW3ZPR4IJQI1wAAACjL6ZQSE6W8PPN2crL512plruAwRf/ahoP+0pGJcA0AAICyXC4zWGdkmCFbMkN1Soq5rgGG6/LmaZZCOFdzfcrODnwd9Y7+0pGJcA0AAIDyJSZKSY1jkKxGO/q23W62SEhJ8V9utZrrAFQJ4RoAAAD4U6McfdvhMGuqXeaPCkpLk6ZNaxT9651up+/HFLfHrcwdmQ37hxTUKcI1AAAA0Ng5HEeCtM3WKForON1OJcxI8OsGkDwzWZZYi3JG5BCwUW2EawAAAACNjivPFbB/vafQI1eeK2LDtbc23lsTLzXwbg1hhHANAAAAICxUbVA5V/0XLEKUro1PnmmO8k9tfP0gXAMAAAAIC1UbVI5wXZ6GWhsfKQjXAAAAQEPmdB4ZrMztljLNpsLhOmBZoxxUDg0C4RoAAAA1UnKk5clfTdbYc8ZKon9nWHE6zenU8vKOLEs2mwrLajVHCQ/DgA1EIsI1AAAAqi3QSMvzs+dLon9nWHG5zGCdkWGGbK/sbHNea5eLcA3UEsI1AAAAqq28vp0S/TvDUmJio5heKxxVbZA2NASEawAAAACoI1UbpA0NAeEaAAAAAOoQg7Q1DoRrAAAAoKHLzq74NkKu5ACBbo9bmTsyqdmOMIRrAAAAIID4lvGhLkLw7HZzVPCUlLLrrFZzPUIu0ACByTOTGRwwwhCuAQAAgADSB6eHugjBczjMWmrvPNdpadI0s79vufNcxzeAHxVKC/NjKm+AQAYHjCyEawAAAKAhcziOhGibrfJRw9MbwI8KpdXCMaUuSG0YP7igzkSHugAAAAAAEO5yD+SGuggIc4RrAAAAAACCRLgGAAAAUP/CvB90XWkQA+UhIMI1AAAAgPrXEPt2VwH9thsuwjUAAAAAAEFitHAAAAAAkSc7u+LbQD0jXAMAAACIHHa7ZLVKKSll11mt5vpGym61yxJrKTNntiXWIru18T4v9YVm4QAAAAAih8Nh1lKvXWte+vU7cj07+8ic3o2Qw+ZQzogcrb19rfo5+mnt7Wu19va1yhmRI4etZs9L6oLU2ilcai3tJ4xRcw0AAAAgsjgcR0K0zSYlJYW2PGHEYXPIYXPIZrEpqUPwz0utze+d2/DnCafmGgAAAACAIBGuAQAAADQ63v7JpdE/GTVFs3AAAAAAjY63f7IrzyVJmvzVZI09Z6zsVnuN+yejFKdTcpnPr9xuKTPTHHCugfaLJ1z/f3t3HhxFnf9//JWQYzIShp8Z/AqB0XAIyp2sgBYblEtIoYjiosKiqIhAhA2WFKB8kSggHmUpFOHQUildDsVrWRVQEXbVIAQJHhCgEEjQRcKRANmEkHx+f+SbkTGTY9JDZpI8H1VTyXy6Pz2fDnnHftndnwYAAADQKJXfnyxJ7/7l3QCPpoE5ckS69lqpoOD3toSEshndG+jEc4RrAAAAAEEpNjo20EMILvXpTHBublmwfuutspAtlYXqMWPKlgXjmC0iXAMAAADwK3+F4rRhaX7ZToNQX88EX3tto5nNnQnNAAAAAPgVofgSuPhMcPlzvd96q6yt/Gw2AopwDQAAgDoxcf3EQA8BqP/KzwTHx/9+uTWCAuEaAAAAdeLomaOBHgLQaHC/et0jXAMAAABAA8Ol+XWPcA0AAAAAgEXMFg4AAAA0FrFcKlzv7dnj/Xs/OpJ3RLkFZZOk5RXmaeevOyVJTrvT/VxwVES4BgAAQOXq4EAedSiNS4XrLaez7LFbY8Z4ttvtZcv85EjeEXVc3FGFFwrdbQnLEyRJtjCbspKzCNiVIFwDAACgomoP5Hn0D1CnXK6y/8FV/tit+fOlWbPK6tGPz7jOLcj1CNYXK7xQqNyCXMJ1JQjXAAAAqOjiA/mUFOmll8rayw/kfyVco3Eov0Q6KC6Pdrl+D9Lvvmt5cxPXT2TiMz8iXAMAAMC78gN5h6PsmbpAI/PHS6Qb2uXRPB7Pv5gtHAAAAAC8qOwS6fLLo4GLceYaAAAAAALIaXfKFmarEORtYTY57f6brCwgGtGkiD6fuV6zZo26desmu90ul8ul1NRUGWM81jl48KAGDhyot956q0L/devW6dprr5XNZtP111+vjIwMj+Vbt25VQkKCbDabOnfurA0bNvg6RAAAAACoN1wOl7KSs5TxcIbHq15fen7xpIgJCWWvMWP8Prt5MPE5XO/du1ezZs1Senq6nnjiCaWmpmrp0qWSpAMHDuihhx5Sjx499Pnnn1fo+8033+juu+/WhAkTtG3bNrlcLiUlJenMmTOSpJ9//llJSUkaOHCgtm/frn79+mnEiBE6dOiQtb0EAAAAgCDmcrgU3zLe41Vvg7X0+6SIGRllr8TEsq979vh1dvNg4nO4njNnju6++25169ZNEyZM0C233KJNmzZJkj777DMdP35cW7du9dr3+eefV1JSkv72t7+pe/fueu2115SXl6d3/2+mu0WLFql9+/ZauHChunbtqldeeUWXX365Xn/9dQu7CAAAAACocy5X2WSI8fG/T4zYQIO15Id7rktKShQTEyNJmjBhgh555JFK1928ebMWLFjgft+8eXPFx8crPT1d48aN0+bNmzVkyJDfBxcWpsTERKWnp3vdXlFRkYqKitzv8/PzJUnFxcUqLi62tF8A/KO8FqlJ4NKj3lBTpSWligqNqnTZH3+HmpSWquQPbVVto7LtlJqKbX4bb2mpFBVV9rX8M7y1+RE1Fxy8/X76S7D+7lmVk5+jE/89odOFp7UjZ4ckKSYqRq2bta5VbddEdf9O/qinQNdircP1uXPntHr1am3btk0LFy6UJIWEhFS6/qlTp3T69GnFxcV5tLtcLuXk5Egqu1fb2/LMzEyv21ywYIHmzp1boX3jxo2y2+0+7Q+AS6v8ChcAlx71hppY1W2V1/ajGUd1VJ6P5+n122/69uOPa7yNyrbz27Hf9LGX7dREjca7apV09GjZy93RS5ufUXOBVdnvp78E8++eVZedu0xHM8rGd1RHtVu7Jfle2zVR038nK/VUUFBQ677+UKtwbbPZVFRUpGbNmiktLU3du3evts/Zs2clqULotdvtys3Nda/jbfnFZ6cvNnPmTE2bNs39Pj8/X23atNHgwYPVrFkzn/YJwKVRXFysTZs2adCgQQoPDw/0cIAGjXpDTWUey1Ti64lel20dt1Xd/8fz2K7JihVKSkqq8TYq286Kdypux2/jzcwsu6dz61ap/NjUW5sfUXPBwdvvp78E6++eFX/cpy2ntri/3zqu7PZeX2u7Jqr7d/JHPZVfyRwotQrXu3btUl5ennbs2KEpU6bohx9+0Pz586vsExkZKUk6f/68R3thYaE7UEdGRla53Ns2y7d7sfDwcP7AAUGGugTqDvWG6oQ2CdV/S/9b6bIKvz+hoQr9Q1tV26hsO6EhXrbtr/GGhkr//W/Z1/LP8NZ2CVBzAebl99Nvmw7y373aqG6fJPlc2zX74Jr9O1mpp0DXYa3CdadOnSRJvXv3lt1u1/jx4zV79mxFRVV+bb7T6VRkZKSys7M92rOzs5WQkCBJio2N9bq8bdu2tRkmAAAAAAB1wufZwv8oLCxMxhiVlJRU/UGhobrhhhs8rqEvP/s9YMAASVLfvn09lpeUlOjLL790LwcAAEDj47Q7ZQuzVWi3hdnktDfM5+XCB7GxgR4BIMnHM9f5+flKTk7WmDFj1KpVK2VmZmr69Om655571LRp02r7T5s2TSNGjFBiYqL69OmjuXPnqmPHju5r76dMmaJevXopNTVVd9xxh5YsWaLS0lLdf//9tdo5AAAA1H8uh0tZyVnKLSibpyfl0xS9NOQlOe3O+v0cYPhHWlqgRwBI8jFc22w2FRcXa+zYscrLy9NVV12lRx99VI899liN+t966616+eWXlZqaqlOnTql///5av369mjRpIknq2bOnVq1apRkzZmj+/Pnq1auXNm7cqOjoaN/3DAAAAA2Gy+FyB2mHzaH4lvEBHhEAePIpXEdERGjVqsqnZb+YMcZr++TJkzV58uRK+40cOVIjR470ZVgAAAAAAASU5XuuAQAAAAD1A3MYXDq1mi0cAAAAAFD/XDyHQfn8BZLccxiUz20A3xGuAQAAAKARKZ/DgPkL/IvLwgEAAAAAtTZx/cRADyEoEK4BAAAAALV29MzRQA8hKBCuAQAAAAABtzR7aaCHYAnhGgAAAAAQcCeKTwR6CJYQrgEAAAAAsIhwDQAAAACARYRrAACARsZpd8oWZqvQbguzyWl3BmBEAFD/8ZxrAACARsblcCkrOUu5Bbke7U67Uy6HK0CjAoD6jXANAADQCLkcroYZpPfs8f49gMCKjfXafCTviHILclVaUipJyjyWqSuir6iXf58I1wAAAKj/nE7JbpfGjPFst9vLlgEIrLS0Ck1H8o6o4+KOKrxQqKjQKPX7f/2U+HqiTKhRVnJWvQvY3HMNAACA+s/lKjtTnZEhJSaWfc3IKGtz1a8DdKCxyC3IVeGFQvf7R9o8IkkqvFBY4baV+oAz1wAAAGgYXK6yl8MhxccHejQAGhnOXAMAAAAAYBHhGgAAAA1LJRMnAcClRLgGAABAw+Jl4iQAuNQI1wAAAAAAWES4BgAAQL0SG81l3wCCD+EaAAAA9UraMC77BhB8CNcAAAAAgDrntDtlC7O53y/NXipJsoXZ5LQ7AzWsWuM51wAAAACAOudyuJSVnKXcglyVlpRq0juTtHXcVl0RfYVcDlegh+czwjUAAAAAICBcDpdcDpeKi4slSd3/p7vCw8MDPKra4bJwAAAAAAAsIlwDAAAAAGARl4UDAADgkjmSd0S5BbmSpLzCPO38daeksomM6uM9lQDKUNsVEa4BAABwSRzJO6KOizuq8EKhuy1heYKkstmAs5KzGu1BOFCfUdveEa4BAABwSeQW5HocfF+s8EKhcgtyG+UBOBqoPXu8f98AUdveEa4BAAAQNCaun6i0YWmBHgZQc06nZLdLY8Z4ttvtZcvQaDChGQAAAILG0TNHAz0EwM1pd8oWZqvQbguzyWn/v+DscpWdqc7IkBITy75mZJS1uRrf2dvGjDPXAAAAAOCFy+FSVnKWe+KuchUm7XK5yl4OhxQfX8ejRLAgXAMAAABAJVwOV6O8fxi+47JwAAAAAAAsIlwDAAAAAGAR4RoAAAAAAIsI1wAAALgkKptpWfrDbMsA0AAwoRkAAAAuiT/OtJzyaYpeGvKSJC+zLQNAPUe4BgAAwCVz8UzLDptD8S15TBGAhonLwgEAAAAAsIhwDQAAAAAIuJjwmEAPwRLCNQAAAAAg4B5p80igh2AJ4RoAAAAAAIsI1wAAAAAAWES4BgAAAAB/iI0N9AjqBM+w945HcQEAAMBn5QfXhRcKKyxrzAfXaOTS0gI9gjrBM+y9I1wDAADAZxxcA40bz7CviHANAACAWrn44Pq6FtdxcA2gUeOeawAAAFiWNqxxXA4LAJUhXAMAAAAAYBHhGgAAAAAAiwjXAAAAAABYRLgGAAAAAMAiwjUAAAAAQNLvz7D3hmfYV41HcQEAAKBqsbGBHgGAOsIz7GuPcA0AAICqpfGYLaAxufgZ9g6bg2fY1xCXhQMAAAAAYBHhGgAAAAAAiwjXAAAAqBOx0dy7DdQ31G3NEa4BAABQJ9KGce82EExqEpyp25ojXAMAAABAI0Rw9i/CNQAAAACg1rh0vAzhGgAAAABQa5wBL0O4BgAAAADAIsI1AAAAAAAWEa4BAAAAALCIcA0AAAAAgEWEawAAAAAALAoL9AAAAADQuB3JO6LcglxJUl5hnnb+ulNOu1MuhyvAIwOAmiNcAwAAIGCO5B1Rx8UdVXih0N2WsDxBtjCbspKzCNgA6g0uCwcAAEDA5BbkegTrcoUXCt1nswGgPiBcAwAAAABgEeEaAAAAAACLCNcAAAAAAFhEuAYAAAAAwCLCNQAAAAAAFhGuAQAAAACwiHANAAAAAIBFhGsAAAAAACwiXAMAAAAAYBHhGgAAAAHjtDtlC7NVaLeF2eS0OwMwIgConbBADwAAAACNl8vhUlZylnILciVJKZ+m6KUhL8lpd8rlcAV4dABQc4RrAAAABJTL4XIHaYfNofiW8QEeEQD4jsvCAQAAAACwiHANAAAAAIBFhGsAAAAAACwiXAMAAAAAYBHhGgAAAAAAiwjXAAAAAABYRLgGAAAAAMAiwjUAAAAAABYRrgEAAAAAsIhwDQAAAACARYRrAAAAAAAsIlwDAAAAAGAR4RoAAAAAAIsI1wAAAAAAWES4BgAAAADAIsI1AAAAAAAWEa4BAAAAALCIcA0AAAAAgEWEawAAAAAALCJcAwAAAABgEeEaAAAAAACLCNcAAAAAAFhEuAYAAAAAwCLCNQAAAAAAFhGuAQAAEDRio2MDPQQAqBXCNQAAAIJG2rC0QA8BAGrF53C9Zs0adevWTXa7XS6XS6mpqTLGuJenpaUpLi5OUVFR6t+/vw4ePOhedvDgQYWEhHi8unTp4rH9rVu3KiEhQTabTZ07d9aGDRss7B4AAAAAAJeez+F67969mjVrltLT0/XEE08oNTVVS5culSS98847SklJUWpqqv7973+ruLhYt912m0pLSyVJJ0+eVGhoqPbt26f9+/dr//79+uSTT9zb/vnnn5WUlKSBAwdq+/bt6tevn0aMGKFDhw75Z28BAAAAALgEwnztMGfOHPf33bp100cffaRNmzZp4sSJWrBggSZMmKC//vWvkqQVK1bo2muv1ZYtW3TzzTfr5MmTat68uTp06OB124sWLVL79u21cOFCSdIrr7yijz76SK+//rrmzp1bm/0DAAAAAOCSs3zPdUlJiWJiYnT69Gl99913Gjp0qHtZp06d1LJlS6Wnp0sqO3PtdDor3dbmzZs1ZMgQ9/uwsDAlJia6+wMAAAAAEIx8PnNd7ty5c1q9erW2bdumhQsX6ueff5YkxcXFeazncrmUk5MjSTpx4oT279+vqKgoxcbGauDAgXr66afVokULSWX3ZHvrn5mZ6XUMRUVFKioqcr/Pz8+XJBUXF6u4uLi2uwbAj8prkZoELj3qDahb1BzgP/6op0DXYq3Ctc1mU1FRkZo1a6a0tDR1795d//rXvyRJdrvdY1273e4OwMOHD1efPn0UGhqqzMxMzZ49W7t27dJXX32lJk2a6OzZs1X2/6MFCxZ4vVx848aNFbYDILA2bdoU6CEAjQb1BtQtag7wHyv1VFBQ4MeR+K5W4XrXrl3Ky8vTjh07NGXKFP3www+6/fbbJUnnz5/3WLewsNAddFu3bq3WrVtLknr27Kl27dopMTFRO3fu1PXXX6/IyMgq+//RzJkzNW3aNPf7/Px8tWnTRoMHD1azZs1qs2sA/Ky4uFibNm3SoEGDFB4eHujhAA0a9QbULWoO8B9/1FP5lcyBUqtw3alTJ0lS7969ZbfbNX78eE2ePFmSlJ2drXbt2rnXzc7O1l/+8hev24mPj5ckHT58WNdff71iY2OVnZ3tsU52drbatm3rtX9kZKQiIyMrtIeHh/MHDggy1CVQd6g3oG5Rc4D/WKmnQNeh5QnNwsLCZIyRw+HQ1Vdf7XEaf9++fcrJydGAAQO89v32228lSe3bt5ck9e3b16N/SUmJvvzyy0r7AwAAAAAQDHw6c52fn6/k5GSNGTNGrVq1UmZmpqZPn6577rlHTZs21bRp0zRz5kz16NFDcXFxSklJ0bBhw9S1a1dJ0gsvvKBWrVqpS5cu+umnnzR9+nQNHTpUPXr0kCRNmTJFvXr1Umpqqu644w4tWbJEpaWluv/++/293wAAAAAA+I1P4dpms6m4uFhjx45VXl6errrqKj366KN67LHHJEnJyck6fvy4Jk2apMLCQg0fPlyLFy9297fb7Zo+fbpyc3Plcrk0duxYPfnkk+7lPXv21KpVqzRjxgzNnz9fvXr10saNGxUdHe2n3QUAAAAAwP98CtcRERFatWpVpctDQkKUmpqq1NRUr8snTZqkSZMmVfkZI0eO1MiRI30ZFgAAAAAAAWX5nmsAAAAAABo7wjUAAAAAABYRrgEAAAAAsIhwDQAAAACARYRrAAAAAAAsIlwDAAAAAGAR4RoAAAAAAIsI1wAAAAAAWES4BgAAAADAIsI1AAAAAAAWEa4BAAAAALCIcA0AAAAAgEWEawAAAAAALCJcAwAAAABgEeEaAAAAAACLCNcAAAAAAFhEuAYAAAAAwKKwQA/An4wxkqT8/PwAjwRAueLiYhUUFCg/P1/h4eGBHg7QoFFvQN2i5gD/8Uc9lefA8lxY1xpUuD5z5owkqU2bNgEeCQAAAAAgEM6cOSOHw1HnnxtiAhXrL4HS0lL98ssvio6OVkhISKCHA0Bl/wexTZs2ys7OVrNmzQI9HKBBo96AukXNAf7jj3oyxujMmTNq1aqVQkPr/g7oBnXmOjQ0VK1btw70MAB40axZMw48gDpCvQF1i5oD/MdqPQXijHU5JjQDAAAAAMAiwjUAAAAAABYRrgFcUpGRkZozZ44iIyMDPRSgwaPegLpFzQH+0xDqqUFNaAYAAAAAQCBw5hoAAAAAAIsI1wAAAAAAWES4BgAAAADAIsI1AAAAAAAWEa6BBm737t0aPHiw7Ha7rrzySo0bN04nTpxwL09LS1NcXJyioqLUv39/HTx40L3s5MmTeuCBBxQTEyOHw6FBgwZp9+7d7uWHDh3SsGHD5HQ61bx5cw0fPlyHDx+u8dhWr16t7t27y2az6corr9TmzZur7bN06VJdc801stls6tSpk5YtW+Z1vXXr1qlVq1Y1HgvgL8FYczfddJNCQkIqvNq1a1dt3+pqLisrS0OGDHHv7/Tp03XhwoWa/KgAvwvG+pOkDz/8UF26dFFkZKQ6d+6sjRs31nifSktLtWzZMvXo0aPGfYCaCNZ6kaTz58/rmWee0dChQyssy87O1rBhw3TZZZepVatWeuGFF3za78qOERctWqSOHTsqKipK7du319KlS33ariTJAGjQ/vznP5t58+aZzMxMs379ehMXF2eSkpKMMcasXbvWREZGmpUrV5odO3aYvn37ms6dO5uSkhJjjDGPPfaYefDBB80333xjvv76azNw4EDTsmVLk5eXZ4wxZsuWLeapp54y27dvN59//rnp0qWL6dWrV43GtWLFCnPZZZeZRYsWme+//95s2LDB/Pjjj1X22b17t+natatZt26dyczMNM8++6wJCQkxa9euda+zbt0607t3bxMREWGaNGlSmx8ZYEkw1lxOTo7Zv3+/x6tr165m1qxZVfarruZKSkpM27ZtzbBhw0xGRob54IMPjNPpNHPmzLHwEwRqLxjrb/v27aZJkybmmWeeMTt27DAPP/ywsdlsZt++fdX2Xb58ubnuuutMRESEadeunYWfDFBRMNbLhQsXzMKFC43L5TIRERFmwIABFZZ37drV3HLLLSYjI8MsX77chIaGmjVr1lS77eqOEadOnWo+/PBDs2vXLvP0008bSebjjz+udrsXI1wDDdyRI0c83r/99tsmNDTUnDt3zvTs2dNMmTLFvWzPnj1Gkvniiy+89j169KiRZD799FOvn7V27VojyZw+fbrKMZ04ccJER0ebN954w6d9OXHihDl79qxH26BBg8zdd9/tfj906FAza9Yss2jRIsI1AiIYa+6PPvvsMxMdHW1OnDhR5XrV1dxvv/1mJJndu3e7l6ekpLgPzoC6Foz1d9ddd3nURGlpqenYsaNJSUmpdn/i4+PNc889Z2bNmkW4ht8FY72cOXPGdOrUyaxYscKMHTu2Qrj+8MMPTXh4uDl27Ji7bdSoUSYxMbHa/fX1GPG6666rUZ1ejMvCgQauTZs2Hu9tNptKS0t1+vRpfffddx6X23Tq1EktW7ZUenp6pX0lqaSkxOtnlZSUyGaz6bLLLqtyTO+++66aNm2q0aNH+7Qvl19+eYVt22w2j/H885//1Lx589S0aVOftg34SzDW3B899dRTSk5O1uWXX17letXVXIsWLXTzzTdr+fLlKiws1IEDB/SPf/xDo0aN8mk8gL8EY/399NNP6tmzp/t9SEiIEhMT9e2331a7Pzt27NDjjz+u8PDwatcFfBWM9dK0aVPt2bNHDz30kEJCQios37x5s+Lj43XFFVe42/r3769t27bJGFPltn09RiwpKVFMTEyN1i1HuAYaEWOMXnvtNfXu3VvHjh2TJMXFxXms43K5lJOT47X/ihUrFBUVpT59+ni0l5SUaOfOnXr66af1+OOPKywsrMpxpKenq2vXrnrxxRfVunVrXX311Zo5c6aKi4t92p9Dhw7ps88+U//+/d1t3v4QA4ESLDV3sfT0dKWnp2vy5Mk+7o33mnvzzTe1du1a2e12dejQQX369NHYsWN93jbgb8FSfzExMRXuNc3Pz9dvv/1W7T7w3zTUlWCpl+ocPHjQ67iKioqUm5tbZd+a1lNeXp7mzZunvLw8jRs3zqfxEa6BRqK4uFgPP/ywNm/erMWLF+vs2bOSJLvd7rGe3W5XUVFRhf6vvvqqnnjiCT3//PMeZ7vGjx+viIgIJSQkKCEhQTNmzKh2LL/++qt27dqlrKwsvffee5ozZ44WLVqkefPm1Xh/9u3bp8GDBys+Pl4PPPBAjfsBdSWYau5iS5Ys0W233abY2Fif+nmruYKCAiUlJalPnz766quvtHr1am3cuFELFy70aduAvwVT/Y0cOVLvvPOOPvnkExUXF+v999/XBx98oCZNmljcS8A/gqleqnP27Fmv45LkdWy+OHz4sCIjI9W8eXMtXrxYK1eu9HlyXMI10Ajk5OTopptu0vr16/XFF1/oT3/6kyIjIyWVzcZ4scLCQo8/WoWFhXr44Yc1efJkLVmypMLZrtTUVH333Xf64IMPdOTIESUkJCg/P9+9LCwszP1KTU2VJF24cEHR0dF69dVX1atXL40bN04TJ07UypUrJUkrV6706Pfggw96fOb777+vXr16qVOnTvrkk08UERHh3x8YYFGw1Vy5U6dOae3atRo/frxHe21r7s0339R//vMfrV69WjfccINGjRqlF198Uampqe4xAXUt2Opv0qRJGj9+vG699VZFRkZq7ty5Gj58uPuy1urqD7iUgq1eqhMZGel1XFJZyN6yZYvHdgcMGFDjn0WrVq2UmZmpr776SlOnTtXtt9/u+4zhPt2hDaDeycrKMq1atTK33HKLx+QPOTk5RpLZvHmzx/qtW7c2L730kjHGmIKCAvPnP//ZtG/f3mRkZFT7WQUFBcZms5lly5YZY4w5fvy42bNnj/t1/PhxY4wx9957rxk0aJBH3+XLlxu73W6MMeb06dMe/X755Rf3eosWLTIRERHmxRdfNKWlpZWO5fXXX2dCMwREMNZcuTfeeMM4HA5z/vx5j/ba1twjjzxibrzxRo+2H3/80Uiq0fgBfwvm+isoKHBPApWUlGSmTp1qjKm6/srNmTOHCc3gd8FcL8YYc99991WY0Oyhhx4y/fr182h79dVXjcPhMMYYc+7cOY/tHj58uMJ2a3qM+L//+7+mZcuW1a53MWsXvQMIevfee69uuOEGrV27VqGhv1+sEhsbq6uvvlqbNm3STTfdJKnsss+cnBz3/+WbPXu2fvnlF3377bfVTnwkld3LEhoa6p7Mwul0yul0Vljvxhtv1Ny5c1VYWOieAOPHH3/UNddcI0lyOBxyOBwV+mVmZiolJUXvvPOObr/9dp9+DkBdCcaaK/f+++8rKSmpwuRIta252NhYvffeezp//rz7bPb333+vkJAQtWzZstrxA/4WzPUXFRWlNm3a6ODBg9qwYYNmz54tqfL6Ay61YK6XyvTt21dvv/228vLy3HXz+eefu8dlt9vVqVMnn7frTVhYWKUTtFXaxy+fDCAo7du3TxkZGZoxY4YOHjzosaxFixaaNm2aZs6cqR49eiguLk4pKSkaNmyYunbtKkn6+9//rtGjR+vkyZM6efKku2/Tpk115ZVXavbs2erQoYO6d++uvLw8Pfvss4qKitIdd9xR5bjGjBmjZ555Rvfdd58ef/xxZWZmatmyZXrttdeq7LdmzRq1adNGXbp00YEDBzyWtWvXjolfEHDBWnPltmzZovnz59d4f6qrufvuu0/PP/+87r//fk2bNk05OTmaNm2a7rzzTsI16lyw1t/evXu1d+9edejQQQcPHtT06dM1evToChM/AXUpWOulOnfddZeefPJJjRs3TnPmzNG2bdu0bt06bd261dJ29+zZo7S0NI0YMUIxMTH6+uuv9dxzz2nq1Km+bcin89wA6pUtW7YYSV5fixYtMqWlpWb27NnG6XSapk2bmtGjR5tTp065+4eEhHjte+eddxpjyi7D6dixo7HZbKZly5Zm1KhRZt++fTUa2+7du03fvn1NRESEcblc5uWXX662z7hx4yrdnzNnznisy2XhCIRgrrkDBw4YSeabb76p8f7UpOa2b99u+vXrZ6KiokyLFi1McnJyhWdjA3UhWOtvx44dpm3btiYiIsJcddVV5qmnnqpwa0Z1uCwc/has9XIxb5eFG2PM999/b/r06WMiIiJMx44dzbp163zarrdjxGPHjplhw4aZmJgYY7fbTbdu3UxaWlqVtyB6E2JMNQ8EAwAAAAAAVWK2cAAAAAAALCJcAwAAAABgEeEaAAAAAACLCNcAAAAAAFhEuAYAAAAAwCLCNQAAAAAAFhGuAQAAAACwiHANAAAAAIBFhGsAAAAAACwiXAMAAAAAYBHhGgAAAAAAiwjXAAAAAABYRLgGAAAAAMCi/w89VBdN8JOAfAAAAABJRU5ErkJggg==\n",
|
|
85
|
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAA9MAAAMTCAYAAACi5UTxAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjguMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy81sbWrAAAACXBIWXMAAA9hAAAPYQGoP6dpAACdi0lEQVR4nOzdeXhU5eH28TsQyTASBmVcIHAAxYa4ICQCLggoLsCPqlhcG1HrgoFIDbYUcUFRoVTf4oJGsbgVxLVVSyuuKGrFJRHQGiMIOBCxMqITIA6Q5Lx/PJ0tmSyTbSbJ93Ndc5E5z5kzz5mNuefZkmzbtgUAAAAAAOqtQ7wrAAAAAABAa0OYBgAAAAAgRoRpAAAAAABiRJgGAAAAACBGhGkAAAAAAGJEmAYAAAAAIEaEaQAAAAAAYkSYBgAAzW7Pnj3au3dvvKsBAECTIUwDAJBAvv32W916663asGFDnfvu27dPTz75ZKPv8/vvv9c999wj27YlSR6PR3/605/qffs333xT5eXlkqRBgwYF67Rq1Spt3LhRkvTEE0+oX79+ja5rPGzZskV5eXny+XwR21977TVdf/31kqTPP/9cH374YTyqBwCIE8I0AAAJ5Ntvv9Vtt91WrzC9evVqXXHFFfrtb38rSdq6dauSkpLqdRk+fHjwOB6PR3l5eaqoqJAkbdy4UbNmzYq4ry1btuill17STTfdpDPOOEMZGRnas2eP9u3bp2uvvTYYKsvLy1VZWalNmzbpnHPO0T/+8Q9J0ocffqhTTjmlSR6jaPbs2aO7775bn332WcT2W2+9td6PSVJSkjZv3lzt2Pfcc49WrFihLl26RGz/+uuv9dRTT0mSPv30U51yyimaPXu2Kisrg/vs3r1bf/rTn7R+/fqmP2kAQFwRpgEAQatWrdKECRNkWZb2228/paamKisrKyJgjBo1Sn379q3xGHWV79u3T4ceeqimT58e3Pboo4/qmGOOkcPhUK9evTRr1qxqXYL9fr9mzZoly7KUkpKio446KmqrbElJiS6++GJ1795dTqdTI0aM0EcffVRtv3//+98aNWqUunTpogMOOEAXX3yxtm3bVm2/+tQt/L4vuugiXXbZZTWef1M6+eST9eijj+r+++/XDTfcoEMPPVRFRUXVLocccohuvfXWiG2BEFiTyspKXXHFFTr++OPlcrl04okn6pFHHlHHjh3129/+VgsXLtTOnTu13377aenSpXrxxRf1/fffB29/4403asKECfrtb38r27a1YsUKnX766c32WFx33XVaunSpfvGLX1QrO+SQQ6I+LuGXJ554Iupxf/jhBz3yyCO6/fbb1bFjx4gyp9OpPXv2SJIuueQSvfXWW1qyZImKi4uD++y///7yer2aMGGCysrKmvCMAQDxlhzvCgAAEsPDDz+sa665RsOHD9fs2bPVvXt3ffvtt/rHP/6hHTt21BqQY/HCCy/o+++/V05OjiTpvvvu029/+1tdeeWVuv322/Xuu+9q3rx52rFjhx566KHg7S6++GK98soruuWWW5Senq7Fixfr0ksvVadOnXThhRdKknw+n04++WRVVFRo/vz5cjgcuvPOOzV69GgVFhbqiCOOkCR99NFHOvXUUzVs2DA99thj+vbbb3XzzTfrs88+U2Fhofbbb7+Y6vbee+/pySef1JIlS/Tzzz/r0ksvbZLHqj4uueQSbd68WevWrVNSUpIGDBhQbZ/k5GQdcsgh1coef/xxXX755cHrgfP+61//qqSkJJ144om64oordOSRR6pbt24Rtz399NM1dOhQnX/++fr666/1xz/+UatWrVJpaak++eQTnXHGGerUqZO++OILeb1effvtt7riiit0xRVXRBzn/fff17Bhwxr1GLz11lt6+OGHtWbNGqWkpEQ9/2iPS7jvvvsu6vb58+crIyNDEydOlMfjkWVZwbL9999ffr9fknntpaam6t5779V7772n0tLS4HndeeedevHFFzV79mzdddddDT1NAECisQEAsG27Z8+edp8+fex9+/bVut/IkSPtPn36NLh8+PDh9plnnmnbtm2Xlpbaqamp9rnnnhuxz6RJk+wOHTrYHo/Htm3bXrlypS3Jvu+++4L77N271+7fv7/dv3//4LbZs2fbSUlJ9tq1a4Pb1q9fb3fo0MG+6qqrIurYu3dve/fu3cFtjz76qC3JXrp0aUx1s23bdrlc9jHHHGMvX77clmRfeumlNZ5/XT7++GNbkv3KK6/EdLvKysoay9LS0uz8/Pxq23/66Se7qKjIfv75521J9ueff24XFRXZb7zxhp2UlFTra6Fnz572U089ZT/44IP26NGj7dGjR9tHHnmkLck+8sgjg9ueeOIJ+9xzz7WHDx9ub9q0yd60aZP95ptv2pLsd955x/b7/TGdZzQjRoywJ0yYELVs9uzZdlpaWp3HCLzGNm3aFNy2ceNG2+Fw2O+99569e/duu2fPnvZVV11l33777fbVV19tDx061JZkp6am2pLsDh062D169LCHDRtmP/HEExHHX7x4se10Ou3//ve/jTpXAEDioJs3AECSGdvZ3NatW6f33ntPU6dOlWQmcNq5c6euvPLKiP0uueQSVVZW6rXXXpNkWrM7duwY0X16v/320wUXXKANGzbo66+/Du43ZMgQDRw4MLhf//79dcIJJ+iVV16RJHm9Xq1atUoXXXSRnE5ncL8LL7xQ++23X3C/+tZNkt5++22tW7dO//d//9fYhyho7NixUcf0OhwOSdKuXbt00003BS/hk2Oddtppuummm+q8D5fLpQEDBqhPnz6SpPT0dA0YMECWZcm2bT388MP67rvvIi7btm3TQw89pP/+978aNWqUcnJy9MYbb+i2227Tjh075HA4dPDBB+vKK6/UG2+8oaOOOkovvviiKioq1LdvX/Xt21cdOnRQUlKShg4dGrUlORZfffWVVq1apauvvrpRx6nKtm1dffXVGjNmjA477DDNnz9fFRUV+vWvf63Vq1erY8eOysrKkiQ9++yz2rhxo/x+v7799lutXr1akyZNijhedna2JOnpp59u0noCAOKHbt4AAEnSBRdcoEWLFumcc87Rfffdp8MOO6zGfW3b1q5du6KWBSaxiuaBBx5Qnz59gqFz7dq1kswM0OGOOeYYSQqOPV27dq0OP/xwpaam1rhf7969VVRUVK0bcWC/999/X7t379a6detk23a1++zcubMOP/zwiPusT92i7dMUHnnkkYhJwgI6dDC/g1dUVGjDhg3avXu3li9friuvvLJaV+yGOuKII3Tddddp5syZys3NrVZ+yCGH6MEHH1SPHj20d+9e3XXXXbrjjjv0wAMP6M9//rP69u2rqVOn6t1335XP51O/fv0ixt1v3rxZhxxySPCHgcZ4/fXXlZKSohEjRjT6WOEqKir00UcfqbS0VP/4xz9UUVGhpUuXauTIkRo5cqQkMwFZfn6+BgwYUG0YxL59+4Ld5iWpU6dOGjFihF5//XVNmzatSesKAIgPwjQAQJKZsbiyslKLFy/Wq6++quzsbN14443q379/tX09Hk+1YBsu0NIZzufzaenSpbrpppuCgTAwYZXb7Y7Y98ADD5Qk/fTTT8H9qu5Tdb8dO3aooqKi1v18Pl+N9xnYb/v27THVrbn06tWr1nG+LpdLTz/9tDZv3qzly5fXebycnJzgOHXJzD5d9UeAzZs3a8eOHRo6dKjmzZunefPm1Xi85GTzFWLs2LH6+OOP9eSTT+q8887Tn//8Z40cOVKzZs3S+eefr3vvvVc33nijjj76aH333Xc69NBDtXbt2ib7AaKwsFBHHnlkRC+DqkpKSpSUlBTTcZOTk/XVV1+pS5cu+s1vfqMdO3bo4osvrraPJC1ZskSSCdcbN27U119/rfLy8mrjsDMzM/XXv/41pnoAABIXYRoAIMm0zD7yyCPKzc3VnXfeqSeffFJPPfWU7rjjDv3+97+P2PfQQw/Vc889F/U41157rX788cdq25944gmVl5dHtBwH1iYOhOuAQPAJbC8vL6+2T9X9ajpWrPuF32d96tZa3HrrrbrggguC1/v16yePx6N//vOf+te//iXJtEhfcMEFuueee9SjR49ajzd79mzdeuut+t3vfqcjjjhC/fv317nnnqu5c+fqrLPOkmSCbuDx+sUvfqF3331X5513nv7973832cze33//vQ4++OBa9znkkEP09ttv17rPRx99VG3iuEMOOUR/+9vftGLFiuCSW88884z++Mc/auPGjSotLZVkZnzPzMzU4YcfrhNPPFGHHXZY1FnFDzrooOCPNQCA1o8wDQCIcOyxx+rZZ5/VZ599pgsuuEAzZsxQnz59dP755wf3SUlJidoFWTItptHCdH5+vs4//3wddNBBEftKppW3e/fuwe2B2wdahV0uV9SW4PD9wo8Vbb8OHTrogAMOqHO/8PusT90SiW3bNbbARpvN+4UXXtAtt9yio48+WpK0adMm9e3bN9ii+sEHH0TtmfCrX/0q+PeJJ56offv2ae3atXrxxRd16aWXyuv1Bsu7d+8enBn8pZde0qhRo/TJJ5/o7rvvbvT5Smas/wEHHFDrPg2dzXvjxo268sor9ec//1m2beuVV17Rfvvtp7y8PB1++OHq37+/zj//fJ188sm64447JEkzZ87UP//5T7344ovVjte5c2ft2bNHlZWVre7HGABAdXySAwCiOuaYY7RixQpJ0rJlyxp1rDfeeENffvmlpkyZErE9EHD+85//RGwPXD/22GOD+23YsCG4pm/4fklJSTrmmGOUmpqqnj17VjtWYL8BAwYoJSWlxvv0+/36+uuvI+6zPnVLJFOnTq1xiadoLr/8cv3www+6//77JZmu5eG6desmt9td7RI+Fvjss8/WQQcdpEGDBsm2bZ1zzjk66KCDgpdA6+2kSZP0wgsv6O6775bb7dZJJ53UBGdswnp4eG9K119/vX788Ufl5uaqb9++uuKKK9SjRw9NmjRJJ510kg455BANGzZM7733niSzBNaf//znapPWBWzfvl0HHnggQRoA2gg+zQEAkqRt27ZV27Z3715JpkWtMR588EFlZmbq+OOPj9g+duxYdezYUY8//njE9ieeeEKpqakaM2aMJGn8+PHy+/165plngvvs27dPy5Yt04gRI3TIIYcE93v33Xe1cePG4H5ff/213nvvPZ133nmSTFfm9PR0PfXUU9q3b19wv2eeeUZ79uwJ7lffusWbbduSpN///vd65plnguse10e3bt3UqVOnGsszMjKizij+5ptvBvd5++239f7778vpdKq4uFi2bcu2bc2ZM0dDhgwJtvCPHDlSffr00Z/+9Cddc801TRYoe/XqpS1btjTJsaq66qqr9MQTT2jVqlXy+Xz69ttvdcIJJ0TsM3bsWL333nu68MIL9cc//lEvvPCCTj755Kg/6ng8HvXu3btZ6goAaHl08wYASDLLIl1wwQU6+eST1a1bN3k8Hi1cuFCdOnUKLmXVEFu3btXLL7+sRYsWVSvr1auXrr32Wt17773q2rWrTjnlFL399tt6/PHHdf/99wcnOTv//PP15z//Wbm5ufJ6verbt6/+8pe/yOPxaOnSpcHjzZo1S88++6zGjh2rG2+8UUlJSbrzzjvVp08fTZ8+PbjfH//4R5177rk666yzdNVVV8nj8eiWW27Rr371K40aNSqmusXbN998I0l688039eabb1abVboxCgoKoo79/eUvfxlx/fHHH1dKSopefvllTZ48WZ9++qnmz58fHIstSZWVlerdu7eKi4ubdPbzkSNH6p577tE333wTdeK7xhg3blzw7507d+r111/Xrl27NGHChOD2n3/+WZWVlVq1apU++OADHX300XrzzTd1+umna+fOndp///2D+65cubJJl08DAMQXYRoAIEmaPHmy3nzzTf3tb39TWVmZevbsqeHDh+uZZ55pVJfmhx56SF27dtVFF10Utfzuu+/WAQccoL/85S/Kz89X//79tXjxYv3mN78J7tOxY0e98sor+t3vfqc77rhDfr9fQ4YM0ZtvvqnjjjsuuF+fPn309ttva/r06brmmmuUkpKiMWPG6O6771bXrl2D+51zzjl65plndPvtt+uiiy7SQQcdpKlTp2r27Nkx162h9u7dG2z5D/fzzz9LMt3Oa1p+TDK9BTp27Kji4mJ16dJFK1as0ODBgxtUl0DrdlVOp1NdunSptr1jx44R1xctWqSLL75Yt956q+644w5VVFRoxowZEctV/fa3v9XKlSt17LHH6rLLLlPfvn0bXN9wp556qvbff3+9/PLLuvbaa6PuU15eri+//LLW43g8nojrFRUVeuaZZ/T+++/r3//+t9atWyeXy6Xrr79eEyZM0OrVq3XTTTfpnXfe0ciRI7V69ergbYuLi3X44YdHBOkvv/xSGzZsqPZDBACgFbMBAGgme/futQ855BB7+vTp8a5Kwpk6daotqcGXlStXBo9VVFRk27Yd8zGKiorshx9+2P71r39tp6amBo+3bdu2Om87e/bsiPN555137DPOOMM+4IAD7CFDhtidOnWyp02bZvv9fvvqq6+2k5KS7Mcff9zeuXOnnZmZaXft2tV+8sknm+Sx/N3vfmf37dvX3rdvX7Wy2bNnx/SYbNq0KXjbrKwse8KECfY999xjf/rpp/bu3bvthx9+2M7MzLSTkpLsc845x/7yyy/tyspKe9y4cfbBBx9sP/HEE/bQoUPtq6++OqIel156qZ2VldUk5wsASAy0TAMAms3zzz+v77//PmJ9Yxh33HGHZs6c2eDbh8+KHpgsraioKKZj7N69W/fee6/222+/qLNrv/vuu1Fn8w6f2f0Pf/iDli1bJq/Xq9/85jd66qmn1L17d/39739XSUmJhg8frs8//1xPPPGELrnkEknSihUrdP7552vSpEnq169fjTPD19eMGTP017/+VQsXLtR1111XrTwtLU1bt26t9Rhvv/22TjnllIhtn3zyScT1ffv26bnnntPxxx+vpUuXRswQ/re//U233HKL/vCHP2j//ffXjBkzgmVr1qzRsmXLIrq9AwBavyTbrqFvFwAAjfT8889r+/bthOk27JFHHlGnTp107rnnRh1H/v/+3//T6NGjq42Trqio0AsvvBARzBtj5cqVGj9+vN57770m6T7eVHbt2qWsrCydd955weWzAABtA2EaAAAAAIAYsTQWAAAAAAAxIkwDAAAAABAjwjQAAAAAADFqU7N5V1ZW6ttvv1VqaqqSkpLiXR0AAAAAQAuxbVs7d+5Uz5491aFD87cbt6kw/e2336p3797xrgYAAAAAIE62bNmiXr16Nfv9tKkwHViSY8uWLeratWucawMAAAAAaCmlpaXq3bt31KUam0ObCtOBrt1du3YlTAMAAABAO9RSQ36ZgAwAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAABA/O3bF+8aADEhTAMAAKBh9u6V3n473rVITBMnSsXF0ct27JA++0xasUIqK2vZeiWSDRukXr1C16++Wrr11rhVJ6EUFUmlpdHLRo2SVq8OXS8vl2w7dH3DBrMPmh1hGgCAtmDdOumMMySnUzr0UOnyy6UffojcJz9f6tdP6txZOvVUaePGUNmOHdJvfiN17y65XNLpp5tjRvPTT2a/006L3P7559KIEeb4hx0m/fWvkeUffiiddJLkcEh9+kh/+lP047/wgtSzZ/XtJSXShAlSly6S2y394Q9SZWXNj8kLL0gZGeb+hgyRCgpq3veyy6SkpPpffve76Md56CHpF78w9zlggPTww5HlxcXSmDGh52nGDPNFWJIef7zm+3v3XRNaayqv+lgH/OUv0uGHSykp0tCh1R8Dy6p+LK+35sepqh9/lM45p+bXSjTvvCOdcIJ5nfTuLU2fHhkofT7zfHTrJnXtKl15ZfXAWdtreePG6ud09NG116my0jxXgwZVL5s0qfrxnn++9uMVFkpvvGFex8cfLx17rHTEESY4du4sHXKIeb/+4Q9m36q++Ub61a/M+XfvLp17rtkW7k9/Mu8jh0M68cTIcNW3b/TXyejRpnzUqOjlhx9evS7N8bqMZt8+6aWXzGdEffz8s5SXJ/XoYT4TTjzRvLbC/etf5jl1OKT0dHMu4d5/Xxo2zLw/DjtMWrIksvzGG83rzOk0r6G//a32Ou3aJV13nXlvOxxSZmaorKbH6Ioroh/r+efNayc/33zeud3muNH89rfSzTfXXK++fWu+HHVU9NvU9XlekzlzzHm9915oW13v6VdeMc9P167Sr38t+f2hsrfeMmV79tTv/lua3Yb4fD5bku3z+eJdFQAAWtbJJ9v2nXfa9tq1tr18uW3362fb48aFyp991rZTUmz7ySdt+5NPbHv4cNs+6ijbrqgw5ddfb9tXXGHbH3xg2//+t22fdppt9+hh29H+T50xw7Yl2x49OrTN57PtQw+17UmTTB1uv922O3Qwx7Nt2/7xR9t2ucx9rFlj6uFw2PZjj4WO8cILtj1smG136mTbHTtG3md5uW0PHmzbI0fa9urVtv3Xv9p2ly62PWdO9Mfj3/+27eRk216wwNzfuefa9sEH23ZpafT9d+607e3bzWXsWNu+447Q9e3bbXvRItvOygpd3727+jHWrbPtY44x57F2rW3/8Y+2nZRkHnvbNo/1YYfZ9vjxtl1QYNsvvmjbbrdtz55tyktLbXv9+sjL7Nm23aePbe/da9tlZdXLH3nEtlNTbfuHH6rX529/M49lfr5tf/ihbZ9zjrm/HTtC++y/v20vXRp5zMBroqrDD7fttLTYLoFzD/eLX9j2woXm8Xr6ads+8EDbnjIlVH7WWbZ99NG2/c47tv3yy+Z19ZvfhMrrei1//LF57X31VeicPJ7o52Tb5rk98kjzWB1+ePXy//s/2542LfIx2rWr5uPZtm1PnWrbV19t2z//bN4rH35o259/btt//7upa2Vl7be/4ALb/t3vzOvkrbfMa/+YY0Ln+Nhjtt25s20vWWJe35ddZt5fP/5oyjdvjqxvUZF5/S9aZMq3bq3+WjrmGNueNat6XZr6dWnb5j22aZPZNy3NbFuxwrwW9u2r/bEJuO8+85peudK8Di66yLyeN20y5V99ZT4DbrzRvB8XLDCvi7feMuUej9k/N9fc/uabTfk774Tu4/LLbfvVV23700/Nc5qcbF630ZSX2/aIEeZz4tVXzX5//WuovOpj9NFH5nX82ms1n+Of/mTb8+aZv3futO1DDjF/jxwZ+mx98knbHjDAtn/6KfK+Ro6sz6MYXV2f5zX573/N8y7Z9rvvhrbX9p4uLbXt7t3N59Ann9j20KHmubVt296zx7bT02t/jKpVvWXzIGEaAIC2oGpYWLrUfPkJhL7Bg00gCCgqMl94wr9YhispMeUrVkRu/89/TCA744zIMH3vvbZ90EHmy0/AsGHmy5htmy+OUmSYnTAhMkSNHWu+zN9/f/Uw/c9/mm3ffhvaduedpi7Rwt+ECeYLXMCPP5ovro8+Wn3fqs4+23zxDrdsmTmf2vzwQ/WQdfrptn3hhebv7783j0H4l/G8vMgfPcLt22d+FAkEoGhOPjl6ALJt2x4yJPLx3bXLtg84wDxXtm2eq6r1qY9XXzXPUW2XQKiLpupr7c47zZdr2zavL8m8XgKWLjUhJhDM6notv/qqCWX1lZlpQsusWdHD9AknhL7c10dZmbn/NWtCYTpg3ToTDupS9TF6/31znC+/NNenTDE/EAX4fNUft3B/+Uso/Ebzxhu1h99wjX1d2rapS1FRZJieMMGcQ7TL//1f9WNUfYz27rVtp9O2H3rIXH/22eqvg8GDzXNt27b9+99X/2Hj9NNNPaKpqDCPUeD9U9WiReb9VdtrP9xNN9n2iSfWXB7+WWrb0cP0W2/Zds+etr1hQ2i/Pn1s27LMj5U9e9r2pZfatt9v/j7qqMhLz57R77uuz/OaXHyxbU+cGBmm63pPf/SR+awKeOCB0OfWHXfY9vnn136fVbR0HqSbNwAAbUHv3pHXHY5QF+iffpI+/VQaOzZUPmCA6R4Z6Boa7faSVFER2lZZabrn3XijuW24lStNd9tOnULbTj01dPxjjzX3+eCDpjtnQYHpYjlxYmj/f/5TuvNO02Wzqi++MF0cw+931CjTJTm8i294fcLPt1s30+UyvCtsUzj/fNP1XJIOPFDaf//Icocj9BgedJB0yinSokWmG+OGDdI//iFdcEH0Yz/xhHnML7ssevmbb5rn9frro5d/8YU0eHDo+v77S8cdJ330kbm+Y4f51+2u8zQjPPqotG2b6T4b7XLnndJ334X2X7jQdCffvdtcj/ZaCzxGX3xh/g3vbj1qlOkKX1hYv9fyjh2xndMnn0i//720337Ry2M93l13me6qxx5bvWz//aN3Vy0slA44wAyFkOp+P06caN4/a9aY99P995vHIdp9lpeb52TWrJrP8dZbpdxc8xquS2Nfl9EUF5su3vPnhyL0nj2mu7DPJy1fbq736SPdc4+5TdXHKDnZXAKP0SmnmOtPPWW2vfaatHmz9MtfmvIvvjCvs6Sk0DFGjQq9P6qybXOc7t2jlz/2mOmy3a1b3ef744/SffdJs2dHL//2W9Pl/t13pa+/Nq+/vn0j99mxw3x2LFtWvXv+m2+a7utLl4bq3rmz6bodfgk/96FDTbd5qe7P82heecV0s696TnW9p3v2lNavN6+Bn3+WXn3VDM/ZtMk8RgsW1HyfCYAwDQBAW2Pb0uLF5suU02m+lEhm7F84y5K2bo1+jEceMV++jj8+tG3uXBMCc3Or779xY+3H79TJfKm97TYzPvG448xkQ6ecEto//ItdVd27m+AcPs4uMDnP999H7vvjjyZ0xXK+DXXYYWY8XzSbN5txs6eeGtr2xBPSs8+a5+WII8zjO2lS9Nv/v/8nTZlScwC66y7pkktqDkDdu1cfZ1taGnq8AmPq+/WT0tKks86q/9jnRx81P6xEu1Qdc33ooaGx61Xt3Ss9+WToMQoEFY8nss6SqXd9Xss//GC+nHfuLPXvL11zjbR9e83nUtvrLnC8Sy81dTvxROnFF2vet6TEjGXu2DF6eZcuoR8VwnXtal5HNQW1Rx4x461/8Qtz/ZRTzLwIgweb99O8edIzz0SGn4Dnnzfvh0suiX7s1avNZerUms8rXGNfl9HMn28em8DzK5kfbPbf3zw2kgnGAwZUD9EBzz5rXiuBzxS324yRvuQSU9czzzR1GzDAlNf1/gj3/fdmXLJlhX48C1debn4g7NXLvI8OPNB8xr36avS6Pvywec+dcUb08p49zY8fZ55pfkjIzDQB++qrQ/sceKD08cdmXHN9eDzm3MMv//1vqDw93XyeSXV/nlfl9Zo5N+67r/qPoXW9p9PSzLwJRx5pnu+9e6WrrpKmTZNmzow+f0YiaZH27xZCN28AQLu3d69tX3mlGU/58cdm26pVpq2narfIU04xY5ireuQR06V64cLQtvfeM10c//Mfc/3SSyO7eR92WPXxy088EequvW2b6VJ45ZVmzPOiRWbM87Jl1e//sceqd/P+9luz/zXXmO6OmzaZsYmSOV44j8dsX7Uqcvvll0fWOeCDD2ruXlrbJTA2M5riYts+4gjbPumkUFfJ3bvNuMGzzjJjup9+2oxj/eMfq9/+zTdNt/Tvv49+/A0bzHjstWtrrsP06aYb/AcfmDo8+KDp+j9mjCkvLTWP3bp1ZhzjiSfadrdutr1lS83HtG3TPXX58prLf/lLM2a3LqWlZvy42x16LHfvtu1evcxj5PWaMZhjxpjH++mn6/da3rLFjL0sLDSvpV69TBfV8vLa6zN7dvRu3oHHaOVKMzZZsu1//CP6MbKzbfv440PHCXTz7tgxdKl6PXw8eFWVlbZ9663meXv55dD2J56w7a5dbXvxYlO/Sy+17d69o79eTj7ZvBZqcsklkV3Ga9MUr0vbrt7N+4orzNjfgQND+/ztb6aLfX384x9m/PPvfx/a9vnn5jNr1izTlXj+fPO5GPhcePll81w89ph5f7zzjukW7nCEjvHOO7a9335mvyOOMGPYo/nuO7PP4YebLvUffmjOab/9zGdBuIoK2+7bt35DBx56yHxGBoaK2LYZ4921q3msTjop8vL99+axDYyZXrnSvDb27DHdr6v65S+j329dn+fhKitNN/xAF/BNmyK7edf1ng4oLQ29rv7+d3N+331n27/6lXmNnH22ma+iDoyZbgTCNACgXduyxQSiQw+NnCjmww/NF5fwcXW2bb6oXntt6PrPP9v2VVeZiZgefjjyuIccYr4kBlQN0xkZJmSFe/hh82XWts2kZVXHJ95+e2i8ZLhoYdq2zbjpgw82X9a7dLHtG24w57VxY+R+//2v2f7GG5HbL7oo+pfHffsiJxs77TTb/n//r/YJyLZvr3mirr/9zUwG9ctfRo4Rf/BBExzLykLb/vpXM86z6neX884zk1DV5Pe/r3sM986dZrxhUpK5nHKKObeaxj2WlpowHRhTWtWWLaZO9b3cfXfNdfv8czNp0i9+UT1sfPih+TIvmeB2yy2hMdH1fS2HCwTwmsYTB9QUpqsaPbrmce7Z2SbIVw3T4bp2rTmMhvvxRxNAUlMjg3RlpXmPhz9P5eXmsbzxxshjBMarfvFF9PvYscM8xq+8Und9bLtpXpe2XT1MV1aawNetm21//bXZJyfHtv/wh9qPU1FhJg7r2NE8f+GfL+efX/15uuIKEzoD7rjDnH9Skgm4V15pxhsH7N5tHrtVq0xdHI7I5yJg61bzON92W2jbvn3meQrfZtvmc6xTp/qPrf7LXyLnPli61IxZnzLFPB+jRplJyubNM+/haGH6mmvMWP1ol6qf27Zd9+d5uFmzzHt5505zvWqYtu3a39NV7d5tzuG998xn1Z/+ZB7L6dMjH4catHQeTI5vuzgAAGgSX31lujcec4y0dq108MGhsrQ08++WLZFj67ZsMWN+JTNW7cwzTdfKDz6IXNJl8WLTHXDq1FBX0H37zL8OhxmLmJZmjhduy5ZQt8F168x4zvAutZmZplvsjh316xI6bpwZi7t1qxl//I9/mHGmVccSut2m62u0+mRlVT9ucnLkmNjdu013zfBtqanV94tm4UIzVnTePDP+MPx8160z3XQ7dw5ty8w0Xdc3bAg95j//bMaPP/ZYzffz/POm+3JtunQxXX8fecScU48eZnmf//u/6Punpppu0VW7vgb89JMZp/vcc7Xfr2S6t7/7bvRxs//+txnzfPbZZgx91W6hQ4eacaIlJWaZtqIi6Y47pIEDQ0vm1PZarirwuH7zjVkirbEGDzbjQ6N59FFT79pYlulGe9BBNe+zfbsZV+p0mvHH4ef6/ffmfRA+BrVjR/P+qtpN/7nnTBf7jIzo9/Pyy+Y9HFgyqzZN9boM9+675t+kJNNF/bzzTFfhO++Unn669jXMKyuliy4y+7zyilnOL9y6dWZJsXCZmaY7eMCNN5rx8tu2me7j114bOc+A0xl67E4+2ew3b15o3HVA9+5Shw7m/ROQnGw+/8K7UkvmORk9un5jq/PzzWvhmWfM2Gi323zWL1pkuq9XVkp//KPpDl2bLVvM4zlokHkv9eplxryvWBF9mbe6Ps/DzZ0b+dkYWO969Ghp5Ejz/0Nt7+mqbrvN3Pakk0yX+oULzfF/8xuzbFaCIUwDANAWXHyxWbv32WfNl7pwaWkmcL7+uvmCLpkvZFu3hr5E33yzGZP30UfVg+3UqdUnybrhBvMl8dFHTTgYPtyE7oqK0HjRN98MHT8trfoax599ZsbIuVz1P8+kpNCYyfx8E6Cqjnnt0ME8Fq+/HpokyeczE03NmFH78W3bTIQT7UtjXdauNQH6uefM2stVpaWZdWr37g2Nbf3sM1P/8InVXn3VjMEMn2Qr3Jo1ZmxptPuIpmtXc3nnHfO8/+pX0ff76SdTXtsX1pQUM8771VelnBwTNgIqK834xjfeMOPFP/mk+u39fvOcXXGF9Oc/117vwI9ADz5oglJg7GVdr+WqAhNKhQedxvjoo5qPVdM44nCBH7yGDat5n5wc8754663qY80POMD8IPPFF6EAadvSf/5Tffzs3/9e++vk7383P1LVp95N+brcudME3R07TFAKmDHDBL7vvjPBN1rYCnjwQfMZ89FH0d+vaWmhya8CPvss9LoK6NTJTGzm85l5HfLza77P8AnOwgXWlF692nwWS+Z9vmFD5I88FRXmR8C5c2u+j4CyMjNu2OORbrnFzANQ9QejQYPM+ZeVRb4XA2w79Pn47rvmfVJcbOYBWL48+hrnUt2f5+GKiiKvl5RIp51mfnQZPjyyrKb3dMAXX5g5FD77zFz3+0M/3JaV1e912tJapP27hdDNGwDQLhUXmy5zzz1XfS3TwNqj991nxhQ++6wZSz18uBmvGtCjh1nXturtt22Lfp9Vu3lv3Wq6AF5zjW1/9pkZb9elS2js7CefmKVQrrvOjGUNjPn83e+qH7umbt5/+Yu57UcfmbGrhx5qlvCybXOeJ51kxiLbtumK2bGjGXO4Zo1Z7ubYY+seN7tihalX1WVpaloaa+ZMc7Ft0+28X7/qj+H69ab7qcdjjn3RReY5+PvfzTjyqmMZf/tbs9ZqTRYsMN3dq6qosO0zzzTrXNu2GUv7yiumq+9TT5nn+JZbQvsvX266sxcUmC7xw4ebLrfh61CH++yzUPflv//djGUMV1RkuvIHHq+zzzZ/v/CCqVdFhVm2SjLPU9XHKLCM29Kl5jn+9FPTbbhLl8jlu+p6Ld91lznG2rWmHr17m2XXAsKfs3DRunlv3Wqej/feM4/nVVeZ1/H770d/jGzbdHON1s3b5zNjjh98MDRG+fvvTV03bDBjrTdsMI9DYI30qo+R12tud911ZnzvsmXm+Zs82YzP/fTTUD1+/NHc97/+VXNdu3Uz9akq/DkLaOjrsqpNm0xX35kzzWuq6lCPKVOiL8tX9fV9wglmLHHVxygw5v/FF0337blzzeNy773mMQrMBbFtm3lffPaZbb/+unn8R44MnfMbb5iuzu++a27/xz+az5RHHjHl4c+ZbZvxvykpZl33Tz4xXf4POijy/fTpp7V3uw/39tuma3RA4LVu25HrTJ93XuRzGOjmffzxZpz3ww+bMc2XX266qp98sun+/oc/mK7wgbkGJk0yy9rZdt2f59FeHwHRunnX9Z4OGDkycsm1sWNNHQoLzbCZ2pZb+x/GTDcCYRpAu3TNNfGuAeLtnXdqniQr8OWostKMLXS7zReZX/86csxeUlL021cNTAFVw7Rtmy9/Rx9txgMOHlx9ArBXX7Xt444zXzh79TLBbt++6seuKUyPGWPGF3ftatvnnBM5bvbbb024eOml0LaFC01Y7dzZfJmsa2Ktb7814yajBa2awvR555mLbZsvqzU9D4HxhB9/bL4wdu5svmjn5lZfm3r4cBOOapKdbb7IVuX3m/Geged8+XITVDp1MuNp77svckzpe++ZsY4Oh9nv178O/TgRTdUwnZoaOfayf//QhFHhYfr++029/H7zI0pNj1FgUq+rrjLH3n9/8xr75JPIetT1Wn7gAXM+KSkmTNx4owm1AeHPWbhoYfqHH8w8BF26mDWETz21+oR3VYWH6V27zLktXmzmHbjxRjOm3+k0r98PPjDHLygw4+wLCmz7m29qfoyuv94cd+9eE/TS0szzN2SIbb/2WmQ93njD3KamH8Q2bDDl4fMrBIQ/ZwENfV1GEwhl4etM27Z5nFJTzY8jBx0UOUFh1dd3v37RH6OsrNBtliyx7SOPNO+Bww+PXCN6y5ZQ2aGHmrXLw+c4KC428wy4XKZOQ4fa9jPPhMrDn7OABx4wdezUyTxehYWR5/2Xv5jnvq4f9WzbrL9+ySWh66+9FprzIRCmt241P5YceGBoUr7i4tCY6YD/+7/QDy23324+Y23b/NgWCNNDhkT+uFnb53m010dAtDBd13vats1nw7BhkZ9RX39tPlNSU82PkFU/K6No6TyYZNuBju2tX2lpqVwul3w+n7oGptEHgLburLPMuDcADffOO2YMYnq6GRdadYmhp58269s29TrVrcnnn5suvBs2mK6da9dKF14YKt+3z3Rhzcw0Xbh37JCWLIlbdeNm82bTzXXDBtPl/fTTzbI/d95plmr661/NWryvv272+/FHs7092rDBdNdftUq67jrz/nrhBTM++fHHzTJ86elm6aQEHC/brE491XTrPu888zPBnDlmmMVdd5nXU8+eppv2W29Jf/mL9K9/mc+x3r3N43rllaEx5+PHm2EAKSmmi3dyshlGsHu3mSvjL3+J66k2pZbOg4yZBgAA7VtFhRnrPH68CczR1upFpGiTWu23n1kbd8cOM6730UfjU7dEkpFh5he49Vbzutq2zUzKdv/9ZmKpRx6JnBCrvZo500xgVVQUGkd72WVmPPftt5txvu1JRYV5LE44wYyXfugh81pavtyM7d6500zQ9dxz5r12771mArrAmOSkpMi1zjt2NOujH3ts5P3UNAEZ6o2WaQBo7WiZBhrP768+0RPQHMInhYJRWVl94sT2bt8+04Ic7bUSPokhItAyDQAA0NII0mgpBOnqCNLV1TZzNUE6YRCmAaA18ngkr9f87fOFlrdwu80yRQAAAGhWhGkAaG08HjN2qqwstC0ry/zrdJpxVgRqAACAZkWYBoDWxus1QXrJksgJgIqKpOxsU06YBgAAaFaEaQBorTIyzBI0AAAAaHGM9gcAAAAAIEaEaQAAAAAAYkSYBgAAAAAgRoRpAAAAAABiRJgGAAAAACBGhGkAgJGTE+8aAAAAtBqEaQCAUVIS7xoAAAC0GoRpAAAAAABiRJgGAAAAACBGhGkAaKM8Po8KtxWqcFuhJj47UYXbCuXxeeJdLQAAgDYhOd4VAAA0PY/Po/SF6fKX+4PbXih6QY5kh4pzi2W5rDjWDgAAoPWjZRoA2iBvmTciSAf4y/3ylnnjUCMAAIC2hTANAAAAAECMCNMA2pWc5aylDAAAgMYjTANoV0p2spYyAAAAGo8wDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIwI0wAAAAAAxCg53hUAgObm8XnkLfNKknx+nwq3FUqS3E63LJcVz6rFn8cjec1jI59PKiyU3G7JauePCwAAQB0I0wDajpwcKT8/YpPH51H6wnT5y/3BbVmLsiRJjmSHinOL22+g9nikjAyprCy0LStLcjqloiICNQAAQC0I0wDajpKSapu8Zd6IIB3OX+6Xt8zbJsO02+mWI9lR7dwdyQ65nW5zxes1Qfqmm6Q+fcy2b76R7rjDlBGmAQAAakSYBoCqorRwtzaWy1JxbnGwe3veijwtGLMgsmu7221aoe+4I/LGTqcpAwAAQI0I0wBQVZQW7oRUVFTrdctlBYOzy+FSZo/MyP0ty9wmMGY6L09asIAx0wAAAPVAmAaA1ibQopydXb0s1lZlywoFZ5dLysysfX8AAABIYmksAGiQnOU58bvzQItyQYG5/OpXob+ZOAwAAKBF0DINAA1QsjPOXcHDW5Sffz6+dQEAAGiHCNMAWrdo6yRLjPsFAABAsyJMA2i9alonWQqulex2RV8iSqqyTFQiCf+BIBw/EAAAACQMwjSA1iuwTvKSJSZUBxQVmcm5vF5ZVmbUJaIkRS4TlSii/UAQ8L8fCAjUAAAA8UeYBtD6ZWTUOgt1nUtEJZJ6/EBAmAYAAIg/wjQAJKI6fiAAAABAfMW8NNYzzzyjgQMHyul0yrIszZkzR7ZtR+yzceNGnXbaaVqyZEm17UlJSRGXo48+OmKfVatWKSsrSw6HQ0cddZReffXVBpwWACBmaWnxrgEAAECrEXOY/vLLLzVr1iytXr1aN954o+bMmaOHHnpIkrRhwwZdeeWVGjRokN58881qt92xY4c6dOigr776SuvXr9f69ev1yiuvBMs3bdqkcePG6bTTTtPHH3+skSNHasKECdq8eXPDzxAAUD/5+fGuAQAAQKsRc5iePXu2LrzwQg0cOFCTJ0/WmWeeqddff12S9MYbb2j79u1atWpV1Nvu2LFD3bp10xFHHKH+/furf//+6t27d7D8/vvvV//+/TV//nwdc8wxuu+++3TggQfqsccea+DpAWgVcnLiXQMAAAAgJjGH6aoqKirUvXt3SdLkyZP10ksvadCgQVH33bFjh9zumpehWblypcaMGRO8npycrBEjRmj16tVR99+zZ49KS0sjLgBaoZKSeNcA9ZCznB89AAAAAhocpnfv3q3Fixfrww8/VG5uriQpKSmp1tv88MMPWr9+vTp37qz+/fvrmmuu0fbt24PlGzduVL9+/SJuY1mWtm7dGvV48+bNk8vlCl7CW7kBAE3D4/OocFuhvtj+hQq3FapwW6E8Pk+8qwUAABBXDZrN2+FwaM+ePeratavy8/N17LHH1ut2Z599to4//nh16NBBa9eu1c0336w1a9bo/fffV8eOHbVr1y45nc6I2zidTu3Zsyfq8W644QZNnz49eL20tJRADQBNyOPzKH1huvzlfklS1qIsSZIj2aHi3OLEW6cbAACghTQoTK9Zs0Y+n0+ffPKJpk2bps8//1xz586t83a9evVSr169JEmDBw/W4YcfrhEjRqiwsFBDhgxRSkqK9u7dG3Ebv99fLWAHpKSkKCUlpSGnAAAx8/g88pZ5JUk+v0+F2wrldrrbdKD0lnmDQTqcv9wvb5m3TZ87AABAbRoUpgcMGCBJGjZsmJxOp6666irdfPPN6ty5c0zHyfzfGqrffPONhgwZorS0NG3ZsiViny1btuiwww5rSDUBoP48HslrgrJ8PqmwUHK7JcuExaottJJppaWFFgAAoH1q9ARkycnJsm1bFRUVMd/2o48+kiT1799fkjR8+PDgzOCSmdzs7bff1ujRoxtbTQCJyOMxoTUQXgsLzbZ41CMjQ8rKMpdVq8y/GRnB+tTVQpvo0lJZQxoAAKApxdQyXVpaqtzcXGVnZ6tnz55au3atZsyYoYsuukhdunSp8/Z33323evbsqaOPPlpffPGFZsyYobFjxwZn/542bZqGDh2qOXPm6Nxzz9WDDz6oyspKXXbZZQ05NwCJLBBgy8rM9SwzFldOp1RUFGwRbhFer6nHkiWmTpKpQ3a2KWvJujST/PGsIQ0AANCUYgrTDodD+/bt06RJk+Tz+dSnTx9de+21uv766+t1e6fTqRkzZsjr9cqyLE2aNEk33XRTsHzw4MFatmyZZs6cqblz52ro0KF67bXXlJqaGttZAUh8iRhgMzKk/w0/AQAAAGoTU5ju1KmTli1bVq99bduutm3KlCmaMmVKrbebOHGiJk6cGEu1ALRmBFgAAAC0Qo0eMw0AAAAAQHtDmAaAenA73XIkO6ptdyQ75Ha641AjAAAAxBNhGkCrkLM8J673b7ksFecWq+DqAhVcXaAR1ggVXF3AslgAAADtVIPWmQaAllaysyTeVZDlsoLB2eVwKbMHY70BAADaK1qmAQAAAACIEWEaAAAAAIAYEaYBoBnEe4w3AAAAmhdhGkDzy2l/wTIRxngDAACg+TABGYDmV9LwYOnxeeQt88rn96lwW6Eks0wVM2gDAAAgngjTABKWx+dR+sJ0+cv9kqSsRVmSzNrOxbnFSsQ4TfgHAABoHwjTAJqHxyN5veZvn08qLJTcbsmqf6j0lnmDQTqcv9wvb5k34cJ0neGfQA0AANBmEKYBND2PR8rIkMrKQtuysiSnUyoqiilQtyZ1hn/CNAAAQJtBmAbQ9LxeE6SXLDGhWjIhOjvblIWH6aKi6H/HQyLVBQAAAAmNMA2g+WRkSJmZ0cvcbtNSnZ0dud3pNGUtKZHqAgAAgFaBpbEAxIdlmdbfggJpxAjzb0FBfLqBh9clvD5tuEs6AAAAGoeWaQDxY1nm4nLV3ILd0nWREqM+AAAASGi0TANAnOQsz4l3FQAAANBAhGkAaIC01LRGH6NkZ0kT1AQAAADxQJgG0K40RQiWpPzx+U1yHAAAALROhGkA7QohGAAAAE2BMA0AAAAAQIwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANIP7SmmaGbQAAAKClEKYBxF8+M2wDAACgdUmOdwUAtGFFRdH/BgAAAFo5wjSApud2S06nlJ0dud3pNGUAAABAK0c3bwBNz7JMS3RBgbmMGGH+LSoyZQAAAEArR8s0gOZhWaHg7HJJmZnxrQ8AAADQhGiZBgAAAAAgRoRpAECTyVmek1DHAQAAaC6EaQBAkynZWZJQxwEAAGguhGkAAAAAAGLEBGQAWr+qa1izpjUAAACaGWEaQMJyO91yJDvkL/dHbHckO+R2uiW3oq9nLbGmdXuQkyPl58e7FgAAoJ0iTANIWJbLUnFusbxlXuWtyNOCMQskmZBtuSzJJdMK7fVWv7HbnbBrWnt8HnnLvPL5fSrcVigp7JxQfyWMqwYAAPFDmAaQ0CyXJctlyeVwKbNHlLWqw9ezbgU8Po/SF6YHW9uzFmVJMq3txbnFaj1nAgAA0L4xARmA5peWFu8aJAxvmbdat3VJ8pf75S2L0sIOAACAhESYBtD8mmBca1pqCwZywj8AAADqQJgG0Crkj2/BiaaY1Kp55eTEuwYAAACNRpgGALQsJg4DAABtABOQAQCan8cTmnXd55MKzSzmiTzrOgAAQG0I0wCA5uXxSBkZUllZaFuWmcVcTqdZ3oxADQAAWhnCNACgeXm9JkgvWWJCdUBRkZSdbcoJ0wAAoJUhTANolJzlOS07ORhar4wMKTPKWuH/4/F5gsuD+fw+FW4rlNvpluUiaAMAgMRDmAbQKCU7mUwqFm6nW45kR7W1ph3JDrmdbkntc61pj8+j9IXpEY9L1qIsOZIdKs4tJlADAICEQ5gGgBZkuSwV5xbLW+ZV3oo8LRizQJLCWmD/F6aLiiJvWPV6G+Mt81b7gUGS/OV+ecu8hGkAAJBwCNMA0MIslyXLZcnlcCmzR5Vuz263mZQrO7v6DZ1OUw4AAIC4Y51pAEgklmVaoQsKzGXEiNDfzHodk5zlOfGuAgAAaMNomQaARGNZodDsctU6aRdqxnh+AADQnGiZBoAmEphcrKrQ5GIAAABoK2iZBlCznBwpn2Wv6qvuycUAAADQVhCmAdSshG6ysap1cjEAAAC0GXTzBgAAAAAgRoRpAGgGaalp8a4CAAAAmhFhGgCaQf54xpoDAAC0ZYRpAEhkabRwAwAAJCLCNAAksjjPps5yXwAAANExmzcAxElrGFfNcl8AAADREaYBIE5ay7hqlvsCAACojm7eAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMdMAInk8ktdr/vb5pMJC87fbLVlMOAUAAABIhGkA4TweKSNDKisLbcvKMv86nVJREYEaAAAAEGEaQDiv1wTpJUtMqA4oKpKys005YRoAAAAgTAOIIiNDymQJJAAAAKAmhGkAQKN5fB55y7zy+X0q3GbG2budblmuJu7JEG1MP+P5AQBAHBCmAcQsEJwkBcNTswQntAoen0fpC9PlL/dLkrIWmXH2jmSHinOL1WSviprG9DOeHwAAxAFhGkBMqgYnyYSnYHAiULdZaalpUbd7y7wRr4cAf7lf3jJv04XpaGP6Gc8PAADihDANICZ1BifCdJuVPz6/2Y7tdrrlSHZUe205kh1yO92ROzOmHwAAJADCNAAg7iyXpeLc4uDwgbwVeVowZgHDBwAAQMIiTAMAEoLlsoLB2eVwKbNHDa3PRUXR/wYAAGhBhGkAQOvgdpvJxrKzI7c7naYMAACgBXWIdwUAAKgXyzIt0QUF5jJihPm3ETN55yzPaeJKAgCA9oKWaQBA62FZoeDscjV6IrKSnSVNUCkAANAe0TINAAAAAECMCNMAgIRT05rWAAAAiYIwDQBIOM25pjUAAEBTIEwDAAAAABAjwjSAmLidbjmSHdW2O5IdcjtZnggAAADtA7N5A4iJ5bJUnFssb5lXkjT33bmadfIsuZ1uWa6GLU8ENCWPzyNvmVc+v0+F2wolidcnAABocoRpADGzXFYwmDx//vNxrg0Q4vF5lL4wXf5yvyQpa1GWJNNzoji3mEANAACaDN28AQBthrfMGwzS4fzl/mBvCgAAgKYQc5h+5plnNHDgQDmdTlmWpTlz5si27Yh9Nm7cqNNOO01LliypdvsXXnhBGRkZcjgcGjJkiAoKCiLKV61apaysLDkcDh111FF69dVXY60i0PRycuJdAwAAAAAJJOYw/eWXX2rWrFlavXq1brzxRs2ZM0cPPfSQJGnDhg268sorNWjQIL355pvVbvvBBx/owgsv1OTJk/Xhhx/KsiyNGzdOO3fulCRt2rRJ48aN02mnnaaPP/5YI0eO1IQJE7R58+bGnSXQWCUl8a4BAAAAgAQSc5iePXu2LrzwQg0cOFCTJ0/WmWeeqddff12S9MYbb2j79u1atWpV1NveddddGjdunK677jode+yxWrx4sXw+n55/3oy5vP/++9W/f3/Nnz9fxxxzjO677z4deOCBeuyxxxpxigAAAAAANK1Gj5muqKhQ9+7dJUmTJ0/WSy+9pEGDBkXdd+XKlRo7dmzwerdu3ZSZmanVq1cHy8eMGRMsT05O1ogRI4LlAAAEpaXFuwYAAKAda/Bs3rt379bTTz+tDz/8UPPnz5ckJSUl1bj/jz/+qJ9++kn9+vWL2G5ZlrZu3SrJjLWOVr527dqox9yzZ4/27NkTvF5aWtqgcwEAtEL5+fGuAQAAaMcaFKYdDof27Nmjrl27Kj8/X8cee2ydt9m1a5ckyel0Rmx3Op3yer3BfaKVhwfmcPPmzdNtt93WkFMAAAAAAKDBGtTNe82aNVq9erXmzp2radOmadasWXXeJiUlRZK0d+/eiO1+vz8YoFNSUmotr+qGG26Qz+cLXrZs2dKQ0wEAAAAAICYNapkeMGCAJGnYsGFyOp266qqrdPPNN6tz58413sbtdislJaVa4N2yZYuysrIkSWlpaVHLDzvssKjHTElJCYZ0AAAAAABaSqMnIEtOTpZt26qoqKj9jjp00AknnBCc+VuSfD6fPvnkE40ePVqSNHz48IjyiooKvf3228FyAAAAAAASQUxhurS0VJMmTdJrr72mzz//XEuXLtWMGTN00UUXqUuXLnXefvr06XrmmWf08MMPa+3atbr88suVnp6ucePGSZKmTZumjz76SHPmzNHnn3+ua6+9VpWVlbrssssadHIAAAAAADSHmMK0w+HQvn37NGnSJA0ZMkS33367rr32Wi1evLhet//lL3+pe++9V3PmzNEJJ5ygvXv3avny5erYsaMkafDgwVq2bJmefPJJHXfccfr888/12muvKTU1NfYzAwAAAACgmcQ0ZrpTp05atmxZvfa1bTvq9qlTp2rq1Kk13m7ixImaOHFiLNUCAKDZ5CzPUf54luECAACRGj1mGgCAtqxkZ0m8qwAAABIQYRoAAAAAgBgRpgEA7Y7H51HhtkL5/D4VbitU4bZCeXyehh8wJ6fpKgcAAFqFBq0zDQBAa+XxeZS+MF3+cr8kKWtRliTJkexQcW6xLJcV+0FL6AoOAEB7Q5gGALSMoqLar7cQb5k3GKTD+cv98pZ5GxamAQBAu0OYBgA0L7dbcjql7OzqZU6nKQcAAGhlCNMAgOZlWaYV2us11/PypAULzN9utykHAABoZQjTAIDmZ1mh0OxySZmZ8a0PAABAIzGbN9BeMfsw0KJylvOeAwCgLaFlGmivmH0Y8ZKW1myHdjvdciQ7qk0w5kh2yO1s4rHZHk+o67rPJxUW/q8S0buul+zkPQcAQFtCmAYAtKz8/GY7tOWyVJxbLG+ZV3kr8rRgjBmb7Xa6m3aWbo9HysiQyspC27LMEltyOs0YccaCAwDQphGmAQBtiuWyZLksuRwuZfZoprHZXq8J0kuWmFAdUFRkZi33egnTAAC0cYRpAAAaKiODydQAAGinmIAMAAAAAIAY0TINtDeBSZPqMWESAAAAgOgI00B7UnXSpKoTJgEN0KIzaAMAACQIwjTQnkSbNCl8wiSgAVpsBm0AAIAEQpgG2iMmTUITC8ygfeRBRzbfDNoAAAAJhDANoLqqXb7pAo56yh/ffGtIAwAAJBLCNIAQt9uMn87Orl7mdJpyoJVryTHeHp9H3jIzhMLn96lwWyHd3wEAaCMI0wBCLMu0QgfGT+flSQvM+Fdm/EZbET7GO1x4yI0WgqvuUxePz6P0hekRoT1rUZYcyQ4V5xYTqAEAaOUI021EzvIculeiaVhWKDS7XIytRpsUGOMdTU0hWFIoCNfjPrxl3mqt35LkL/fLW+YlTAMA0Mp1iHcF0DRKdpbEuwoAkFDSUtMadLuaQrAUCsIAAACEaQBAm0RvHQAA0JwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIwI0wAAAAAAxIgwDaBmaWnxrgEAAACQkAjTQFPJyYl3DZpefn68awAAAAAkJMI00FRKSuJdAwAAAAAthDDdjuQsb4MtpwAAAAAQB4Tp1qCJug+X7KTlNN74QQNIfG6nW45kR9QyR7JDbqe7hWsEAAASUXK8K4BaeDyS1yt98YVUWGi2ud2SZcW3XmgwftAAEp/lslScWyxvmVeSlLciTwvGLJBkgrblsiR541hDAACQCAjTicrjkTIypLIycz0ry/zrdEpFRZJlyePzBL/s+fw+FW4zgTv0ZS92OctzlD+eSacAtG+Wywp+jrocLmX2yGyR++UzGACA1oMwnai8XhOklywxoVoyITo7W/J65XFJ6QvT5S/3B2+StcgEbkeyQ8W5xQ0K1LScAkD88BkMAEDrQZhOdBkZUmb1FhFvmTciSIfzl/vlLfM2uHUaAAAAAFA7JiADAAAAACBGtEy3cdHGVTdmTDUAAAAAgDDdagWWbonW1TuwdIvH54k6rroxY6oBAAAAAITpVqs+S7cUbiuMGrYZUx2DwPJkPh/LkwEAAAAIIky3YvFauqXdqMfyZAAAAADaJyYgA2oSvjxZQYG5LFlitnm98a4dAAAAgDiiZRqoSw3LkwEAAABov2iZBgAAAAAgRrRMo/0KTC4WjsnFAMSiqKj26wAAoM0iTKN9qjq5WACTiwGoD7fbfF5kZ1cvczpNuZhbAQCAtowwjfYpfHKxjAyzrajIfDH2egnTAGpnWeYzI9C7JS9PWmCWJwz2cNlGmAYAoC0jTKN9Y3IxAA1lWaEf3lwuPksAAGhnCNMAAMSRx+eRt8y0Yvv8PhVuK5Tb6ZbloocMAACJjDDdhrmdbjmSHfKX+yO2O5IdcjvdcaoVACDA4/MofWF6xOd01qIsOZIdKs4tJlADAJDACNNtmOWyVJxbHGzxyFuRpwVjFtDiAQAJwlvmrfaDpyT5y/3ylnn5rAYAIIERpts4y2UFv4y5HC5l9mBMHwAAAAA0Vod4VwAAAAAAgNaGMA0AAAAAQIwI02jdcnLiXQMAAAAA7RBhGq1bSUm8awAAAACgHWICMqAxPB7Ja2ZLl88nFRaav91uyWIWXgAAAKCtapdhOmd5jvLH58e7GmjtPB4pI0MqKwtty8oy/zqdUlERgRpox9xOtxzJjmpLXzmSHXI73XGqFQAAaCrtMkyX7KRrMJqA12uC9JIlJlQHFBVJ2dmmnDANtFuWy1JxbrG8Zab3ytx352rWybPkdrobvH40PwYDAJA42mWYBppURoaUyfrdAKqzXFYwOD9//vONPh4/BgMAkDiYgKyNSEtNi3cVAKD9SuMzGACA9oYw3UbQ7Q8A4iifz2AAANobwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwBQCyZ4BAAA0bA0FlCXoqLof9e0Ldo+AFotJngEAADREKaBmrjdktMpZWdHbnc6TVng76rlVfeJh5wcZhcGAAAAmhFhGqiJZZlWZq9XysuTFiww291uUyaFyqUa9/H4PPKWmX18fp8KtxWaXZxuWS6reepeUtI8xwUAAAAgiTAN1M6yzMXlkjIzay6Xou7j8XmUvjBd/nJ/cFvWoixJkiPZoeLc4uYL1AAAAACaDROQAc3IW+aNCNLh/OX+YIs1AAAAgNaFlmm0Ph5PqGu1zycVFkZ2vQYAAACAZkaYbkdqWt4l2pjeZh3P2xgej5SRIZWVhbZlZZkJv4qKmi9Qp7E0DgAAAIAQwnQ7Em15l5rG9CbseF6v1wTpJUtMqJZMiM7ONmXNFaaZGRsAAABAGMJ0O1fTmN7AeN6EC9MBGRnRJwQDAAAAgBbABGQAAAAAAMSIlmmgPSoqiv43AAAAgHohTANNpTVMUuZ2m8nasrMjtzudpgwAAABAvRCmgabSGiYpsyzTEu2tsr41S4sBCS2w6kJgxQVJibvqAgAA7QRhGmhvLIvgDLQiVVddyFqUJUmJu+oCAADtBGEaaEs8HtPq7PNJhab1ilZnoHVrtasuAADQxhGmgbbC4zFLhpWVmetZpvVKTqfp2k2gBgAAAJpMzEtjPfPMMxo4cKCcTqcsy9KcOXNk23awPD8/X/369VPnzp116qmnauPGjcGyjRs3KikpKeJy9NFHRxx/1apVysrKksPh0FFHHaVXX321EacHSDnLc+JdhZbh9ZogvWSJVFBgLkuWmG1Vx0gDAAAAaJSYw/SXX36pWbNmafXq1brxxhs1Z84cPfTQQ5Kk5557Tnl5eZozZ47ee+897du3T2eddZYqKyslSTt27FCHDh301Vdfaf369Vq/fr1eeeWV4LE3bdqkcePG6bTTTtPHH3+skSNHasKECdq8eXPTnC3apZKdJfGuQsvKyJAyM80lIyPetQEAAADapJjD9OzZs3XhhRdq4MCBmjx5ss4880y9/vrrkqR58+Zp8uTJuuSSS5SVlaVHHnlE//nPf/TOO+9IMmG6W7duOuKII9S/f3/1799fvXv3Dh77/vvvV//+/TV//nwdc8wxuu+++3TggQfqsccea6LTRaPltJNWXgBIEG6nW45kR7XtjmSH3E6WtAMAIF5iDtNVVVRUqHv37vrpp5/06aefauzYscGyAQMGqEePHlq9erUkE6bdtaxlu3LlSo0ZMyZ4PTk5WSNGjAjeHgmgpJ218gJAnFkuS8W5xSq4ukAjrBEquLpABVcXMJM3AABx1uAwvXv3bi1evFgffvihcnNztWnTJklSv379IvazLEtbt26VJP3www9av369OnfurP79++uaa67R9u3bg/tu3Lix1ttXtWfPHpWWlkZc0ErQwg0A9Wa5LGX2yJTL4VJmj0xl9sgkSAMAEGcNms3b4XBoz5496tq1q/Lz83Xsscfq3XfflSQ5nc6IfZ1Op/bs2SNJOvvss3X88cerQ4cOWrt2rW6++WatWbNG77//vjp27Khdu3bVevuq5s2bp9tuu60hp4B4o4UbAAAAQCvWoDC9Zs0a+Xw+ffLJJ5o2bZo+//xznXPOOZKkvXv3Ruzr9/uDAblXr17q1auXJGnw4ME6/PDDNWLECBUWFmrIkCFKSUmp9fZV3XDDDZo+fXrwemlpacQY7DahqCj63wksZ3mO8sfnx7saAAAAANBsGhSmBwwYIEkaNmyYnE6nrrrqKk2dOlWStGXLFh1++OHBfbds2aLzzz8/6nEyMzMlSd98842GDBmitLQ0bdmyJWKfLVu26LDDDot6+5SUFKWkpDTkFBKf223WB87OjtzudJqylubxmOWVfD6psDBUxyhrF7e72bMBoIECk4v5y/0R25lcDACAxNegMB1xgORk2bYtl8ulvn376vXXX9eoUaMkSV999ZW2bt2q0aNHR73tRx99JEnq37+/JGn48OF6/fXXdeutt0oyk5u9/fbbmjFjRmOr2fpYlmmJrro+cA0Btll5PGaJpbIycz0ry/zrdJo6tnR9AKCNCEwu5i0zn/V5K/K0YMwCuZ1uxkQDAJDgYgrTpaWlys3NVXZ2tnr27Km1a9dqxowZuuiii9SlSxdNnz5dN9xwgwYNGqR+/fopLy9P48eP1zHHHCNJuvvuu9WzZ08dffTR+uKLLzRjxgyNHTtWgwYNkiRNmzZNQ4cO1Zw5c3TuuefqwQcfVGVlpS677LKmPu/WwbISI6h6vSZIL1kSWre4qMi0mnu9iVFHAGilLJcVDM6BCcYAAEDiiylMOxwO7du3T5MmTZLP51OfPn107bXX6vrrr5ck5ebmavv27ZoyZYr8fr/OPvtsLVy4MHh7p9OpGTNmyOv1yrIsTZo0STfddFOwfPDgwVq2bJlmzpypuXPnaujQoXrttdeUmpraRKeLRsnIkDL5kgcAAAAAMYXpTp06admyZTWWJyUlac6cOZozZ07U8ilTpmjKlCm13sfEiRM1ceLEWKqFRmC8HgAAAADErtFjptG6NeV4PY/PI2+ZVz6/T4XbzCRljPsDAAAA0BYRptEk4/U8Po/SF6YHW7izFplJyhzJDhXnFhOom1pOjpTP8mMAAABAvBCmESEtNa3mwlrWvPaWeat1FZckf7lf3jIvYbopBJYnk6QvvjBLlMVjdncAAAAAhGlEyh8fpbUz0da8bkVqGpMu1TwuPWd5TvXnoeryZJJZoozlyQAAAIC4IEyjbuFrXuflSQsWmO20itappjHpUs3jyUt2llQ/EMuTAQAAAAmFMI36Cax57XK12PJYUVto6ykwGZqk4IRo8ZoMrUnXkGV5MgAAACAhEKaRsKK20NZD1cnQJDMhGpOhAWgPGvNDJAAAqD/CNNqcRJ4MrdYJ3gCgEQI9cr7Y/gXLEwIA0AII00ALorUIQHOIeXlCltcDAKDRCNPxEr7MUQATegEAGiDmHjklDRtGAwAAQtpNmI42IZUUpy5w0ZY5kljmCAAAAABaiXYRpmuakEqqpQtcc2KZIwBAFMyrAABA69Eh3hVoCTV1f5NCXeDiIrDMUWZmKFQDANqtRJpXIWd5TryrAABAQmsXYRoAAMSmocsTAgDQXrSLbt5Aoos2pp8lbQAAAIDERZgG4qymMf0NHs9fVBT9bwCoQ0JN1gkAQIIjTANxFvOSNjVxu82M8NnZkdudTlMGoH0LX5LR55MKTVAOLMuYcJN1AgCQ4AjTQFthWaYl2uuV8vKkBQvMdtYvBxBtScYsE5QDyzJ696t7ss5qYTonR8pPnEnTAABoSYRpoC2xLHNxucws8QAgRV+SUYpclrFHA45bwiRlAID2izBdE35tBwC0NYElGQEAQKMRpmvCr+1xweQ3AAAAAFoDwjQSRr0mv4lX5QAAAAAgTId4VwAIqGlWayk0+Q0AAAAAJAJaptFy6liWBU0oLS3eNQAAAADaNMI0WkY9lmXRfvGpWpvE5HkAAABAs6Kbd3PLyYl3DRJD+LIsBQWhy5IlZruXLtwAAAAAWg9apptbW5sVvLHdh1mWBQBat2hDdhiuAwBohwjTiA3dhwGg/appyE5guA6BGgDQjhCmwzFBFgAANQsfspORYbYVFUnZ2aasIf9X5uTwQy0AoFUiTAfUZ4IsAjUAAE07ZKetDYcCALQbhOmAaL+2S43/xR0AgCaSlsqydwAAJArCdFUx/NqeszxH+ePpmgYAaBlt6v+cwNAqhlUBAFopwnQjlOykaxpaWFFR9L8BoDWpOrSqjmFV/HgNAEhEhGmgNXC7zZfM7OzI7U6nKQOA1qSeE5l5fB55y7z6YvsXKtxmWq/dTrcsF63XAID4I0wDrYFlmS+agdnm8/KkBQvoEgmgybidbjmSHfKX+6uVOZIdcjvdkrxNe6e1DK3y+DxKX5gerE/WoqxgXYpziwnUAIC4I0wDrYVlhYKzy9V0M+kCgCTLZak4t1jeMhOY81bkacGYBZLCW4ObOEzXwlvmjRrs/eV+ecu81cI0XcEBAC2NMA0AQCtXU6tyrC3KlssKhlSXw6XMHq3nRzvmMQEAtDTCdFVVJ3Wqcj0wfkuSfH6fCrcVMn5LTfdFDgAQu/BW5Xi3KAMA0F4QpgNqmuBJCk7yVHX8lmTGcDF+iy9yABBvgVbl1taiDABAa9Uh3hVoCYFW02iCLaeBCZ4KCsxlxIjQ3/9bpqOu8VvtneWylNkjM/hFLrNHZrv+gQEAYMYyAwDQFrWLlumqk6qEi+iizQRPAIC2rI6hTM2BscwAgLaqXYRpKXJSFQAA2pV6DGUCAACxaTdhGgCAdqumteol1qsHAKCBCNMAALQHDGUCAKBJtYsJyAAAAAAAaEqEaQAAAAAAYkSYBgAA1aSlpsW7CgAAJDTCNAAAqCZ/fH68qwAAQEIjTANx5na65Uh2VNvuSHbI7WS5GgAAACARMZs3EGeWy1JxbrG8ZWbJmrwVeVowZoHcTjdrowNoHmmN7MJdVBT9bwAA2hHCNJAALJcVDM4uh0uZPViyBkAzym9gF263W3I6pezsyO1OpykDAKAdoZs3AACoH8syLdEFBeYyYoT5t6gotIY1AADtBC3TAACg/iwrFJxdLimTnjQAgPaJlmkkjJom4pKYjKuaxo53BAAAANAotEwjYdQ0EZeksMm4vHGsYQJp6HhHAAAAAE2CMI2EwkRcAND6eXye4A+jPr9PhdsKY16hINBbyV/uj9hOTyUAQKIgTAMAgCbj8XmUvjA9IgRnLcqSI9mh4tziegfq8N5K0XsqAQAQX4RpAADQZLxl3mqtyZLkL/fLW+aNKQgHeivRUwkAkIiYgAxIMGmpTC4GAAAAJDpapoEEkz+eycUAoD6ijc2W6AoOAGgZhGkAANBkYpo4rKgo+t/1UNPY7MB9xTI+GwCAhiBMAwCAJlPTMocRrcVut+R0StnZkTd2Ok1ZFdGGv9Q0Nltq2PhsAABiRZhGwmLsMAC0TnUuc2hZpiXa65Xy8qQFZqZuud2mrAqGvwAAEhFhGi2raje+Wrr11frlqRFdAwEACcCyzMXlkjKZqRsA0PoQptHkorYo19SlT6qxW19UMXYNBID2hl49AAC0DMI0mlzUFuXwLn1Svbr1RVXTcWI5BgC0YXSJBgCgZRCm0XICXfqkxnXra6rjAADiL42WdABA69Qh3hUAAABtV53dzvNbriU9Z3lOi90XAKDtI0wDAICGqUerciJ1Oy/ZWRLvKgAA2hC6eTcHjyc0ptfnkwoLGdMLAGh7WrBVGQCAREOYbmoej5SRIZWVhbZlZZnZpouKCNQAAAAA0AbQzbupeb0mSC9ZIhUUmMuSJWZboLUaTDgDAAAAoFWjZbq5ZGQwy3Rt6BoIAAAAoBUjTMdTUVH0vwEAAAAACY0wHQ9utxlDnZ0dud3pNGVoOfygAQAAAKABCNPxYFkmuHm90ty50qxZZjszfrccftAAAAAA0AiE6XixLHN5/vl416R9Cv9BIy9PWrDAbOcHDQAAAAD1QJhGm+N2uuVIdshf7o/Y7kh2yO0Ma3UO/KDhcjFZHAAAAICYEKZrwtJNrZblslScWyxvmVmKLG9FnhaMWSC30y3LRaszAAAAgMYjTNeEpZtaNctlBYOzy+FSZg9angEAAAA0nQ7xrgDQ3NJS6WUAAG1NYEhPNNWG9QAA0AxomUablz+eXgYA0NbUNKRHEsN6qsrJoccdADQDwjQAAGiVGNJTTyUl8a4BALRJdPMGAAAAACBGhGkAAAAAAGJEmAYAAAAAIEYxh+lnnnlGAwcOlNPplGVZmjNnjmzbDpbn5+erX79+6ty5s0499VRt3Lgx4vYvvPCCMjIy5HA4NGTIEBUUFESUr1q1SllZWXI4HDrqqKP06quvNvDUAAAAAABoHjGH6S+//FKzZs3S6tWrdeONN2rOnDl66KGHJEnPPfec8vLyNGfOHL333nvat2+fzjrrLFVWVkqSPvjgA1144YWaPHmyPvzwQ1mWpXHjxmnnzp2SpE2bNmncuHE67bTT9PHHH2vkyJGaMGGCNm/e3HRnDFSVxtJZANDasQwiAKClxRymZ8+erQsvvFADBw7U5MmTdeaZZ+r111+XJM2bN0+TJ0/WJZdcoqysLD3yyCP6z3/+o3feeUeSdNddd2ncuHG67rrrdOyxx2rx4sXy+Xx6/vnnJUn333+/+vfvr/nz5+uYY47RfffdpwMPPFCPPfZYE54yUAXLhQBAq8cyiACAltboMdMVFRXq3r27fvrpJ3366acaO3ZssGzAgAHq0aOHVq9eLUlauXJlRHm3bt2UmZkZUT5mzJhgeXJyskaMGBEsBwAAAAAgETR4nendu3fr6aef1ocffqj58+dr06ZNkqR+/fpF7GdZlrZu3aoff/xRP/30U43lkrRx48ao5WvXro1ahz179mjPnj3B66WlpQ09HQAAAAAA6q1BLdMOh0NdunTR9OnT9cADD+jYY4/Vrl27JElOpzNiX6fTqT179tRZLkm7du2qtbyqefPmyeVyBS+9e/duyOkAAAAAABCTBrVMr1mzRj6fT5988ommTZumzz//XOecc44kae/evRH7+v1+OZ1OpaSk1FouSSkpKbWWV3XDDTdo+vTpweulpaUEagAAAABAs2tQmB4wYIAkadiwYXI6nbrqqqs0depUSdKWLVt0+OGHB/fdsmWLzj//fLndbqWkpGjLli0Rx9qyZYuysrIkSWlpaVHLDzvssKj1SElJCYZ0AACAqrbt3KZtu7ZJknx+nwq3FapHlx7qkdojzjVLHDnLc5jADQAaoNETkCUnJ8u2bblcLvXt2zc4s7ckffXVV9q6datGjx6tDh066IQTTogoD7Rujx49WpI0fPjwiPKKigq9/fbbwXIAAIBYPFzwsLIWZSlrUZZWeVYpa1GWHi54ON7VSiglO0viXQUAaJViapkuLS1Vbm6usrOz1bNnT61du1YzZszQRRddFBxDfcMNN2jQoEHq16+f8vLyNH78eB1zzDGSpOnTp2vChAkaMWKEjj/+eN12221KT0/XuHHjJEnTpk3T0KFDNWfOHJ177rl68MEHVVlZqcsuu6zJTxwAALR9k7Mm66z0syRJeSvytGDMAvXo0g5apT0eyes1f/t8UmGh5HZLlhXfegFAGxJTmHY4HNq3b58mTZokn8+nPn366Nprr9X1118vScrNzdX27ds1ZcoU+f1+nX322Vq4cGHw9r/85S917733as6cOfrxxx916qmnavny5erYsaMkafDgwVq2bJlmzpypuXPnaujQoXrttdeUmprahKcMAADaix6poS7dLodLmT0y41yjFuDxSBkZUllZaFtWluR0SkVFBGoAaCIxhelOnTpp2bJlNZYnJSVpzpw5mjNnTo37TJ06NTi+OpqJEydq4sSJsVQLAAAAAV6vCdJLlphQLZkQnZ1tygjTANAkGrzONAAAAOIsJ0fKr2HysIwMKbPmlniPzyNvmTc4MZskuZ1uWS7CNgDUB2EarVtaWrxrAABA/JQ0bPIwj8+j9IXp8pf7JUlZi8zKKo5kh4pzi6sFamb8BoDqCNNo3Wr6NR4AgLaqCSYX85Z5g0E6nL/cL2+Zt1qYZsZvAKiOMA0AANBaMLkYACSMRq8zDQAAgBYSPrlYQYG5LFlitgVaqwEALYKWaQAAgNamjsnFAADNjzAdA7fTLUeyo9oYI0eyQ26nO061AgAAiKKoKPrfAIAmQZiOgeWyVJxbLG9ZZDcqlpEAAAAJw+02Y6izsyO3O52mDADQJAjTMbJcFsEZAAAkLssyLdGBMdR5edKCBTHP+A0AqB1hGgAAoK2xrFBwdrkYXw0AzYDZvAEAAAAAiBFhGgAA4H9ylufEuwoAgFaCMA0AAPA/JTtL4l0FAEArQZgGAABoy9LS4l0DAGiTmICsubC2IwAASAT5+fGuAQC0SYTppsbajgAAAADQ5tHNu6kF1nYsKDCXESPMv0VFrO0IAAAAAG0ELdPNgbUdAQAAAKBNo2UaAAAAAIAYEaYBAAAAAIgRYRoAALQLaaksEYVWLCcn3jUAUAVhGgAAtAv541vZElEJEJ48Po8KtxXK5/epcFuhCrcVyuPzxLta7VNJSbxrAKAKJiADAABIRHEOTx6fR+kL0+Uv90uSshZlSZIcyQ4V5xbLcrFKCYD2jZZpAAAAVOMt8waDdDh/uV/eMm8cagQAiYUw3dzSGJ8FAAAAAG0N3bybW34rG58FAEA74/F5gi2tgbHBbqebbswAgFoRpgEAQLtVdVywZMYGMy4YCcPjkbxeyeeTCgvNNrdbsnhtAvFGmAYAAO1WXeOC22qYdjvdciQ7qp27I9kht9Mdp1qhGo9HysiQysrM9SwzCZycTqmoiEANxBlhGgAAoJ2xXJaKc4vlLfMqb0WeFoxZIEl0b080Xq8J0kuWmFAtmRCdnW3KCNNAXBGmAQAA2iHLZclyWXI5XMrskRnv6qA2GRlSJs8RkGiYzRsAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEROQAQAAAK2Ux+eRt8wrSZr77lzNOnmWJGZmB1oCYRoAAKAdS0tNi3cVkJMj5efHfDOPz6P0hekR64W/UPSCJLNmeHFuMYEaaEaEaQAAgHYsf3zsIQ5NxOMx60V/8YVUWGi2ud31Xj/aW+aNCNLh/OV+ecu8hGmgGTFmGgAAAO1PTk7L7RONx2PWj87KklatMv9mZZltHk/DjgmgRRGmAQAAmlJDwxVaVklJw/fxeExLcmFhqFU51gDs9UplZdKSJVJBgbksWWK2eb2xHQtAXNDNGwAAoCnVJ6Sh9Qq0KJeVhbZlZUlOp1RUVO8u2kEZGVJmZtPWEUCLoGUaAAAAqC9alAH8Dy3TAAAAQKxoUQbaPcI0AAAAEBCYYVuSfL4GzbINoH0gTAMAAABSzeOhpdCYaAD4H8I0AAAAIEWOh87ICG0vKpKysxkTDSACYRoAAKApBLoH0zW49WM8NIB6IEwDAAA0VtXuwVW7BhOo27Wc5TnKH58f72oAaGIsjQUAANBYLJeEWpTsZO1xoC2iZRoAAKCe6mxhpHtw4qM7PoAmQpgGAACoJ1oYW4mcHCk/yo8edXXHb0Ien0feMtMrwef3qXBbodxOtywXoR1oKwjTAAAAaBsCrc5ffBG91TnabN3NMFO3x+dR+sJ0+cv9wW1Zi7LkSHaoOLeYQA20EYRpAAAAtH6xTALXzN3xvWXeiCAd4C/3y1vmJUwDbQQTkAEAAKD1YxI4AC2MlmkAAAC0HUwCB6CF0DINAAAAAECMaJkGAABIFIEJtCSWbgKABEeYBgAASARVJ9CSmnXpJgBA4xCmAQAAEkG0ZZukZlm6CQDQeIRpAACARMIEWgDQKhCmAQAA0L6Ed5mn+zyABiJMAwAAtDaEwYZxu8348+zsyO1OpymjKz2AGBCmAQAAWou6wiBqZ1nmxwevV8rLkxYsMNsDs6UTpgHEgDANAADQWoSHQSkUCFk6q/4sy1xcrprHpldt7Y/W+k/vAKDdI0wDAAC0JoEwKNUeCFurnBwpPz8+911Ty78U2frf0r0DagjubqdbjmSH/OX+ajdxJDvkdtJbAWhOhGkAAIA6eHweecu88vl9KtxWKMkEGctFa3CTKylpmftJS6u+raaWfymy9b+legfU0a3fclkqzi2Wt8zUJW9FnhaMMfXl9Qk0P8I0AABot2pq2Qtv1fP4PEpfmB7cJ2tRVnCf4tziegeWQCCXpLnvztWsk2cF60DoiYOaWr/r0/Jfxz71eV3VS11jvCVZLiv4+nE5XMrs0cZ6KgAJjDANAADarZpa9sIDrrfMG7Ubrb/cL2+Zt15BuGogl6QXil6QFBbKm+KEkBDq87qq/8HqMcYbQFwQpgEAQLvWEi17NQVyKSyUN+TA0boqIyHQYgy0fR3iXQEAAAA0ULwm6gIA0DINAAAAtGXh4/XDMV4faBzCNAAAANBGRRuvHxDrJHoAIhGmAQAA/ictlTHIceHxhJaa8vmkwsLmWWqqOST4uPV6jdcnTAMNQpgGAAD4n/zxjEFucR6PlJEhlZWFtmVlmbWUi4oSP1Azbh1ot5iADAAAAPHj9ZogvWSJVFBgLkuWmG3e6uN8JSlneU7L1C3BW50BxBct0wAAAIi/jIx6r6NcsrOkmSvzP7Q6A6gFYRoAAABtR1FR9L/jiLH4QNtEmAYAAEA1bqdbjmRHtcmrHMkOuZ3uavvnLM+J75hzt9uMs87OjtzudJqyOGIsPtA2EaYBAABQjeWyVJxbLG+ZV3kr8rRgzAJJNa9N3GJdr2tiWaYl2uuV8vKkBaa+rWZWcACtDmEaAAAAUVkuS5bLksvhUmaP+o1njivLMheXq97jrwGgoZjNGwAAAACAGBGmAQAAUCsm0EoALNMFJBy6eQMAAKBWNU2g5fF55C0za0H7/D4VbiuUVPO4ajQCy3QBCYcwDQAAgJh5fB6lL0yPmO07a1GWJDPjd3FuMYEaQJtGN28AAADEzFvmrbZsVoC/3B9ssQaAtoowDQAAAABAjAjTAAAAAADEKOYwvW7dOp1xxhlyOp069NBDdfnll+uHH36QJO3du1fTp0/XwQcfrP3331+/+tWvtH379uBtN27cqKSkpIjL0UcfHXH8VatWKSsrSw6HQ0cddZReffXVRp4iAAAAAABNK+YwnZubq1GjRmn16tVavHix3nnnHU2aNEmS9Pvf/17PPfecHn/8cS1fvlz/+c9/dNFFFwVvu2PHDnXo0EFfffWV1q9fr/Xr1+uVV14Jlm/atEnjxo3Taaedpo8//lgjR47UhAkTtHnz5safKQAAAJBoioqkwkJzKSqKd20AxCDm2byXLl2q3r17S5IGDhwon8+nSy65RKWlpXrggQe0bNkyjRs3TpL06KOP6qSTTtK6des0cOBA7dixQ926ddMRRxwR9dj333+/+vfvr/nz50uS7rvvPr388st67LHHdNtttzX0HAEAAIDE4nZLTqeUnR253ek0ZQASXswt04EgHeBwOFRZWak1a9aooqJCgwcPDpadcMIJSklJ0UcffSTJtEy7a/lwWLlypcaMGRO8npycrBEjRmj16tVR99+zZ49KS0sjLgAAAEDCsyzTEl1QII0YYf4tKDDbLJYUA1qDRk1AZtu2Fi9erGHDhgVD9jfffBMsLysrU3l5ub7//ntJ0g8//KD169erc+fO6t+/v6655ppqY6r79esXcR+WZWnr1q1R73/evHlyuVzBS9WgDwAA0Fhup1uOZEe17Y5kh9zO9tuCWNPjIvHY1JtlSZmZkstl/s3MJEgDrUjM3bwD9u3bpylTpmjlypVatWqV+vbtq+OOO0433XSTfvGLX8jlcunaa6+Vbdvq2LGjJOnss8/W8ccfrw4dOmjt2rW6+eabtWbNGr3//vvq2LGjdu3aJafTGXE/TqdTe/bsiVqHG264QdOnTw9eLy0tJVADAIAmZbksFecWy1vmVd6KPC0Ys0CSCZOWq/0Gn/DHRVKzPzYenyd4Xz6/T4XbCtv9cwAgvhoUprdu3aoLLrhAGzdu1FtvvaXjjjtOkvTUU0/pggsukGVZSk5O1rRp09S1a1cdfPDBkqRevXqpV69ekqTBgwfr8MMP14gRI1RYWKghQ4YoJSVFe/fujbgvv99fLWAHpKSkKCUlpSGnAAAAUG+Wy5LlsuRyuJTZIzPe1UkYgcdFUrM+Nh6fR+kL0+Uv9we3ZS3KkiPZoeLcYgI1gLiIuZv3V199pWHDhik1NVVr167V8ccfHyw74ogjVFhYqO+++07bt2/XzJkz9dNPP0WMow6XmWk+cANdw9PS0rRly5aIfbZs2aLDDjss1moCAACgjfCWeSOCdIC/3B9srQaAlhZzmL744ot1wgkn6F//+lewxbmqQw45RN26ddODDz6oAQMGaNCgQVH3C0xM1r9/f0nS8OHD9frrrwfLKyoq9Pbbb2v06NGxVhMAAAAAJEk5y3PiXQW0QTF18/7qq69UUFCgmTNnauPGjRFlBx10kFauXKmDDz5YXbt21T//+U/Nnz9fL730UnCfu+++Wz179tTRRx+tL774QjNmzNDYsWODYXvatGkaOnSo5syZo3PPPVcPPvigKisrddlllzX6RAEAABBfOctzlD8+v/nvKC2t+e8DrUrJzpJ4VwFtUExh+rvvvpMknXfeedXK7r//fu3YsUP33HOPfv75Zw0aNEgvvfSSTj/99OA+TqdTM2bMkNfrlWVZmjRpkm666aZg+eDBg7Vs2TLNnDlTc+fO1dChQ/Xaa68pNTW1oecHAACABNFigSa/BQI7gHYvpjA9YsQI2bZd6z633HJLjWVTpkzRlClTar39xIkTNXHixFiqBQAAALR7aam0yAMtqVHrTAMAAKBurMmMltAiXegBBDV4nWkAAADUT/3WZGZWagBoTQjTAAAALSB8TeYjDzqS9aoBoJWjmzcAAEALozsuALR+tEwDAAA0laKi6H8DANocwjQAAEBjud2S0yllZ0dudzpNGQCgzaGbNwAAQGNZlmmJLiiQRoww/xYUmG2WFe/aAQCaAS3TAAAATcGyzMXlkjKZXAwA2jpapgEAAAAAiBFhGgAAAACAGNHNGwAAIJFUnQWcWcEBICERpgEAABJBTTOCS616VnCPzyNvmVeS5PP7VLitUJLkdrpluZicDU0gJ0fKr752e7TXHq87NCXCNAAAQCIIzAjuNV/+NXeuNGuW+dvtbpWzgnt8HqUvTJe/3B/clrUoS5LkSHaoOLdYre+skHBKSqptqum1F3zdEajRBAjTAAAAiSIwI7gkPf98fOvSBLxl3ogwE85f7pe3zFuvMO12uuVIdlQ7liPZIbezdbbYo5E8ntAPTz6fVGh6PAR+eKrptRd83RGm0QQI0wAAAEholstScW5xsMtu3oo8LRizgC677ZXHI2VkSGVloW1ZpseDnE7Tw2O/+FQN7QthGgAAAAnPclnB4OxyuJTZg7W82y2v1wTpJUtMqA4oKjJzDni9Uo/4VQ/tB2EaAAAAiKe0tHjXoHXKyJAy+VEF8cM60wAAAEA8RZmJGkDiI0wDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAQD2lpTJRVCLgeQCQCAjTAAAA9ZQ/nomiEgHPA4BEQJgGAAAAACBGhGkAAAAAAGJEmAYAAGhKaYznBYD2gDANAADQlPIZzwsA7QFhGgAAAECb4na65Uh2VNvuSHbI7XTHoUZoi5LjXQEAAAAAaEqWy1JxbrG8ZV5JUt6KPC0Ys0Bup1uWy4pz7dBW0DINAAAAoM2xXJYye2Qqs0emXA6XMntk1hqkc5bntGDt0BYQpgEAAAC0eyU7S+JdBbQyhGkAAAAAAGJEmAYAAAAAIEaEaQAAAAAAYkSYBgAAANCmpaWmxbsKaIMI0wAAAADatPzx+fGuAtogwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAmoXb6ZYj2RG1zJHskNvpbuEaAUDTSY53BQAAANA2WS5LxbnF8pZ5JUl5K/K0YMwCSSZoWy5LkjeONUQ0OctzlD8+P97VABIeYRoAAADNxnJZ/wvNksvhUmaPzDjXCHUp2VkS7yoArQLdvAEAAAAAiBFhGgAAAACAGNHNGwAAAI2WlprWuAMUFUX/GwASFGEaAAAAjdbgCavcbsnplLKzI7c7naYMABIU3bwBAAAQP5ZlWqILCsxlxAjzb1GRKQMSRM7ynHhXAQmGlmkAAADEl2WFgrPLJWUy4zcSD7OcoypapgEAAAAAiBFhGgAAAC2i0ZOUAUACIUwDAACgRTR4kjIASECEaQAAAAAAYkSYBgAAAAAgRoRpAAAAoI1yO91yJDuiljmSHXI7WcsbaCiWxgIAAADaKMtlqTi3WN4yb7Uyt9Mty8Va3kBDEaYBAACANsxyWYRmoBnQzRsAAAAAgBjRMg0AAACgXfL4PMEu8D6/T4XbCun+jnojTAMAAABodzw+j9IXpstf7g9uy1qUJUeyQ8W5xQRq1Ilu3gAAAADaHW+ZNyJIB/jL/VEnbAOqIkwDAAAAABAjwjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMWI2bwAAAKCdY4koIHaEaQAAAKAdY4kooGHo5g0AAAC0YywRBTQMYRoAAAAAgBgRpgEAAAAAiBFhGgAAAACAGBGmAQAAAACIEWEaAAAAAIAYEaYBAAAAAIgRYRoAAABAu+N2uuVIdlTb7kh2yO10x6FGUE5OvGsQk+R4VwAAAAAAWprlslScWxxcSztvRZ4WjFkgt9Mty2XFuXbtVElJvGsQE8I0AAAAEkdaWrxrgHbEclnB4OxyuJTZIzPONUJrQjdvAAAAJI78/HjXAADqhTANAAAAAECMYg7T69at0xlnnCGn06lDDz1Ul19+uX744QdJ0t69ezV9+nQdfPDB2n///fWrX/1K27dvj7j9Cy+8oIyMDDkcDg0ZMkQFBQUR5atWrVJWVpYcDoeOOuoovfrqq404PQAAAACoW1oqQwwQm5jDdG5urkaNGqXVq1dr8eLFeueddzRp0iRJ0u9//3s999xzevzxx7V8+XL95z//0UUXXRS87QcffKALL7xQkydP1ocffijLsjRu3Djt3LlTkrRp0yaNGzdOp512mj7++GONHDlSEyZM0ObNm5vmbAEAAABEYFZrI388QwwQm5gnIFu6dKl69+4tSRo4cKB8Pp8uueQSlZaW6oEHHtCyZcs0btw4SdKjjz6qk046SevWrdPAgQN11113ady4cbruuuskSYsXL9ahhx6q559/Xpdffrnuv/9+9e/fX/Pnz5ck3XfffXr55Zf12GOP6bbbbmuiUwYAAAAQwKzWQMPE3DIdCNIBDodDlZWVWrNmjSoqKjR48OBg2QknnKCUlBR99NFHkqSVK1dq7NixwfJu3bopMzNTq1evDpaPGTMmWJ6cnKwRI0YEywEAAAA0PctlKbNHpjJ7ZAZntSZIA7Vr1ARktm1r8eLFGjZsWDBkf/PNN8HysrIylZeX6/vvv9ePP/6on376Sf369Ys4hmVZ2rp1qyRp48aNtZZXtWfPHpWWlkZcAAAAAABobg0O0/v27dPVV1+tlStXauHCherbt6+OO+443XTTTdqyZYtKS0s1ZcoU2batjh07ateuXZIkp9MZcRyn06k9e/ZIknbt2lVreVXz5s2Ty+UKXqq2mgMAAAAA0BwaFKa3bt2qUaNGafny5Xrrrbd03HHHKSkpSU899ZT27Nkjy7LUvXt3ud1ude3aVQcffLBSUlIkmRm/w/n9/mCATklJqbW8qhtuuEE+ny942bJlS0NOBwAAAACAmMQcpr/66isNGzZMqampWrt2rY4//vhg2RFHHKHCwkJ999132r59u2bOnKmffvpJgwcPltvtVkpKSrXAu2XLFh122GGSpLS0tFrLq0pJSVHXrl0jLgAAAADiLCenafYBEljMYfriiy/WCSecoH/96186+OCDo+5zyCGHqFu3bnrwwQc1YMAADRo0SB06dNAJJ5yg119/Pbifz+fTJ598otGjR0uShg8fHlFeUVGht99+O1gOAAAAoBUoKWmafYAEFtPSWF999ZUKCgo0c+ZMbdy4MaLsoIMO0sqVK3XwwQera9eu+uc//6n58+frpZdeCu4zffp0TZgwQSNGjNDxxx+v2267Tenp6cGltKZNm6ahQ4dqzpw5Ovfcc/Xggw+qsrJSl112WePPFAAAAECTyFmew7rMaPdiCtPfffedJOm8886rVnb//fdrx44duueee/Tzzz9r0KBBeumll3T66acH9/nlL3+pe++9V3PmzNGPP/6oU089VcuXL1fHjh0lSYMHD9ayZcs0c+ZMzZ07V0OHDtVrr72m1NTUxpwjAAAAgCZUspNWZSCmMD1ixAjZtl3rPrfcckut5VOnTtXUqVNrLJ84caImTpwYS7UAAAAAAGhRjVpnGgAAAACA9ogwDQAAAABAjAjTAAAAAADEiDANAAAAAECMYpqADAAAAEDblpaaFu8qoD3xeCSv1/zt80mFhZLbLVlWfOtVD4RpAAAAAEGsH40W4/FIGRlSWVloW1aW5HRKRUUJH6jp5g0AAAAAaHlerwnSS5ZIBQXmsmSJ2RZorU5gtEwDAAAAAOInI0PKzIx3LWJGmAYAAABQJ4/PI2+ZaS30+X0q3FYot9MtyxVjV9zAGNnA+Fip1YyRBcIRpgEAAADUyuPzKH1huvzl/uC2rEVZciQ7VJxbXP9AXXWMbFaW+beVjJEFwhGmAQAAANTKW+aNCNIB/nK/vGXeUJiuq9U5fIxsRobZVlQkZWebMsI0WhHCNAAAAIDGi6XVuZWOkQXCMZs3AAAAgMZr5TMzA7GiZRoAAABA06lPq3NRUfS/E1Bg4rXApGuSGjbxGtocwjQAAACAluF2m27f2dmR251OU5Zgqk68lrXIdF2PeeK1ti4nR8rPj3ctWhzdvAEAAAC0DMsyLdEFBdKIEaHu4Ak6k3ddE6/hf0pK6t4nJ6f569HCCNMAAAAAWo5lmW7gLpf5NzMzIYN0Q+Qsb3uBscnUJ3C3MoRpAAAAAGgCJTtbLjAS3OOPMA0AAAAArUxLBndER5gGAAAAUCu30y1HsqPadkeyQ25nlYnDioqkwkJzSfCZuuOiDY4dbq+YzRsAAABArSyXpeLc4uCkW3kr8rRgzILIJaJa2UzdcVPfybra4ezYrQ1hGgAAAECdLJcVDM4uh0uZPaqsJR2YqdvrlfLypAULzHa3O6YJxgLrOlfVrtZ2boOTdbVFhGkAAAAATcOyzCUwU3eMqq7rHC64tnNT1BNoAoyZBgAAAJAQalrXWWJtZyQewjQAAAAAADEiTAMAAAAAECPCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAABAjwjQAAAAAADFKjncFAAAAAAB18/g8wbW2fX6fCrcVyu10y3JZca5Z+0SYBgAAAIAE5/F5lL4wXf5yf3Bb1qIsOZIdKs4tTsxA7fFIXhP+5fNJhYWS2y1ZCVjXBiBMAwAAAECC85Z5I4J0gL/cL2+ZN/HCtMcjZWRIZWWhbVlZktMpFRW1iUBNmAYAAACQENxOtxzJjqih0ZHskNvpluRt+YrVIdD9OtD1WhLdr71eE6SXLDGhWjIhOjvblBGmAQAAAKAB0tKqbbJclopzi4PjgvNW5GnBmAWSwsNpYoXpqt2vsxZlSVJid79ONEVF0f9OcIRpAAAAAC0vPz/qZstlBQOoy+FSZo/M6LevGrriFMJaXffrphJtPLQUGhPtdpsu3dnZkbdzOk1ZYN+69klghGkAAAAArUdNAUxqNSGs1atpPLQUOSa6qCgUuPPypAULIicgq7rP3LnSrFmtZpIywjQAAACA1qOmkCa1mhDW6kUbDy1VHxMduEiSyyVlRullEL7P8883f92bEGEaAAAAQOsSHsCOPDJ6SEPzy8ho1499h3hXAAAAAAAarIax10BzI0wDAAAAaFpRZuoG2hrCNAAAAICmRWsx2gHCNAAAAAAAMSJMAwAAAAAQI8I0AAAAAAAxIkwDAAAAiElaKhOMIUZtcFI6wjQAAACAmOSPZ4IxxKgNTkpHmAYAAAAAIEaEaQAAAAAAYkSYBgAAAAAgRsnxrgAAAAAAtGkej+T1mr99Pqmw0PztdkuWVfM+4eVIOIRpAAAAAGguHo+UkSGVlYW2ZWWZf51OqajI/B1tn0A5gToh0c0bAAAAAJqL12tC8pIlUkFB6LJkidnu9UbfJ7y8AXKW5zTxiaAqWqYBAAAAoLllZEiZmY3fp55KdpY0yXFQM8I0AAAAALQn4eOzAxifHTPCNAAAAAC0F9HGcEuMz24AxkwDAAAAQAO5nW45kh3VtjuSHXI73XGoUR2aYXx2e0XLNAAAAAA0kOWyVJxbLG+ZV3kr8rRgzAJJJmRbLktSggbUWsZne3weecuq1zt0TpAI0wAAAADQKJbLkuWy5HK4lNmjaSYQixePz6P0henyl/urlTmSHSrOLRZx2qCbNwAAAABAkuQt80YN0pLkL/dHbbFur2iZBgAAAJCQ0lLT4l2FllVUFP1vJCTCNAAAAICElD8+P95VaDpVw3H4dbfbzKadnR25j9NpypCQCNMAAAAA0FxqCspSKCxblgnXgdm08/KkBQtY+znBEaYBAAAAoLnUFJSlyLBsWaG/Xa4aZ9pG4iBMAwAAAEBzIii3SczmDQAAAABAjAjTAAAAAJDg3E63HMmOatsdyQ65nUxSFg908wYAAACABGe5LBXnFldb59ntdMtyMUlZPBCmAQAAAKAVsFxW0wVn1rRuNMI0AAAAAEQR6FrtL/dHbG/VXavrXNPaG/VmqI4wDQAAAABRtMmu1eFLdUVbpmsbYbq+CNMAAAAAUIMm7VrdAjw+j7xlXvn8PhVuK5QUJfwHlupima5GIUwDAAAAQBvg8XmUvjA92C09a1GWJNMtvTi3uFX9KNAasDQWAAAAALQB3jJvtfHdkuQv91frqo7GI0wDAAAAQBvAWtQti27eAAAAANBS0tKa7dDhE6blrcjTgjFmcrFWPWFaAiNMAwAAAEBLyc9v1sMHJkxzOVzK7MHkYs2Jbt4AAAAAAMSIMA0AAAAAQIwI0wAAAAAAxIgwDQAAAABAjAjTAAAAAADEiDANAAAAAECMCNMAAAAAAMSIMA0AAAAAQIxiDtPr1q3TGWecIafTqUMPPVSXX365fvjhB0lSeXm5ZsyYoUMPPVROp1NjxoxRcXFx8LYbN25UUlJSxOXoo4+OOP6qVauUlZUlh8Oho446Sq+++mojTxEAAAAAgKYVc5jOzc3VqFGjtHr1ai1evFjvvPOOJk2aJEm644479MQTT2jRokV699131aFDB40bN06VlZWSpB07dqhDhw766quvtH79eq1fv16vvPJK8NibNm3SuHHjdNppp+njjz/WyJEjNWHCBG3evLlpzhYAAAAAgCaQHOsNli5dqt69e+v/t3fvwVGV9x/HPwm5seRCSaKYhJUY0FSk3BSEIkUuUiwi1FsFBEXsVCFIVe4yIkVArM0oKqJSwaIoRdqh1AulJDAV4wU1cSBDsAwQBFQSMNzB5Pv7w2Z/WbIkeza3dX2/ZnaGfc55znnOhyd79pvNOStJP/vZz/Ttt9/qjjvu0IkTJ/TRRx9p1KhRGjp0qCRpwYIF6tSpk0pKSpScnKzS0lK1bNlS7du397ntRYsWqV27dnr88cclSU8//bTWrl2rl19+WY8++migxwgAAAAAPyqpcalNPYSQ5/iT6cpCulJMTIznk+fbbrtN69at065du3Ty5Ek9//zzuvbaa5WcnCzp+0+mk5KSzrvtnJwc/fKXv/Q8j4iIUJ8+fZSXl+d0mAAAAADww5Ra90J48ZDF9TAQ1MTxJ9NVmZmWLl2qHj16yOVyafTo0XrnnXeUkZGhsLAwXXDBBdq6datn/ZKSEu3cuVPNmzdXamqqBgwYoD/84Q+eYnvXrl1KT0/32ofb7VZ+fr7P/Z8+fVqnT5/2PC8rK6vL4QAAAABA01vcdIVwkitJMRExOvXdqWrLYiJilORKknSo8QcWhAIups+ePav77rtPOTk52rx5syRpzpw5ys3N1V//+lelpKRo7ty5uuGGG7RlyxbFxMToxhtv1NVXX63w8HDl5+dr1qxZ+uyzz/Tee++pWbNmOnbsmFwul9d+XC6XV8Fc1fz58/nzbwAAAACoJ+4Et3ZM2KFDJ6oXzEmuJLkT3KKY/l5AxfS+fft02223adeuXdq4caOuvPJKHT58WPPnz9crr7yim2++WZK0atUqtWnTRitWrNC4ceOUlpamtLQ0SVKXLl2UkZGhPn366JNPPtFVV12l6OhonTlzxmtfp06dqlZgV5o+fboeeOABz/OysrJqf4YOAAAAAPCfO8H9v6IZNXF8zXRRUZF69OihuLg45efn6+qrr/a0nzp1Sp07d/asGxsbq/bt26ugoMDntrp27SpJ2rNnjyQpNTVVxcXFXusUFxfrkksu8dk/Ojpa8fHxXg8AAAAAABqa42J6xIgR6tmzp9566y1dcMEFnvaUlBRJ0vbt2z1tJ06c0H//+1+lnucC+g8//FCS1K5dO0lS79699a9//cuzvLy8XLm5uerfv7/TYQIAAAAA0GAc/Zl3UVGRtm7dqmnTpmnXrl1ey5KTkzVs2DBNmjRJERERuuCCCzRv3jyVl5dr1KhRkqQ//vGPSklJ0RVXXKHt27drypQpGjx4sOfT7IkTJ6p79+6aM2eOfv3rX+u5555TRUWF7rzzzno5WAAAAAAA6oOjYvrgwYOSpFtuuaXaskWLFukvf/mLpk6dqjvvvFPHjx9Xjx49tHHjRs8n0y6XS1OmTNGhQ4fkdrs1evRoPfzww55tdOnSRStXrtS0adM0b948de/eXevXr1dcXFxdjhEAAAAAgHoVZmbW1IOoL2VlZUpISNC3337L9dMAAAAAGtXQlUO19va1TT0M/w0dKq0NYLyffCJ16yZt3Sr97z5YNbY3ksauBx1fMw0AAAAAwI8dxTQAAAAAAA5RTAMAAABAPUiN8/0tRkHrPN+6BP84ugEZAAAAAMC3xUMWN/UQnFlcx/EWFtb8PMRRTAMAAAAA/JeUJLlc0v++AtmLy/X98h8BimkAAAAAgP/c7u8/hT506Pvnv/+9lJ39/b+Tkr5f/iNAMQ0AAAAAcMbt/v+iOSGhSb4Kq6lxAzIAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAABC41talH0CQopgEAAAAAgVu8uKlH0CQopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiGgAAAAAAhyimAQAAAABwiGIaAAAAAACHKKYBAAAAAHAooqkHUJ/MTJJUVlbWxCMBAAAAADSmyjqwsi5saCFVTB89elSS1KZNmyYeCQAAAACgKRw9elQJCQkNvp8wa6yyvRFUVFRo//79iouLU1hYWFMP50eprKxMbdq0UXFxseLj45t6OCGJjBsW+TYs8m1Y5NuwyLfhkXHDIt+GRb51Ux/5mZmOHj2qlJQUhYc3/BXNIfXJdHh4uNLS0pp6GJAUHx/Pi0gDI+OGRb4Ni3wbFvk2LPJteGTcsMi3YZFv3dQ1v8b4RLoSNyADAAAAAMAhimkAAAAAAByimEa9io6O1iOPPKLo6OimHkrIIuOGRb4Ni3wbFvk2LPJteGTcsMi3YZFv3fwQ8wupG5ABAAAAANAY+GQaAAAAAACHKKYBAAAAAHCIYhoAAAAAAIcopgEAAAAAcIhiOgQVFBTouuuuk8vlUuvWrXXXXXeppKTEs3zx4sVKT09X8+bN1a9fP+3atcuzrLS0VGPHjlViYqISEhI0cOBAFRQU+NzPkSNHlJiYqAEDBjga33fffafLLrtM7dq187tPRUWFlixZos6dO/scx6hRoxQfH6+kpCRNmTJFFRUVjsbkRKjl+/zzz+vSSy9VTEyMMjMztWTJkvOuO3bsWIWFhWnfvn2OxuREsObrdrsVFhbm9Th06JBffWuavzNnzlR6erpcLpeuuOIKrVmzxq9tBirU8q1p/s6ePbvaNisfxcXFfo0rEMGasSS9/vrr6tSpk2JiYtS6dWvl5OT41a+mOVzpzTffVEpKit9jCVSo5Vvba/Do0aOrzd/Vq1f7Paa6Csa8+/bt6/PnOiMjo9a+7733nnr06KHo6GhdcsklWrFihR8p1J9Qy7O2+dvY5zhfgjFzSXrrrbfUuXNnxcTE6LLLLtOyZcv8PqYNGzaoZ8+eat68uRITE/Xqq6/63bcmoZhVTeev7du3a8CAAWrevLlSU1P15JNP+r1dD0PIueaaa+yxxx6z/Px8W7dunaWnp9v1119vZmarVq2y6Ohoe+WVV+zjjz+23r17W4cOHay8vNzMzB588EG7++677f3337ctW7bYgAED7KKLLrJvv/222n6mTJlikqx///6Oxvfcc8+ZJMvIyPBr/RdeeMEuv/xyi4qK8tln8ODB1q1bN3v//fdt9erV1qJFC3v88ccdjcmJUMq3oKDAOnbsaG+++abl5+fbggULLCwszFatWlVt3c8//9yaNWtmkqy4uNjRmJwI1nxbtGhhr776qu3cudPzqNxvTWqbv3fddZe9++679umnn9r48eMtIiLCCgoK/BpTIEIp39rmb0lJidf2du7caePGjbNevXo5icyxYM34xRdftBYtWtiiRYvs888/t3fffde2bdtWa7/a5vCbb75pPXr0sKioKGvWrJlfY6mLUMrXn9fgX/3qVzZx4kSveXzs2DF/46qzYMx737591X62O3bsaDNmzKix3969e61FixY2YcIE+/jjj23WrFkWHh5umzZtCiCZwIRSnv7M38Y+x/kSjJkXFRVZRESEzZw50/Lz8y07O9vCw8Nt48aNtfZ9++23LTo62ubMmWMFBQW2adMmy8vLc5iKb6GWVU3nr6NHj1pqaqrdcsst9tFHH9lTTz1lERER9sorr/gTlQfFdAjau3ev1/NXX33VwsPD7fjx49alSxebOHGiZ1lhYaFJ8kzIc/t++eWXJsneeecdr/Zt27ZZUlKSXXfddY6Kva+++sqSk5Nt2LBhfhfTXbt2tYULF9qMGTOq9cnPzzdJ9sknn3japk6dam632+8xORVK+ZaUlFR7UzZw4ED7zW9+49VWUVFhvXv3tptvvrnBi+lgzPf06dMmKaA3ADXN33OVl5dbXFycPfXUU473469Qytff+VuptLTU4uPjbf369Y7241QwZlxSUmJxcXG2bNkyx8dT2xwePHiwzZgxwxYtWtQoxXQo5evPHO7Zs6c9/fTTjrZbn4Ix73Nt2LDB4uLirKSkpMb1Jk+ebB06dLCKigpP28CBA2348OGO9xmoUMrT6WtwY5zjfAnGzFetWmWtWrXyauvSpYstXLiwxn5nz561iy++2GbPnl3rPgIRSlmZ1Xz+evbZZy0xMdFOnDjhabvnnnusS5cutW63Kv7MOwS1adPG63lMTIwqKip05MgRffrppxo8eLBnWWZmpi666CLl5eWdt68klZeXe9oqKio0btw4zZw5UxdddJGjsWVlZWnEiBHq1KmT330+/vhjTZ48WZGRkdWW5eTk6MILL1SXLl08bf369dPevXt14MABR2PzVyjl26pVK7Vo0aLamKqOR/r+z7hOnDihe++919F4AhGM+ZaWlkqSkpKSHB9PTfP3XGam8vJyJSYmOt6Pv0IpX3/nb6U//elP6tChgwYOHOhoP04FY8arV69WbGysRo4c6fh4apvD//znP/XYY48pNjbW8bYDEUr5+jOHS0tLA3rtqS/BmPe5Zs+erQkTJqhVq1Y1rrd9+3Z17txZYWFhnra+ffvqww8/DGi/gQilPJ2+BjfGOc6XYMz82muvVUREhF577TWVl5dr/fr12r17t2644YYa+23cuFEHDhxQVlaWX/txKpSykmo+f23fvl2ZmZlq3ry5p61v377Kz8/X6dOn/RqbxDXTIc/MtHTpUvXo0UNfffWVJCk9Pd1rHbfbfd5rYF988UU1b95cV199tadt3rx5OnXqlCZMmOBoLCtWrNCWLVs0Z84cR/2qnvTOtWvXLp/HI6lBr+utFAr5VrV7925t2LBB/fr187Tt2LFD06ZN0+LFixUe3rgvGcGSb+X1Qunp6UpNTdXQoUPPex3QuWqav1V9/fXXuv/+++V2uzV8+HC/x1YXoZBvVb7mb6WTJ0/q2Wef1aRJkxxvty6CJeO8vDx17NhRTz75pNLS0tS2bVtNnz5dZ8+erbVvbXPY3zneEEIh36p8zeGSkhKNGTNGiYmJ6tWrl/7+97872mZ9Cpa8q8rLy1NeXp7Gjx9f67qJiYnas2ePV1tZWZm+/vrrgPZdVz/0PM9V02twU5zjfAmWzJOSkrRs2TLdcccdioyM1KBBg/TEE08oMzOzxn55eXlq27at1q5dq4yMDKWmpuq3v/2tjh075ve+/fVDz0qq+fyUmJio4uJimZmnraysTBUVFV7Xidcmwu818YNz9uxZ3XfffcrJydHmzZs9P2gul8trPZfL5fM3MC+99JJmzpypp556yvPbyffee08LFy5UXl6eIiL8nz47d+5UVlaWVq9erfj4+Doclbdjx475PB5Jjn6rFIhQy7eoqEhDhgxR165dNXbsWEnSqVOndPvtt2vSpEnq3r27cnNzA9p2IIIpX7fbrby8PLlcLu3evVsLFizQL37xC33++edKS0urw1FKmzdv1oABA3T27Fm1b99er7/+erVjbAihlq+v+VvVypUrFRUV1ahv4oIp4wMHDuizzz5Tamqq1qxZo23btikrK0vR0dGaPXt24AfZhEIt3/PN4XXr1snlcqmkpETLly/X8OHD9Y9//ENDhgzxe3z1IZjyruq5557T0KFDlZqaWuu6N998s4YOHaply5ZpxIgRysvL04svvqhmzZoFtO+6CIU8qzrf/G2qc5wvwZT5tm3bdNttt2natGkaNmyYcnJylJWVpUsvvVTXXHPNefsdOHBApaWlWrNmjVasWKH9+/dr/PjxOnPmjKObctUmFLKqzfDhwzV37lw99thjeuihh1RUVKSFCxdKkrPXBEd/FI4fjOLiYuvVq5e1bt3a3n//fTMz++CDD0ySffHFF17r9uzZ07KysjzPT548affcc49FRUXZkiVLvLZ54YUX2ksvveRpGzNmjNf1Do8++qg1a9bM83j00UetrKzMfvrTn9rDDz/sWe+RRx7xunZh+fLlXv3Gjh1b7ZjO7WNmdu+991rv3r292nbs2GGSbOvWrX5lFYhQy3fNmjWWkJBgN9xwg5WVlXnaR44caX379rXvvvvOzMxycnIa/Jpps+DK15eysjJr2bKl53qdQOevmdnx48dt+/bttnnzZps6darFxMTY2rVr/YkpYKGW7/nmb1VXXXWVTZ061Z946kWwZTxgwADLyMjwuqnbQw89ZOnp6WZWtzlc6eWXX26Ua6bNQi9ff+Zwpf79+3tuCNRYgi3vSqWlpRYdHW1vv/22V3tNec+dO9eio6MtLCzM2rZta+PGjWvQ+6z4Ekp5mtU8f5viHOdLsGV+6623Vvs5vvvuu+3nP/+5mZ0/83HjxllcXJzXterPPPOMRUZGet6r1VWoZFXV+c5ff/7zny0uLs7CwsIsOTnZJk2aZBEREXbmzBm/86KYDkE7duywlJQUGzRokH311Vee9n379pkky8nJ8Vo/LS3NsrOzzczsxIkTds0111i7du2qFaOzZ882SRYdHe15hIeHW3h4uEVHR9umTZvsm2++scLCQs/jm2++sWXLllXr16xZMwsLC/PcFfDIkSNe/fbv31/tuHz9IMydO9cuvvhir7YNGzaYJCstLQ08xBqEWr6LFi2yqKgoe/LJJ71uyrJ7926TZJGRkZ7tRkZGevY1bty4+g/Xgi/f87nyyitt/PjxZmYBz19fRo8ebT179qx1vUCFWr7nm79VVc7lDz74wElUAQvGjEeMGGEDBw702t4LL7xgLpfLzOpnDjdWMR1q+fozh6t66KGHrEOHDn7nVVfBmHelZcuWWUJCQrU3vrXN59OnT9vu3butvLzc7rvvPrvxxhvrFpIDoZan0/nb0Oc4X4Ix88zMzGp3S3/22WctLi7OzM6f+YwZM6x9+/Ze/davX2+S7OuvvyarAM5f3333ne3Zs8fOnDljCxcutE6dOjmJjGI6FHXr1s1uuukmn18r07ZtW68JWfkpbuVddB988EHLyMjweQfHcyd5YWGhDRs2zHr27GmFhYV2/Phxn+M5d5IXFhba+PHjze12W2FhoR05csSv4/L1g5Cbm2uSrKioyNM2ffp069q1q1/bDEQo5fvZZ59ZRESE/e1vf6u27MyZM9W2u3z5cpNkubm5Pl+s6kOw5evL4cOHLT4+3nMC8Ye/xfTYsWOte/fufm/XqVDKt6b5W1V2dralpKT49UavPgRjxs8884wlJyfbyZMnPW3333+/de7c2e/jCpZiOpTy9XcOV9WnT59GLf6CMe9KN954o91+++0BH9uRI0esZcuWtnLlyoC34VQo5RnI/G3oc5wvwZh5//79bdiwYV5tv/vd7ywzM7PGY1m3bp1FRkbagQMHPG3Z2dnWsmXLGvv5K5Syqsqf92Bnz5619u3b2/z58/3erpkZ10yHmKKiIm3dulXTpk3z+iJ1SUpOTtYDDzyg6dOnq3PnzkpPT9fvf/97DRkyRB07dpQkvfbaaxo5cqRKS0s9d9iVpNjYWLVu3braHUUTEhJ09OjRGm8CkJCQoISEBK+2pKQkRUZG+nXzgJr06dNH3bp109ixY5Wdna3du3fr6aef1vLly+u03fMJtXzfeOMNtWnTRldccYW++OILr2UZGRnV+h88eNCzLNC7hNYkGPOVvr9b8Y4dO9S3b18dPnxYs2fPVlxcnMaMGVOn4/33v/+t3NxcDRo0SLGxsXr33Xe1fPlyPf/883Xa7vmEWr61zd/KG4/k5uaqd+/ejXKjrGDNeNSoUZo7d67GjBmjyZMnKz8/X0uWLNHSpUvr6cgbR6jlW9sc3r9/v5544gndcsstioiI0NKlS7VlyxZt2rSp1qzqQ7DmXWnTpk2aN2+e38dz8OBB5eTkqGPHjjp48KBmzZqlTp066dZbb/V7G3URannWNn83btzYqOc4X4I186ysLA0fPlzz58/X4MGDtXnzZi1dulTZ2dk19hs0aJAuu+wyjRgxQvPmzdOXX36puXPnavLkyU5i8SnUsqrN6dOntWLFCl111VUqKyvTggULFBER4fxO6Y5KbwS9TZs2mSSfj0WLFllFRYXNmjXLkpKSLDY21kaOHGmHDx/29A8LC/PZ96abbvK5v3Ovd/CXv5/S+dNn7969dt1111l0dLS53W5bvHix4/H4K9Tyveuuu857PEePHq22fkNfMx2s+f7nP/+xzMxMi4mJsdTUVBs5cqR9+eWXjo7N1//Jjh077Nprr7WEhASLi4uz7t272xtvvOFou06EWr7+zt+0tDTHv2kOVLBmbGZWUFBgvXv3tqioKHO73Y6/6zUYPpkOtXxrm8MlJSXWq1cvi42NtZ/85CfWr18/y8vL82s89SGY8/7iiy9MkueaTn8UFxfb5ZdfblFRUda6dWubOHFirdeo16dQy7O2+dvY5zhfgjnzFStWeOZjRkaG36/Je/bsseuvv95iYmLswgsvtIcffrherpcOxawq+Tp/nTp1yrp27WoxMTHWqlUrGzNmjB08eNDRds3Mwsyq3A8cAAAAAADUiu+ZBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAIYppAAAAAAAcopgGAAAAAMAhimkAAAAAAByimAYAAAAAwCGKaQAAAAAAHKKYBgAAAADAof8DDEsSp0VihV4AAAAASUVORK5CYII=",
|
|
94
86
|
"text/plain": [
|
|
95
87
|
"<Figure size 1000x800 with 1 Axes>"
|
|
96
88
|
]
|
|
@@ -127,7 +119,7 @@
|
|
|
127
119
|
"name": "python",
|
|
128
120
|
"nbconvert_exporter": "python",
|
|
129
121
|
"pygments_lexer": "ipython3",
|
|
130
|
-
"version": "3.
|
|
122
|
+
"version": "3.11.7"
|
|
131
123
|
}
|
|
132
124
|
},
|
|
133
125
|
"nbformat": 4,
|
hikyuu/extend.py
CHANGED
|
@@ -1,10 +1,12 @@
|
|
|
1
1
|
#
|
|
2
2
|
# 对 C++ 引出类和函数进行扩展, pybind11 对小函数到导出效率不如 python 直接执行
|
|
3
3
|
#
|
|
4
|
+
|
|
5
|
+
# 优先加载 hikyuu 库,防止 windows 公共依赖库不同导致DLL初始化失败
|
|
6
|
+
from .core import *
|
|
4
7
|
import numpy as np
|
|
5
8
|
import pandas as pd
|
|
6
9
|
from datetime import *
|
|
7
|
-
from .core import *
|
|
8
10
|
|
|
9
11
|
# ------------------------------------------------------------------
|
|
10
12
|
# 增加Datetime、Stock的hash支持,以便可做为dict的key
|
|
@@ -0,0 +1,49 @@
|
|
|
1
|
+
#!/usr/bin/python
|
|
2
|
+
# -*- coding: utf8 -*-
|
|
3
|
+
#
|
|
4
|
+
# Create on: 2024-08-22
|
|
5
|
+
# Author: fasiondog
|
|
6
|
+
|
|
7
|
+
from xtquant import xtdata
|
|
8
|
+
from hikyuu import Datetime
|
|
9
|
+
from hikyuu.util import *
|
|
10
|
+
|
|
11
|
+
|
|
12
|
+
@hku_catch(trace=True, callback=lambda stk: hku_warn("Failed parse stk: {}", stk))
|
|
13
|
+
def parse_one_result_qmt(stk_code: str, data: dict):
|
|
14
|
+
'''将 qmt tick 数据转为 spot 数据
|
|
15
|
+
|
|
16
|
+
:param str stk_code: qmt 风格的证券编码,如 000001.SZ
|
|
17
|
+
:param dict data: 对应的 qmt 全推 tick 数据
|
|
18
|
+
'''
|
|
19
|
+
result = {}
|
|
20
|
+
code, market = stk_code.split('.')
|
|
21
|
+
result['market'] = market
|
|
22
|
+
result['code'] = code
|
|
23
|
+
result['name'] = ''
|
|
24
|
+
result['datetime'] = Datetime(data['timetag']) if 'timetag' in data else xtdata.timetag_to_datetime(
|
|
25
|
+
data['time'], "%Y-%m-%d %H:%M:%S")
|
|
26
|
+
|
|
27
|
+
result['yesterday_close'] = data['lastClose']
|
|
28
|
+
result['open'] = data['open']
|
|
29
|
+
result['high'] = data['high']
|
|
30
|
+
result['low'] = data['low']
|
|
31
|
+
result['close'] = data['lastPrice']
|
|
32
|
+
result['amount'] = data['amount'] * 0.001 # 转千元
|
|
33
|
+
result['volume'] = data['pvolume'] * 0.01 # 转手数
|
|
34
|
+
|
|
35
|
+
for i in range(5):
|
|
36
|
+
result[f'bid{i+1}'] = data['bidPrice'][i]
|
|
37
|
+
result[f'bid{i+1}_amount'] = data['bidVol'][i]
|
|
38
|
+
result[f'ask{i+1}'] = data['askPrice'][i]
|
|
39
|
+
result[f'ask{i+1}_amount'] = data['askVol'][i]
|
|
40
|
+
return result
|
|
41
|
+
|
|
42
|
+
|
|
43
|
+
def get_spot(stocklist, unused1, unused2, batch_func=None):
|
|
44
|
+
code_list = [f'{s.code}.{s.market}' for s in stocklist]
|
|
45
|
+
full_tick = xtdata.get_full_tick(code_list)
|
|
46
|
+
records = [parse_one_result_qmt(code, data) for code, data in full_tick.items()]
|
|
47
|
+
if batch_func is not None:
|
|
48
|
+
batch_func(records)
|
|
49
|
+
return records
|