hestia-earth-models 0.75.1__py3-none-any.whl → 0.75.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of hestia-earth-models might be problematic. Click here for more details.
- hestia_earth/models/config/Cycle.json +183 -16
- hestia_earth/models/cycle/product/economicValueShare.py +4 -4
- hestia_earth/models/emepEea2019/blackCarbonToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/ch4ToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/coToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/nmvocToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/pm10ToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/pm25ToAirFuelCombustion.py +33 -0
- hestia_earth/models/emepEea2019/tspToAirFuelCombustion.py +33 -0
- hestia_earth/models/faostat2018/seed.py +9 -8
- hestia_earth/models/geospatialDatabase/histosol.py +31 -11
- hestia_earth/models/hestia/aboveGroundCropResidueTotal.py +2 -2
- hestia_earth/models/hestia/management.py +5 -4
- hestia_earth/models/hestia/soilClassification.py +31 -13
- hestia_earth/models/ipcc2019/animal/pastureGrass.py +19 -11
- hestia_earth/models/ipcc2019/burning_utils.py +406 -4
- hestia_earth/models/ipcc2019/ch4ToAirExcreta.py +26 -8
- hestia_earth/models/ipcc2019/ch4ToAirOrganicSoilCultivation.py +8 -11
- hestia_earth/models/ipcc2019/co2ToAirOrganicSoilCultivation.py +9 -12
- hestia_earth/models/ipcc2019/emissionsToAirOrganicSoilBurning.py +516 -0
- hestia_earth/models/ipcc2019/n2OToAirOrganicSoilCultivationDirect.py +10 -13
- hestia_earth/models/ipcc2019/nonCo2EmissionsToAirNaturalVegetationBurning.py +56 -433
- hestia_earth/models/ipcc2019/organicSoilCultivation_utils.py +2 -2
- hestia_earth/models/ipcc2019/pastureGrass.py +19 -11
- hestia_earth/models/ipcc2019/pastureGrass_utils.py +17 -10
- hestia_earth/models/linkedImpactAssessment/emissions.py +1 -1
- hestia_earth/models/mocking/search-results.json +1 -1
- hestia_earth/models/pefcrGuidanceDocument2017/__init__.py +13 -0
- hestia_earth/models/pefcrGuidanceDocument2017/pesticideToAirPesticideApplication.py +29 -0
- hestia_earth/models/pefcrGuidanceDocument2017/pesticideToSoilPesticideApplication.py +29 -0
- hestia_earth/models/pefcrGuidanceDocument2017/pesticideToWaterPesticideApplication.py +29 -0
- hestia_earth/models/pefcrGuidanceDocument2017/utils.py +55 -0
- hestia_earth/models/pooreNemecek2018/saplingsDepreciatedAmountPerCycle.py +1 -1
- hestia_earth/models/utils/blank_node.py +68 -0
- hestia_earth/models/utils/impact_assessment.py +3 -0
- hestia_earth/models/version.py +1 -1
- hestia_earth/orchestrator/strategies/merge/merge_node.py +32 -2
- {hestia_earth_models-0.75.1.dist-info → hestia_earth_models-0.75.3.dist-info}/METADATA +1 -1
- {hestia_earth_models-0.75.1.dist-info → hestia_earth_models-0.75.3.dist-info}/RECORD +42 -29
- {hestia_earth_models-0.75.1.dist-info → hestia_earth_models-0.75.3.dist-info}/WHEEL +0 -0
- {hestia_earth_models-0.75.1.dist-info → hestia_earth_models-0.75.3.dist-info}/licenses/LICENSE +0 -0
- {hestia_earth_models-0.75.1.dist-info → hestia_earth_models-0.75.3.dist-info}/top_level.txt +0 -0
|
@@ -19,16 +19,18 @@ from . import MODEL
|
|
|
19
19
|
REQUIREMENTS = {
|
|
20
20
|
"Site": {
|
|
21
21
|
"optional": {
|
|
22
|
-
"measurements": [
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
|
|
29
|
-
"
|
|
22
|
+
"measurements": [
|
|
23
|
+
{
|
|
24
|
+
"@type": "Measurement",
|
|
25
|
+
"value": "",
|
|
26
|
+
"depthUpper": "",
|
|
27
|
+
"depthLower": "",
|
|
28
|
+
"term.termType": ["soilType", "usdaSoilType"],
|
|
29
|
+
"optional": {
|
|
30
|
+
"dates": ""
|
|
31
|
+
}
|
|
30
32
|
}
|
|
31
|
-
|
|
33
|
+
]
|
|
32
34
|
}
|
|
33
35
|
}
|
|
34
36
|
}
|
|
@@ -41,7 +43,8 @@ RETURNS = {
|
|
|
41
43
|
}]
|
|
42
44
|
}
|
|
43
45
|
LOOKUPS = {
|
|
44
|
-
"soilType": "IPCC_SOIL_CATEGORY"
|
|
46
|
+
"soilType": "IPCC_SOIL_CATEGORY",
|
|
47
|
+
"usdaSoilType": "IPCC_SOIL_CATEGORY"
|
|
45
48
|
}
|
|
46
49
|
TERM_ID = 'organicSoils,mineralSoils'
|
|
47
50
|
|
|
@@ -50,6 +53,10 @@ ORGANIC_SOILS_TERM_ID = MEASUREMENT_TERM_IDS[0]
|
|
|
50
53
|
MINERAL_SOILS_TERM_ID = MEASUREMENT_TERM_IDS[1]
|
|
51
54
|
METHOD = MeasurementMethodClassification.MODELLED_USING_OTHER_MEASUREMENTS.value
|
|
52
55
|
|
|
56
|
+
_INPUT_TERM_TYPES = (
|
|
57
|
+
TermTermType.SOILTYPE,
|
|
58
|
+
TermTermType.USDASOILTYPE
|
|
59
|
+
)
|
|
53
60
|
TARGET_LOOKUP_VALUE = IPCC_SOIL_CATEGORY_TO_SOIL_TYPE_LOOKUP_VALUE[IpccSoilCategory.ORGANIC_SOILS]
|
|
54
61
|
|
|
55
62
|
IS_100_THRESHOLD = 99.5
|
|
@@ -65,6 +72,7 @@ def _measurement(term_id: str, **kwargs):
|
|
|
65
72
|
|
|
66
73
|
class _SoilTypeDatum(NamedTuple):
|
|
67
74
|
term_id: str
|
|
75
|
+
term_type: str
|
|
68
76
|
depth_upper: float
|
|
69
77
|
depth_lower: float
|
|
70
78
|
dates: list[str]
|
|
@@ -105,14 +113,16 @@ def _extract_soil_type_data(node: dict) -> _SoilTypeDatum:
|
|
|
105
113
|
depth_upper = node.get("depthUpper")
|
|
106
114
|
depth_lower = node.get("depthLower")
|
|
107
115
|
depth_interval = (depth_upper, depth_lower)
|
|
116
|
+
term_type = node.get("term", {}).get("termType")
|
|
108
117
|
|
|
109
118
|
return _SoilTypeDatum(
|
|
110
119
|
term_id=node.get("term", {}).get("@id"),
|
|
120
|
+
term_type=term_type,
|
|
111
121
|
depth_upper=depth_upper,
|
|
112
122
|
depth_lower=depth_lower,
|
|
113
123
|
dates=node.get("dates", []),
|
|
114
124
|
value=get_node_value(node),
|
|
115
|
-
is_organic=node_lookup_match(node, LOOKUPS[
|
|
125
|
+
is_organic=node_lookup_match(node, LOOKUPS[term_type], TARGET_LOOKUP_VALUE),
|
|
116
126
|
is_complete_depth=all(depth is not None for depth in depth_interval),
|
|
117
127
|
is_standard_depth=depth_interval in STANDARD_DEPTHS,
|
|
118
128
|
)
|
|
@@ -126,7 +136,7 @@ def _classify_soil_type_data(soil_type_data: list[_SoilTypeDatum]):
|
|
|
126
136
|
|
|
127
137
|
def classify(inventory: _SoilTypeInventory, datum: _SoilTypeDatum) -> _SoilTypeInventory:
|
|
128
138
|
"""
|
|
129
|
-
Sum the values of organic and mineral `soilType` Measurements by depth interval and date.
|
|
139
|
+
Sum the values of organic and mineral `soilType`/`usdaSoilType` Measurements by depth interval and date.
|
|
130
140
|
"""
|
|
131
141
|
keys = _soil_type_data_to_inventory_keys(datum)
|
|
132
142
|
|
|
@@ -252,7 +262,7 @@ def _filter_data_by_depth_availability(data: list[_SoilTypeDatum]):
|
|
|
252
262
|
|
|
253
263
|
def _should_run(site: dict):
|
|
254
264
|
soil_type_nodes = split_nodes_by_dates(
|
|
255
|
-
|
|
265
|
+
get_soil_type_nodes(site)
|
|
256
266
|
)
|
|
257
267
|
|
|
258
268
|
filtered_by, soil_type_data = _filter_data_by_depth_availability(
|
|
@@ -280,6 +290,14 @@ def _should_run(site: dict):
|
|
|
280
290
|
return should_run, inventory
|
|
281
291
|
|
|
282
292
|
|
|
293
|
+
def get_soil_type_nodes(site: dict) -> list[dict]:
|
|
294
|
+
measurements = site.get("measurements", [])
|
|
295
|
+
return next(
|
|
296
|
+
(nodes for term_type in _INPUT_TERM_TYPES if (nodes := filter_list_term_type(measurements, term_type))),
|
|
297
|
+
[]
|
|
298
|
+
)
|
|
299
|
+
|
|
300
|
+
|
|
283
301
|
_INVENTORY_KEY_TO_FIELD_KEY = {
|
|
284
302
|
"depth_upper": "depthUpper",
|
|
285
303
|
"depth_lower": "depthLower",
|
|
@@ -11,6 +11,7 @@ from hestia_earth.models.utils.property import get_node_property
|
|
|
11
11
|
from hestia_earth.models.utils.cycle import get_animals_by_period
|
|
12
12
|
from .. import MODEL
|
|
13
13
|
from ..pastureGrass_utils import (
|
|
14
|
+
has_cycle_inputs_feed,
|
|
14
15
|
practice_input_id,
|
|
15
16
|
should_run_practice,
|
|
16
17
|
calculate_meanDE,
|
|
@@ -79,7 +80,11 @@ REQUIREMENTS = {
|
|
|
79
80
|
"properties": [{
|
|
80
81
|
"@type": "Property",
|
|
81
82
|
"value": "",
|
|
82
|
-
"term.@id": [
|
|
83
|
+
"term.@id": [
|
|
84
|
+
"neutralDetergentFibreContent",
|
|
85
|
+
"energyContentHigherHeatingValue",
|
|
86
|
+
"energyDigestibilityRuminants"
|
|
87
|
+
]
|
|
83
88
|
}]
|
|
84
89
|
}
|
|
85
90
|
}],
|
|
@@ -200,6 +205,7 @@ def _run_practice(
|
|
|
200
205
|
GE = (
|
|
201
206
|
calculate_GE([values], REM, REG, NEwool, NEm_feed, NEg_feed) / (meanDE/100)
|
|
202
207
|
) if meanDE else 0
|
|
208
|
+
has_positive_GE_value = GE >= 0
|
|
203
209
|
|
|
204
210
|
value = (GE / meanECHHV) * (list_sum(practice.get('value', [0])) / 100)
|
|
205
211
|
|
|
@@ -229,11 +235,12 @@ def _run_practice(
|
|
|
229
235
|
logRequirements(cycle, model=MODEL, term=input_term_id, animalId=animal.get('animalId'), model_key=MODEL_KEY,
|
|
230
236
|
feed_logs=log_as_table(log_feed),
|
|
231
237
|
has_positive_feed_values=has_positive_feed_values,
|
|
238
|
+
has_positive_GE_value=has_positive_GE_value,
|
|
232
239
|
animal_logs=logs,
|
|
233
240
|
animal_lookups=animal_lookups,
|
|
234
241
|
animal_properties=animal_properties)
|
|
235
242
|
|
|
236
|
-
should_run = all([has_positive_feed_values])
|
|
243
|
+
should_run = all([has_positive_feed_values, has_positive_GE_value])
|
|
237
244
|
logShouldRun(cycle, MODEL, input_term_id, should_run, animalId=animal.get('animalId'), model_key=MODEL_KEY)
|
|
238
245
|
|
|
239
246
|
return _input(input_term_id, value) if should_run else None
|
|
@@ -272,10 +279,8 @@ def _should_run(cycle: dict, animals: list, practices: dict):
|
|
|
272
279
|
freshForage_incomplete = _is_term_type_incomplete(cycle, 'freshForage')
|
|
273
280
|
all_animals_have_value = all([a.get('value', 0) > 0 for a in animals])
|
|
274
281
|
|
|
275
|
-
|
|
276
|
-
|
|
277
|
-
meanDE = calculate_meanDE(practices)
|
|
278
|
-
meanECHHV = calculate_meanECHHV(practices)
|
|
282
|
+
meanDE = calculate_meanDE(cycle, practices)
|
|
283
|
+
meanECHHV = calculate_meanECHHV(cycle, practices)
|
|
279
284
|
REM = calculate_REM(meanDE)
|
|
280
285
|
REG = calculate_REG(meanDE)
|
|
281
286
|
|
|
@@ -286,7 +291,6 @@ def _should_run(cycle: dict, animals: list, practices: dict):
|
|
|
286
291
|
animalFeed_complete,
|
|
287
292
|
animalPopulation_complete,
|
|
288
293
|
freshForage_incomplete,
|
|
289
|
-
no_cycle_inputs_feed,
|
|
290
294
|
all_animals_have_value,
|
|
291
295
|
has_practice_termType_system,
|
|
292
296
|
has_practice_pastureGrass_with_landCover_key,
|
|
@@ -300,12 +304,11 @@ def _should_run(cycle: dict, animals: list, practices: dict):
|
|
|
300
304
|
term_type_animalFeed_complete=animalFeed_complete,
|
|
301
305
|
term_type_animalPopulation_complete=animalPopulation_complete,
|
|
302
306
|
term_type_freshForage_incomplete=freshForage_incomplete,
|
|
303
|
-
no_cycle_inputs_feed=no_cycle_inputs_feed,
|
|
304
307
|
all_animals_have_value=all_animals_have_value,
|
|
305
308
|
has_practice_termType_system=has_practice_termType_system,
|
|
306
309
|
has_practice_pastureGrass_with_landCover_key=has_practice_pastureGrass_with_landCover_key,
|
|
307
|
-
grass_MeanDE=calculate_meanDE(practices, term=term_id),
|
|
308
|
-
grass_MeanECHHV=calculate_meanECHHV(practices, term=term_id),
|
|
310
|
+
grass_MeanDE=calculate_meanDE(cycle, practices, term=term_id),
|
|
311
|
+
grass_MeanECHHV=calculate_meanECHHV(cycle, practices, term=term_id),
|
|
309
312
|
grass_REM=REM,
|
|
310
313
|
grass_REG=REG)
|
|
311
314
|
|
|
@@ -314,8 +317,13 @@ def _should_run(cycle: dict, animals: list, practices: dict):
|
|
|
314
317
|
return should_run, meanDE, meanECHHV, REM, REG, systems
|
|
315
318
|
|
|
316
319
|
|
|
317
|
-
def
|
|
320
|
+
def _run(cycle: dict):
|
|
318
321
|
animals = get_animals_by_period(cycle)
|
|
319
322
|
practices = list(filter(should_run_practice(cycle), cycle.get('practices', [])))
|
|
320
323
|
should_run, meanDE, meanECHHV, REM, REG, systems = _should_run(cycle, animals, practices)
|
|
321
324
|
return list(map(_run_animal(cycle, meanDE, meanECHHV, REM, REG, systems, practices), animals)) if should_run else []
|
|
325
|
+
|
|
326
|
+
|
|
327
|
+
def run(cycle: dict):
|
|
328
|
+
# determines if this model or animal model should run
|
|
329
|
+
return _run(cycle) if not has_cycle_inputs_feed(cycle) else []
|
|
@@ -1,4 +1,46 @@
|
|
|
1
1
|
from enum import Enum
|
|
2
|
+
from functools import reduce
|
|
3
|
+
from itertools import product
|
|
4
|
+
import numpy as np
|
|
5
|
+
import numpy.typing as npt
|
|
6
|
+
from typing import Any, Callable, Literal, NotRequired, Optional, TypedDict, Union
|
|
7
|
+
from hestia_earth.schema import EmissionMethodTier, EmissionStatsDefinition, SiteSiteType
|
|
8
|
+
|
|
9
|
+
from hestia_earth.utils.descriptive_stats import calc_descriptive_stats
|
|
10
|
+
from hestia_earth.utils.lookup import download_lookup, get_table_value, column_name
|
|
11
|
+
from hestia_earth.utils.tools import safe_parse_float
|
|
12
|
+
from hestia_earth.utils.stats import truncated_normal_1d
|
|
13
|
+
|
|
14
|
+
from hestia_earth.models.log import (
|
|
15
|
+
debugMissingLookup, format_bool, format_decimal_percentage, format_float, format_nd_array, format_str, log_as_table,
|
|
16
|
+
logRequirements, logShouldRun
|
|
17
|
+
)
|
|
18
|
+
from hestia_earth.models.utils.ecoClimateZone import EcoClimateZone
|
|
19
|
+
from hestia_earth.models.utils.lookup import get_region_lookup_value
|
|
20
|
+
|
|
21
|
+
from . import MODEL
|
|
22
|
+
from .biomass_utils import BiomassCategory
|
|
23
|
+
|
|
24
|
+
_LOOKUPS = {
|
|
25
|
+
"region-percentageAreaBurnedDuringForestClearance": "percentage_area_burned_during_forest_clearance"
|
|
26
|
+
}
|
|
27
|
+
|
|
28
|
+
ITERATIONS = 10000 # N interations for which the model will run as a Monte Carlo simulation
|
|
29
|
+
TIER = EmissionMethodTier.TIER_1.value
|
|
30
|
+
DEFAULT_FACTOR = {"value": 0}
|
|
31
|
+
_DEFAULT_PERCENT_BURNED = 0
|
|
32
|
+
|
|
33
|
+
_STATS_DEFINITION = EmissionStatsDefinition.SIMULATED.value
|
|
34
|
+
|
|
35
|
+
AMORTISATION_PERIOD = 20 # Emissions should be amortised over 20 years
|
|
36
|
+
|
|
37
|
+
EXCLUDED_ECO_CLIMATE_ZONES = {EcoClimateZone.POLAR_MOIST, EcoClimateZone.POLAR_DRY}
|
|
38
|
+
EXCLUDED_SITE_TYPES = {SiteSiteType.GLASS_OR_HIGH_ACCESSIBLE_COVER.value}
|
|
39
|
+
NATURAL_VEGETATION_CATEGORIES = {
|
|
40
|
+
BiomassCategory.FOREST,
|
|
41
|
+
BiomassCategory.NATURAL_FOREST,
|
|
42
|
+
BiomassCategory.PLANTATION_FOREST
|
|
43
|
+
}
|
|
2
44
|
|
|
3
45
|
|
|
4
46
|
class FuelCategory(Enum):
|
|
@@ -6,11 +48,10 @@ class FuelCategory(Enum):
|
|
|
6
48
|
Natural vegetation fuel categories from IPCC (2019).
|
|
7
49
|
"""
|
|
8
50
|
BOREAL_FOREST = "boreal-forest"
|
|
9
|
-
DRAINED_EXTRATROPICAL_ORGANIC_SOILS_WILDFIRE = "drained-extratropical-organic-soils-wildfire"
|
|
51
|
+
DRAINED_EXTRATROPICAL_ORGANIC_SOILS_WILDFIRE = "drained-extratropical-organic-soils-wildfire" # boreal/temperate
|
|
10
52
|
DRAINED_TROPICAL_ORGANIC_SOILS_WILDFIRE = "drained-tropical-organic-soils-wildfire"
|
|
11
53
|
EUCALYPT_FOREST = "eucalypt-forest"
|
|
12
54
|
NATURAL_TROPICAL_FOREST = "natural-tropical-forest" # mean of primary and secondary tropical forest
|
|
13
|
-
PEATLAND_VEGETATION = "peatland-vegetation"
|
|
14
55
|
PRIMARY_TROPICAL_FOREST = "primary-tropical-forest"
|
|
15
56
|
SAVANNA_GRASSLAND_EARLY_DRY_SEASON_BURNS = "savanna-grassland-early-dry-season-burns"
|
|
16
57
|
SAVANNA_GRASSLAND_MID_TO_LATE_DRY_SEASON_BURNS = "savanna-grassland-mid-to-late-dry-season-burns"
|
|
@@ -21,17 +62,378 @@ class FuelCategory(Enum):
|
|
|
21
62
|
TEMPERATE_FOREST = "temperate-forest"
|
|
22
63
|
TERTIARY_TROPICAL_FOREST = "tertiary-tropical-forest"
|
|
23
64
|
TROPICAL_ORGANIC_SOILS_PRESCRIBED_FIRE = "tropical-organic-soils-prescribed-fire"
|
|
24
|
-
TUNDRA = "tundra"
|
|
25
65
|
UNDRAINED_EXTRATROPICAL_ORGANIC_SOILS_WILDFIRE = "undrained-extratropical-organic-soils-wildfire"
|
|
26
66
|
UNKNOWN_TROPICAL_FOREST = "unknown-tropical-forest" # mean of primary, secondary and tertiary tropical forest
|
|
27
67
|
|
|
28
68
|
|
|
29
69
|
class EmissionCategory(Enum):
|
|
30
70
|
"""
|
|
31
|
-
Natural vegetation burning emission categories from IPCC (2019).
|
|
71
|
+
Natural vegetation and organic soil burning emission categories from IPCC (2019).
|
|
32
72
|
"""
|
|
33
73
|
AGRICULTURAL_RESIDUES = "agricultural-residues"
|
|
34
74
|
BIOFUEL_BURNING = "biofuel-burning"
|
|
75
|
+
EXTRATROPICAL_ORGANIC_SOILS = "extratropical-organic-soils"
|
|
35
76
|
OTHER_FOREST = "other-forest"
|
|
36
77
|
SAVANNA_AND_GRASSLAND = "savanna-and-grassland"
|
|
37
78
|
TROPICAL_FOREST = "tropical-forest"
|
|
79
|
+
TROPICAL_ORGANIC_SOILS = "tropical-organic-soils"
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
class InventoryYear(TypedDict, total=False):
|
|
83
|
+
biomass_category_summary: dict[BiomassCategory, float]
|
|
84
|
+
natural_vegetation_delta: dict[BiomassCategory, float]
|
|
85
|
+
fuel_burnt_per_category: dict[FuelCategory, npt.NDArray]
|
|
86
|
+
annual_emissions: dict[str, npt.NDArray]
|
|
87
|
+
amortised_emissions: dict[str, npt.NDArray]
|
|
88
|
+
share_of_emissions: dict[str, float] # {cycle_id (str): value, ...}
|
|
89
|
+
allocated_emissions: dict[str, dict[str, npt.NDArray]]
|
|
90
|
+
percent_organic_soils: NotRequired[float]
|
|
91
|
+
|
|
92
|
+
|
|
93
|
+
InventoryKey = Literal[
|
|
94
|
+
"biomass_category_summary",
|
|
95
|
+
"natural_vegetation_delta",
|
|
96
|
+
"fuel_burnt_per_category",
|
|
97
|
+
"annual_emissions",
|
|
98
|
+
"amortised_emissions",
|
|
99
|
+
"share_of_emissions",
|
|
100
|
+
"allocated_emissions",
|
|
101
|
+
"percent_organic_soils"
|
|
102
|
+
]
|
|
103
|
+
|
|
104
|
+
Inventory = dict[int, InventoryYear]
|
|
105
|
+
"""
|
|
106
|
+
{year (int): data (_InventoryYear)}
|
|
107
|
+
"""
|
|
108
|
+
|
|
109
|
+
|
|
110
|
+
_FUEL_CATEGORY_TO_EMISSION_CATEGORY = {
|
|
111
|
+
FuelCategory.BOREAL_FOREST: EmissionCategory.OTHER_FOREST,
|
|
112
|
+
FuelCategory.EUCALYPT_FOREST: EmissionCategory.OTHER_FOREST,
|
|
113
|
+
FuelCategory.NATURAL_TROPICAL_FOREST: EmissionCategory.TROPICAL_FOREST,
|
|
114
|
+
FuelCategory.PRIMARY_TROPICAL_FOREST: EmissionCategory.TROPICAL_FOREST,
|
|
115
|
+
FuelCategory.SAVANNA_GRASSLAND_EARLY_DRY_SEASON_BURNS: EmissionCategory.SAVANNA_AND_GRASSLAND,
|
|
116
|
+
FuelCategory.SAVANNA_GRASSLAND_MID_TO_LATE_DRY_SEASON_BURNS: EmissionCategory.SAVANNA_AND_GRASSLAND,
|
|
117
|
+
FuelCategory.SAVANNA_WOODLAND_EARLY_DRY_SEASON_BURNS: EmissionCategory.SAVANNA_AND_GRASSLAND,
|
|
118
|
+
FuelCategory.SAVANNA_WOODLAND_MID_TO_LATE_DRY_SEASON_BURNS: EmissionCategory.SAVANNA_AND_GRASSLAND,
|
|
119
|
+
FuelCategory.SECONDARY_TROPICAL_FOREST: EmissionCategory.TROPICAL_FOREST,
|
|
120
|
+
FuelCategory.SHRUBLAND: EmissionCategory.SAVANNA_AND_GRASSLAND,
|
|
121
|
+
FuelCategory.TEMPERATE_FOREST: EmissionCategory.OTHER_FOREST,
|
|
122
|
+
FuelCategory.TERTIARY_TROPICAL_FOREST: EmissionCategory.TROPICAL_FOREST,
|
|
123
|
+
FuelCategory.UNKNOWN_TROPICAL_FOREST: EmissionCategory.TROPICAL_FOREST,
|
|
124
|
+
FuelCategory.DRAINED_EXTRATROPICAL_ORGANIC_SOILS_WILDFIRE: EmissionCategory.EXTRATROPICAL_ORGANIC_SOILS,
|
|
125
|
+
FuelCategory.DRAINED_TROPICAL_ORGANIC_SOILS_WILDFIRE: EmissionCategory.TROPICAL_ORGANIC_SOILS,
|
|
126
|
+
FuelCategory.TROPICAL_ORGANIC_SOILS_PRESCRIBED_FIRE: EmissionCategory.TROPICAL_ORGANIC_SOILS,
|
|
127
|
+
FuelCategory.UNDRAINED_EXTRATROPICAL_ORGANIC_SOILS_WILDFIRE: EmissionCategory.EXTRATROPICAL_ORGANIC_SOILS
|
|
128
|
+
}
|
|
129
|
+
"""
|
|
130
|
+
Mapping from natural vegetation and organic soil fuel category to emission category.
|
|
131
|
+
"""
|
|
132
|
+
|
|
133
|
+
|
|
134
|
+
def get_emission_category(fuel_category: FuelCategory) -> EmissionCategory:
|
|
135
|
+
"""
|
|
136
|
+
Get the IPCC (2019) emission category that corresponds to a fuel category.
|
|
137
|
+
"""
|
|
138
|
+
return _FUEL_CATEGORY_TO_EMISSION_CATEGORY.get(fuel_category)
|
|
139
|
+
|
|
140
|
+
|
|
141
|
+
def _sample_truncated_normal(
|
|
142
|
+
*, iterations: int, value: float, sd: float, seed: Union[int, np.random.Generator, None] = None, **_
|
|
143
|
+
) -> npt.NDArray:
|
|
144
|
+
"""
|
|
145
|
+
Randomly sample a model parameter with a truncated normal distribution. Neither fuel factors nor emission factors
|
|
146
|
+
can be below 0, so truncated normal sampling used.
|
|
147
|
+
"""
|
|
148
|
+
return truncated_normal_1d(shape=(1, iterations), mu=value, sigma=sd, low=0, high=np.inf, seed=seed)
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
def _sample_constant(*, value: float, **_) -> npt.NDArray:
|
|
152
|
+
"""Sample a constant model parameter."""
|
|
153
|
+
return np.array(value)
|
|
154
|
+
|
|
155
|
+
|
|
156
|
+
_KWARGS_TO_SAMPLE_FUNC = {
|
|
157
|
+
# ("value", "se", "n"): _sample_standard_error_normal,
|
|
158
|
+
("value", "sd"): _sample_truncated_normal,
|
|
159
|
+
("value",): _sample_constant
|
|
160
|
+
}
|
|
161
|
+
"""
|
|
162
|
+
Mapping from available distribution data to sample function.
|
|
163
|
+
"""
|
|
164
|
+
|
|
165
|
+
|
|
166
|
+
def get_sample_func(kwargs: dict) -> Callable:
|
|
167
|
+
"""
|
|
168
|
+
Select the correct sample function for a parameter based on the distribution data available. All possible
|
|
169
|
+
parameters for the model should have, at a minimum, a `value`, meaning that no default function needs to be
|
|
170
|
+
specified.
|
|
171
|
+
|
|
172
|
+
This function has been extracted into it's own method to allow for mocking of sample function.
|
|
173
|
+
|
|
174
|
+
Keyword Args
|
|
175
|
+
------------
|
|
176
|
+
value : float
|
|
177
|
+
The distribution mean.
|
|
178
|
+
sd : float
|
|
179
|
+
The standard deviation of the distribution.
|
|
180
|
+
se : float
|
|
181
|
+
The standard error of the distribution.
|
|
182
|
+
n : float
|
|
183
|
+
Sample size.
|
|
184
|
+
|
|
185
|
+
Returns
|
|
186
|
+
-------
|
|
187
|
+
Callable
|
|
188
|
+
The sample function for the distribution.
|
|
189
|
+
"""
|
|
190
|
+
return next(
|
|
191
|
+
sample_func for required_kwargs, sample_func in _KWARGS_TO_SAMPLE_FUNC.items()
|
|
192
|
+
if all(kwarg in kwargs.keys() for kwarg in required_kwargs)
|
|
193
|
+
)
|
|
194
|
+
|
|
195
|
+
|
|
196
|
+
def _get_fuel_factor(fuel_category: FuelCategory, emission_term_ids: list[str]) -> dict:
|
|
197
|
+
"""
|
|
198
|
+
Retrieve distribution data for a specific fuel category.
|
|
199
|
+
"""
|
|
200
|
+
LOOKUP_KEY = "ipcc2019FuelCategory_tonnesDryMatterCombustedPerHaBurned"
|
|
201
|
+
LOOKUP_FILENAME = f"{LOOKUP_KEY}.csv"
|
|
202
|
+
TARGET_DATA = (
|
|
203
|
+
"value",
|
|
204
|
+
# "se", # useless without n data
|
|
205
|
+
# "n" # TODO: add n data to lookup
|
|
206
|
+
)
|
|
207
|
+
|
|
208
|
+
row = fuel_category.name
|
|
209
|
+
|
|
210
|
+
lookup = download_lookup(LOOKUP_FILENAME)
|
|
211
|
+
|
|
212
|
+
data = {
|
|
213
|
+
target: get_table_value(lookup, column_name("FuelCategory"), row, column_name(target))
|
|
214
|
+
for target in TARGET_DATA
|
|
215
|
+
}
|
|
216
|
+
|
|
217
|
+
for term_id, target in product(emission_term_ids, TARGET_DATA):
|
|
218
|
+
debugMissingLookup(LOOKUP_FILENAME, "FuelCategory", row, target, data.get(target), model=MODEL, term=term_id)
|
|
219
|
+
|
|
220
|
+
return (
|
|
221
|
+
{
|
|
222
|
+
k: parsed for k, v in data.items() if (parsed := safe_parse_float(v, default=None)) is not None
|
|
223
|
+
} # remove missing
|
|
224
|
+
or DEFAULT_FACTOR # if parsed dict empty, return default
|
|
225
|
+
)
|
|
226
|
+
|
|
227
|
+
|
|
228
|
+
def sample_fuel_factor(
|
|
229
|
+
fuel_category: FuelCategory,
|
|
230
|
+
emission_term_ids: list[str],
|
|
231
|
+
*,
|
|
232
|
+
seed: Union[int, np.random.Generator, None] = None
|
|
233
|
+
) -> npt.NDArray:
|
|
234
|
+
"""
|
|
235
|
+
Generate random samples from a fuel factor's distribution data.
|
|
236
|
+
"""
|
|
237
|
+
factor_data = _get_fuel_factor(fuel_category, emission_term_ids)
|
|
238
|
+
sample_func = get_sample_func(factor_data)
|
|
239
|
+
return sample_func(iterations=ITERATIONS, seed=seed, **factor_data)
|
|
240
|
+
|
|
241
|
+
|
|
242
|
+
def get_percent_burned(site: str):
|
|
243
|
+
LOOKUP_KEY = "region-percentageAreaBurnedDuringForestClearance"
|
|
244
|
+
LOOKUP_FILENAME = f"{LOOKUP_KEY}.csv"
|
|
245
|
+
country_id = site.get("country", {}).get("@id")
|
|
246
|
+
|
|
247
|
+
value = get_region_lookup_value(LOOKUP_FILENAME, country_id, _LOOKUPS[LOOKUP_KEY])
|
|
248
|
+
return safe_parse_float(value, _DEFAULT_PERCENT_BURNED)
|
|
249
|
+
|
|
250
|
+
|
|
251
|
+
def _sum_cycle_emissions(term_id: str, cycle_id: str, inventory: Inventory) -> npt.NDArray:
|
|
252
|
+
"""
|
|
253
|
+
Sum the emissions allocated to a cycle.
|
|
254
|
+
"""
|
|
255
|
+
KEY = "allocated_emissions"
|
|
256
|
+
|
|
257
|
+
def add_cycle_emissions(result: npt.NDArray, year: int) -> npt.NDArray:
|
|
258
|
+
allocated_emissions = inventory.get(year, {}).get(KEY, {}).get(term_id, {})
|
|
259
|
+
return result + allocated_emissions.get(cycle_id, np.array(0))
|
|
260
|
+
|
|
261
|
+
return reduce(add_cycle_emissions, inventory.keys(), np.array(0))
|
|
262
|
+
|
|
263
|
+
|
|
264
|
+
def calc_emission(fuel_burnt: npt.NDArray, emission_factor: npt.NDArray, conversion_factor: float = 1) -> npt.NDArray:
|
|
265
|
+
"""
|
|
266
|
+
Calculate the emission from a fuel burning.
|
|
267
|
+
|
|
268
|
+
Parameters
|
|
269
|
+
----------
|
|
270
|
+
fuel_burnt : NDArray
|
|
271
|
+
The mass of burnt fuel (kg).
|
|
272
|
+
emission_factor : NDArray
|
|
273
|
+
Emission conversion factor (kg emission per kg of fuel burnt).
|
|
274
|
+
conversion_factor : float, optional
|
|
275
|
+
Optional factor to convert emission factor to other units (e.g., from CO2-C to CO2).
|
|
276
|
+
|
|
277
|
+
Returns
|
|
278
|
+
-------
|
|
279
|
+
NDArray
|
|
280
|
+
The mass of emission (kg)
|
|
281
|
+
"""
|
|
282
|
+
return fuel_burnt * emission_factor * conversion_factor
|
|
283
|
+
|
|
284
|
+
|
|
285
|
+
def run_emission(term_id: str, cycle_id: str, inventory: Inventory) -> list[dict]:
|
|
286
|
+
"""
|
|
287
|
+
Retrieve the sum relevant emissions and format them as a HESTIA
|
|
288
|
+
[Emission node](https://www.hestia.earth/schema/Emission).
|
|
289
|
+
"""
|
|
290
|
+
emission = _sum_cycle_emissions(term_id, cycle_id, inventory)
|
|
291
|
+
kwargs = (
|
|
292
|
+
calc_descriptive_stats(emission, _STATS_DEFINITION) if emission.size > 1
|
|
293
|
+
else {"value": [emission]}
|
|
294
|
+
)
|
|
295
|
+
return term_id, kwargs
|
|
296
|
+
|
|
297
|
+
|
|
298
|
+
def _format_column_header(*keys: tuple[Union[Enum, str], ...]) -> str:
|
|
299
|
+
"""Format a variable number of enums and strings for logging as a table column header."""
|
|
300
|
+
return " ".join(format_str(k.value if isinstance(k, Enum) else format_str(k)) for k in keys)
|
|
301
|
+
|
|
302
|
+
|
|
303
|
+
def _format_eco_climate_zone(value: EcoClimateZone) -> str:
|
|
304
|
+
"""Format an eco-climate zone for logging."""
|
|
305
|
+
return (
|
|
306
|
+
format_str(str(value.name).lower().replace("_", " ").capitalize()) if isinstance(value, EcoClimateZone)
|
|
307
|
+
else "None"
|
|
308
|
+
)
|
|
309
|
+
|
|
310
|
+
|
|
311
|
+
_LOGS_FORMAT_DATA: dict[str, Callable] = {
|
|
312
|
+
"has_valid_site_type": format_bool,
|
|
313
|
+
"eco_climate_zone": _format_eco_climate_zone,
|
|
314
|
+
"has_valid_eco_climate_zone": format_bool,
|
|
315
|
+
"has_land_cover_nodes": format_bool,
|
|
316
|
+
"should_compile_inventory": format_bool,
|
|
317
|
+
"percent_burned": lambda x: format_float(x, "pct"),
|
|
318
|
+
}
|
|
319
|
+
_DEFAULT_FORMAT_FUNC = format_str
|
|
320
|
+
|
|
321
|
+
|
|
322
|
+
def _format_logs(logs: dict) -> dict[str, str]:
|
|
323
|
+
"""
|
|
324
|
+
Format model logs - excluding the inventory data, which must be formatted separately.
|
|
325
|
+
"""
|
|
326
|
+
return {key: _LOGS_FORMAT_DATA.get(key, _DEFAULT_FORMAT_FUNC)(value) for key, value in logs.items()}
|
|
327
|
+
|
|
328
|
+
|
|
329
|
+
_INVENTORY_FORMAT_DATA: dict[InventoryKey, dict[Literal["filter_by", "format_func"], Any]] = {
|
|
330
|
+
"fuel_burnt_per_category": {
|
|
331
|
+
"format_func": lambda x: format_nd_array(x, "kg")
|
|
332
|
+
},
|
|
333
|
+
"annual_emissions": {
|
|
334
|
+
"filter_by": ("term_id", ),
|
|
335
|
+
"format_func": lambda x: format_nd_array(x, "kg")
|
|
336
|
+
},
|
|
337
|
+
"amortised_emissions": {
|
|
338
|
+
"filter_by": ("term_id", ),
|
|
339
|
+
"format_func": lambda x: format_nd_array(x, "kg")
|
|
340
|
+
},
|
|
341
|
+
"share_of_emissions": {
|
|
342
|
+
"filter_by": ("cycle_id", ),
|
|
343
|
+
"format_func": format_decimal_percentage
|
|
344
|
+
},
|
|
345
|
+
"allocated_emissions": {
|
|
346
|
+
"filter_by": ("term_id", "cycle_id"),
|
|
347
|
+
"format_func": lambda x: format_nd_array(x, "kg")
|
|
348
|
+
},
|
|
349
|
+
"percent_organic_soils": {
|
|
350
|
+
"format_func": lambda x: format_float(x, "pct")
|
|
351
|
+
}
|
|
352
|
+
}
|
|
353
|
+
"""
|
|
354
|
+
Mapping between inventory key and formatting options for logging in a table. Inventory keys not included in the dict
|
|
355
|
+
will not be logged in the table.
|
|
356
|
+
"""
|
|
357
|
+
|
|
358
|
+
|
|
359
|
+
def _flatten_dict(nested_dict: dict) -> dict[tuple, Any]:
|
|
360
|
+
"""
|
|
361
|
+
Flatten a nested dict, returns dict with keys as tuples with format `(key_level_1, key_level_2, ..., key_level_n)`.
|
|
362
|
+
"""
|
|
363
|
+
def flatten(current: dict, path: tuple = ()):
|
|
364
|
+
|
|
365
|
+
if isinstance(current, dict):
|
|
366
|
+
for key, value in current.items():
|
|
367
|
+
yield from flatten(value, path + (key,))
|
|
368
|
+
else:
|
|
369
|
+
yield (path, current)
|
|
370
|
+
|
|
371
|
+
return dict(flatten(nested_dict))
|
|
372
|
+
|
|
373
|
+
|
|
374
|
+
def _get_relevant_inner_keys(
|
|
375
|
+
term_id: str,
|
|
376
|
+
cycle_id: str,
|
|
377
|
+
key: str,
|
|
378
|
+
inventory: Inventory,
|
|
379
|
+
*,
|
|
380
|
+
filter_by: Optional[tuple[Literal["term_id", "cycle_id"], ...]] = None,
|
|
381
|
+
**_
|
|
382
|
+
) -> list[tuple]:
|
|
383
|
+
"""
|
|
384
|
+
Get the column headings for the formatted table. Nested inventory values should be flattened, with nested keys
|
|
385
|
+
being transformed into a tuple with the format `(key_level_1, key_level_2, ..., key_level_n)`.
|
|
386
|
+
|
|
387
|
+
Inner keys not relevant to the emission term being logged or the cycle the model is running on should be excluded.
|
|
388
|
+
"""
|
|
389
|
+
FILTER_VALUES = {"term_id": term_id, "cycle_id": cycle_id}
|
|
390
|
+
filter_target = (
|
|
391
|
+
tuple(val for f in filter_by if (val := FILTER_VALUES.get(f)))
|
|
392
|
+
if filter_by else None
|
|
393
|
+
)
|
|
394
|
+
|
|
395
|
+
inner_keys = {
|
|
396
|
+
tuple(k) for inner in inventory.values() for k in _flatten_dict(inner.get(key, {}))
|
|
397
|
+
if not filter_target or k == filter_target
|
|
398
|
+
}
|
|
399
|
+
|
|
400
|
+
return sorted(
|
|
401
|
+
inner_keys,
|
|
402
|
+
key=lambda category: category.value if isinstance(category, Enum) else str(category)
|
|
403
|
+
)
|
|
404
|
+
|
|
405
|
+
|
|
406
|
+
def _format_inventory(term_id: str, cycle_id: str, inventory: dict) -> str:
|
|
407
|
+
"""
|
|
408
|
+
Format the inventory for logging as a table.
|
|
409
|
+
|
|
410
|
+
Extract relevant data, flatten nested dicts and format inventory values based on expected data type.
|
|
411
|
+
"""
|
|
412
|
+
relevant_inventory_keys = {
|
|
413
|
+
inventory_key: _get_relevant_inner_keys(term_id, cycle_id, inventory_key, inventory, **kwargs)
|
|
414
|
+
for inventory_key, kwargs in _INVENTORY_FORMAT_DATA.items()
|
|
415
|
+
}
|
|
416
|
+
|
|
417
|
+
return log_as_table(
|
|
418
|
+
{
|
|
419
|
+
"year": year,
|
|
420
|
+
**{
|
|
421
|
+
_format_column_header(inventory_key, *inner_key): _INVENTORY_FORMAT_DATA[inventory_key]["format_func"](
|
|
422
|
+
reduce(lambda d, k: d.get(k, {}), [year, inventory_key, *inner_key], inventory)
|
|
423
|
+
)
|
|
424
|
+
for inventory_key, relevant_inner_keys in relevant_inventory_keys.items()
|
|
425
|
+
for inner_key in relevant_inner_keys
|
|
426
|
+
}
|
|
427
|
+
} for year in inventory
|
|
428
|
+
) if inventory else "None"
|
|
429
|
+
|
|
430
|
+
|
|
431
|
+
def log_emission_data(should_run: bool, term_id: str, cycle: dict, inventory: dict, logs: dict):
|
|
432
|
+
"""
|
|
433
|
+
Format and log the model logs and inventory.
|
|
434
|
+
"""
|
|
435
|
+
formatted_logs = _format_logs(logs)
|
|
436
|
+
formatted_inventory = _format_inventory(term_id, cycle.get("@id"), inventory)
|
|
437
|
+
|
|
438
|
+
logRequirements(cycle, model=MODEL, term=term_id, **formatted_logs, inventory=formatted_inventory)
|
|
439
|
+
logShouldRun(cycle, MODEL, term_id, should_run, methodTier=TIER)
|