hestia-earth-models 0.72.1__py3-none-any.whl → 0.72.2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,4 +1,5 @@
1
1
  from hestia_earth.models.linkedImpactAssessment.utils import run_inputs_production
2
+ from . import MODEL
2
3
 
3
4
  REQUIREMENTS = {
4
5
  "ImpactAssessment": {
@@ -37,4 +38,4 @@ RETURNS = {
37
38
  TERM_ID = 'resourceUseEnergyDepletionInputsProduction'
38
39
 
39
40
 
40
- def run(impact_assessment: dict): return run_inputs_production(impact_assessment, TERM_ID)
41
+ def run(impact_assessment: dict): return run_inputs_production(impact_assessment, TERM_ID, MODEL)
@@ -1,4 +1,5 @@
1
1
  from hestia_earth.models.linkedImpactAssessment.utils import run_inputs_production
2
+ from . import MODEL
2
3
 
3
4
  REQUIREMENTS = {
4
5
  "ImpactAssessment": {
@@ -37,4 +38,4 @@ RETURNS = {
37
38
  TERM_ID = 'resourceUseMineralsAndMetalsInputsProduction'
38
39
 
39
40
 
40
- def run(impact_assessment: dict): return run_inputs_production(impact_assessment, TERM_ID)
41
+ def run(impact_assessment: dict): return run_inputs_production(impact_assessment, TERM_ID, MODEL)
@@ -81,6 +81,7 @@ def _add_emission(cycle: dict, input: dict):
81
81
  emissions = ecoalim_values(ecoalim_key, 'emission')
82
82
  for emission_term_id, value in emissions:
83
83
  # log run on each emission so we know it did run
84
+ logShouldRun(cycle, MODEL, input_term_id, True, methodTier=TIER, emission_id=emission_term_id)
84
85
  debugValues(cycle, model=MODEL, term=emission_term_id, model_key=MODEL_KEY,
85
86
  value=value,
86
87
  coefficient=coefficient,
@@ -81,6 +81,7 @@ def _add_indicator(cycle: dict, input: dict):
81
81
  indicators = ecoalim_values(ecoalim_key, 'resourceUse')
82
82
  for indicator_term_id, value in indicators:
83
83
  # log run on each indicator so we know it did run
84
+ logShouldRun(cycle, MODEL, input_term_id, True, methodTier=TIER, emission_id=indicator_term_id)
84
85
  debugValues(cycle, model=MODEL, term=indicator_term_id, model_key=MODEL_KEY,
85
86
  value=value,
86
87
  coefficient=coefficient,
@@ -89,6 +89,7 @@ def _add_emission(cycle: dict, input: dict):
89
89
  emissions = ecoinventV3_emissions(ecoinventName)
90
90
  for emission_term_id, value in emissions:
91
91
  # log run on each emission so we know it did run
92
+ logShouldRun(cycle, MODEL, input_term_id, True, methodTier=TIER, emission_id=emission_term_id)
92
93
  debugValues(cycle, model=MODEL, term=emission_term_id,
93
94
  value=value,
94
95
  coefficient=coefficient,
@@ -89,6 +89,7 @@ def _add_emission(cycle: dict, input: dict):
89
89
  emissions = ecoinventV3_emissions(ecoinventName)
90
90
  for emission_term_id, value in emissions:
91
91
  # log run on each emission so we know it did run
92
+ logShouldRun(cycle, MODEL, input_term_id, True, methodTier=TIER, emission_id=emission_term_id)
92
93
  debugValues(cycle, model=MODEL, term=emission_term_id,
93
94
  value=value,
94
95
  coefficient=coefficient,
@@ -77,6 +77,7 @@ def _run_emission(cycle: dict, emission_term_id: str, data: dict):
77
77
 
78
78
  # log run on each emission so we know it did run
79
79
  details = values.get('details', {})
80
+ logShouldRun(cycle, MODEL, input_term_id, True, methodTier=TIER, emission_id=emission_term_id)
80
81
  debugValues(cycle, model=model, term=emission_term_id,
81
82
  value=value,
82
83
  coefficient=1,
@@ -8,14 +8,14 @@ from hestia_earth.models.utils.input import load_impacts
8
8
  from . import MODEL
9
9
 
10
10
 
11
- def _indicator(term_id: str, value: float, input: dict):
12
- indicator = _new_indicator(term_id, MODEL)
11
+ def _indicator(model: str, term_id: str, value: float, input: dict):
12
+ indicator = _new_indicator(term_id, model)
13
13
  indicator['value'] = value
14
14
  indicator['inputs'] = [input]
15
15
  return indicator
16
16
 
17
17
 
18
- def _run_indicators(impact_assessment: dict, product: dict, term_id: str):
18
+ def _run_indicators(impact_assessment: dict, product: dict, term_id: str, model: str):
19
19
  def run(values: list):
20
20
  input = values[0].get('input').get('term', {})
21
21
  indicator = values[0].get('indicator')
@@ -24,22 +24,22 @@ def _run_indicators(impact_assessment: dict, product: dict, term_id: str):
24
24
  for value in values
25
25
  ])
26
26
  value = convert_value_from_cycle(
27
- impact_assessment, product, sum_values(values_from_cycle), model=MODEL, term_id=term_id
27
+ impact_assessment, product, sum_values(values_from_cycle), model=model, term_id=term_id
28
28
  )
29
29
 
30
30
  # show values per input in the logs
31
- debugValues(impact_assessment, model=MODEL, term=term_id,
31
+ debugValues(impact_assessment, model=model, term=term_id,
32
32
  value=value,
33
33
  coefficient=1,
34
34
  input=input.get('@id'))
35
35
 
36
36
  return (
37
- _indicator(term_id, value, input) | _include(indicator, ['landCover', 'previousLandCover'])
37
+ _indicator(model, term_id, value, input) | _include(indicator, ['landCover', 'previousLandCover'])
38
38
  ) if value is not None else None
39
39
  return run
40
40
 
41
41
 
42
- def _run_inputs_production(impact_assessment: dict, product: dict, term_id: str):
42
+ def _run_inputs_production(impact_assessment: dict, product: dict, term_id: str, model: str):
43
43
  cycle = impact_assessment.get('cycle', {})
44
44
 
45
45
  # group all indicators per `landCover` and `previousLandCover`
@@ -71,7 +71,7 @@ def _run_inputs_production(impact_assessment: dict, product: dict, term_id: str)
71
71
  ])
72
72
  has_indicators = bool(valid_indicators)
73
73
 
74
- logRequirements(impact_assessment, model=MODEL, term=term_id,
74
+ logRequirements(impact_assessment, model=model, term=term_id,
75
75
  indicators=log_as_table([
76
76
  {
77
77
  'indicator-id': value.get('indicator').get('term', {}).get('@id'),
@@ -83,30 +83,30 @@ def _run_inputs_production(impact_assessment: dict, product: dict, term_id: str)
83
83
  ]))
84
84
 
85
85
  should_run = all([has_indicators])
86
- logShouldRun(impact_assessment, MODEL, term_id, should_run)
86
+ logShouldRun(impact_assessment, model, term_id, should_run)
87
87
 
88
88
  return non_empty_list(flatten(
89
- map(_run_indicators(impact_assessment, product, term_id), grouped_indicators.values())
89
+ map(_run_indicators(impact_assessment, product, term_id, model), grouped_indicators.values())
90
90
  ))
91
91
 
92
92
 
93
- def _should_run_inputs_production(impact_assessment: dict, term_id: str):
93
+ def _should_run_inputs_production(impact_assessment: dict, term_id: str, model: str):
94
94
  product = get_product(impact_assessment) or {}
95
95
  product_id = product.get('term', {}).get('@id')
96
96
 
97
97
  product_value = list_sum(product.get('value', []), default=None)
98
98
  economic_value = product.get('economicValueShare')
99
99
 
100
- logRequirements(impact_assessment, model=MODEL, term=term_id,
100
+ logRequirements(impact_assessment, model=model, term=term_id,
101
101
  product_id=product_id,
102
102
  product_value=product_value,
103
103
  product_economicValueShare=economic_value)
104
104
 
105
105
  should_run = all([product, product_value, economic_value])
106
- logShouldRun(impact_assessment, MODEL, term_id, should_run)
106
+ logShouldRun(impact_assessment, model, term_id, should_run)
107
107
  return should_run, product
108
108
 
109
109
 
110
- def run_inputs_production(impact_assessment: dict, term_id: str):
111
- should_run, product = _should_run_inputs_production(impact_assessment, term_id)
112
- return _run_inputs_production(impact_assessment, product, term_id) if should_run else []
110
+ def run_inputs_production(impact_assessment: dict, term_id: str, model: str = MODEL):
111
+ should_run, product = _should_run_inputs_production(impact_assessment, term_id, model)
112
+ return _run_inputs_production(impact_assessment, product, term_id, model) if should_run else []