hestia-earth-models 0.67.1__py3-none-any.whl → 0.68.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (147) hide show
  1. hestia_earth/models/aware/scarcityWeightedWaterUse.py +5 -6
  2. hestia_earth/models/blonkConsultants2016/ch4ToAirNaturalVegetationBurning.py +1 -1
  3. hestia_earth/models/blonkConsultants2016/co2ToAirAboveGroundBiomassStockChangeLandUseChange.py +1 -1
  4. hestia_earth/models/blonkConsultants2016/n2OToAirNaturalVegetationBurningDirect.py +1 -1
  5. hestia_earth/models/blonkConsultants2016/utils.py +9 -9
  6. hestia_earth/models/cache_sites.py +26 -14
  7. hestia_earth/models/chaudharyBrooks2018/damageToTerrestrialEcosystemsLandOccupation.py +2 -2
  8. hestia_earth/models/chaudharyBrooks2018/damageToTerrestrialEcosystemsLandTransformation.py +2 -2
  9. hestia_earth/models/chaudharyBrooks2018/utils.py +13 -8
  10. hestia_earth/models/cml2001Baseline/abioticResourceDepletionFossilFuels.py +2 -3
  11. hestia_earth/models/cml2001Baseline/abioticResourceDepletionMineralsAndMetals.py +1 -1
  12. hestia_earth/models/config/Cycle.json +15 -0
  13. hestia_earth/models/config/ImpactAssessment.json +14 -1
  14. hestia_earth/models/config/Site.json +8 -0
  15. hestia_earth/models/cycle/excretaKgMass.py +2 -2
  16. hestia_earth/models/cycle/materialAndSubstrate.py +3 -2
  17. hestia_earth/models/cycle/pastureGrass.py +3 -3
  18. hestia_earth/models/dammgen2009/noxToAirExcreta.py +1 -1
  19. hestia_earth/models/ecoinventV3AndEmberClimate/__init__.py +1 -1
  20. hestia_earth/models/ecoinventV3AndEmberClimate/utils.py +2 -6
  21. hestia_earth/models/emissionNotRelevant/__init__.py +4 -4
  22. hestia_earth/models/environmentalFootprintV3_1/environmentalFootprintSingleOverallScore.py +30 -21
  23. hestia_earth/models/environmentalFootprintV3_1/photochemicalOzoneCreationPotentialHumanHealthNmvocEq.py +36 -0
  24. hestia_earth/models/environmentalFootprintV3_1/scarcityWeightedWaterUse.py +2 -2
  25. hestia_earth/models/environmentalFootprintV3_1/soilQualityIndexLandOccupation.py +9 -8
  26. hestia_earth/models/environmentalFootprintV3_1/soilQualityIndexLandTransformation.py +25 -22
  27. hestia_earth/models/environmentalFootprintV3_1/soilQualityIndexTotalLandUseEffects.py +7 -6
  28. hestia_earth/models/faostat2018/coldCarcassWeightPerHead.py +2 -2
  29. hestia_earth/models/faostat2018/coldDressedCarcassWeightPerHead.py +2 -2
  30. hestia_earth/models/faostat2018/liveweightPerHead.py +7 -8
  31. hestia_earth/models/faostat2018/product/price.py +34 -28
  32. hestia_earth/models/faostat2018/readyToCookWeightPerHead.py +2 -2
  33. hestia_earth/models/faostat2018/utils.py +15 -27
  34. hestia_earth/models/frischknechtEtAl2000/ionisingRadiationKbqU235Eq.py +16 -9
  35. hestia_earth/models/geospatialDatabase/altitude.py +60 -0
  36. hestia_earth/models/geospatialDatabase/croppingIntensity.py +1 -1
  37. hestia_earth/models/geospatialDatabase/ecoClimateZone.py +2 -2
  38. hestia_earth/models/geospatialDatabase/longFallowRatio.py +1 -1
  39. hestia_earth/models/geospatialDatabase/utils.py +4 -1
  40. hestia_earth/models/globalCropWaterModel2008/rootingDepth.py +2 -3
  41. hestia_earth/models/haversineFormula/transport/distance.py +3 -3
  42. hestia_earth/models/hestia/landCover.py +72 -45
  43. hestia_earth/models/hestia/seed_emissions.py +11 -7
  44. hestia_earth/models/impact_assessment/__init__.py +3 -3
  45. hestia_earth/models/ipcc2019/animal/fatContent.py +1 -1
  46. hestia_earth/models/ipcc2019/animal/hoursWorkedPerDay.py +1 -1
  47. hestia_earth/models/ipcc2019/animal/liveweightGain.py +1 -1
  48. hestia_earth/models/ipcc2019/animal/liveweightPerHead.py +1 -1
  49. hestia_earth/models/ipcc2019/animal/milkYieldPerAnimal.py +1 -1
  50. hestia_earth/models/ipcc2019/animal/pastureGrass.py +1 -1
  51. hestia_earth/models/ipcc2019/animal/pregnancyRateTotal.py +1 -1
  52. hestia_earth/models/ipcc2019/animal/trueProteinContent.py +1 -1
  53. hestia_earth/models/ipcc2019/animal/utils.py +5 -7
  54. hestia_earth/models/ipcc2019/animal/weightAtMaturity.py +1 -1
  55. hestia_earth/models/ipcc2019/ch4ToAirEntericFermentation.py +2 -2
  56. hestia_earth/models/ipcc2019/ch4ToAirExcreta.py +6 -7
  57. hestia_earth/models/ipcc2019/ch4ToAirFloodedRice.py +5 -3
  58. hestia_earth/models/ipcc2019/co2ToAirCarbonStockChange_utils.py +1 -1
  59. hestia_earth/models/ipcc2019/croppingDuration.py +3 -6
  60. hestia_earth/models/ipcc2019/nonCo2EmissionsToAirNaturalVegetationBurning.py +947 -0
  61. hestia_earth/models/ipcc2019/pastureGrass.py +1 -1
  62. hestia_earth/models/koble2014/residueBurnt.py +5 -7
  63. hestia_earth/models/koble2014/residueRemoved.py +5 -7
  64. hestia_earth/models/lcImpactAllEffects100Years/damageToHumanHealthWaterStress.py +2 -2
  65. hestia_earth/models/lcImpactAllEffectsInfinite/damageToHumanHealthWaterStress.py +2 -2
  66. hestia_earth/models/lcImpactCertainEffects100Years/damageToHumanHealthWaterStress.py +2 -2
  67. hestia_earth/models/lcImpactCertainEffectsInfinite/damageToHumanHealthWaterStress.py +2 -2
  68. hestia_earth/models/log.py +1 -1
  69. hestia_earth/models/mocking/search-results.json +3413 -1113
  70. hestia_earth/models/site/management.py +1 -1
  71. hestia_earth/models/site/post_checks/__init__.py +3 -2
  72. hestia_earth/models/site/post_checks/country.py +9 -0
  73. hestia_earth/models/site/pre_checks/__init__.py +3 -2
  74. hestia_earth/models/site/pre_checks/country.py +9 -0
  75. hestia_earth/models/utils/__init__.py +1 -16
  76. hestia_earth/models/utils/blank_node.py +25 -25
  77. hestia_earth/models/utils/completeness.py +3 -2
  78. hestia_earth/models/utils/cycle.py +5 -4
  79. hestia_earth/models/utils/emission.py +5 -5
  80. hestia_earth/models/utils/feedipedia.py +6 -6
  81. hestia_earth/models/utils/impact_assessment.py +1 -2
  82. hestia_earth/models/utils/indicator.py +9 -7
  83. hestia_earth/models/utils/inorganicFertiliser.py +4 -6
  84. hestia_earth/models/utils/input.py +6 -5
  85. hestia_earth/models/utils/lookup.py +32 -100
  86. hestia_earth/models/utils/management.py +4 -4
  87. hestia_earth/models/utils/measurement.py +6 -7
  88. hestia_earth/models/utils/method.py +20 -0
  89. hestia_earth/models/utils/practice.py +4 -5
  90. hestia_earth/models/utils/product.py +4 -5
  91. hestia_earth/models/utils/property.py +12 -22
  92. hestia_earth/models/utils/site.py +14 -8
  93. hestia_earth/models/utils/term.py +27 -1
  94. hestia_earth/models/version.py +1 -1
  95. hestia_earth/orchestrator/log.py +0 -11
  96. hestia_earth/orchestrator/models/__init__.py +17 -4
  97. hestia_earth/orchestrator/strategies/run/add_blank_node_if_missing.py +2 -20
  98. {hestia_earth_models-0.67.1.dist-info → hestia_earth_models-0.68.0.dist-info}/METADATA +2 -2
  99. {hestia_earth_models-0.67.1.dist-info → hestia_earth_models-0.68.0.dist-info}/RECORD +145 -137
  100. tests/models/cml2001Baseline/test_abioticResourceDepletionFossilFuels.py +3 -3
  101. tests/models/cml2001Baseline/test_resourceUseEnergyDepletionDuringCycle.py +1 -1
  102. tests/models/cycle/test_coldCarcassWeightPerHead.py +1 -1
  103. tests/models/cycle/test_coldDressedCarcassWeightPerHead.py +1 -1
  104. tests/models/cycle/test_concentrateFeed.py +1 -1
  105. tests/models/cycle/test_energyContentLowerHeatingValue.py +1 -1
  106. tests/models/cycle/test_excretaKgMass.py +1 -1
  107. tests/models/cycle/test_feedConversionRatio.py +3 -3
  108. tests/models/cycle/test_pastureGrass.py +1 -1
  109. tests/models/cycle/test_readyToCookWeightPerHead.py +1 -1
  110. tests/models/environmentalFootprintV3_1/test_photochemicalOzoneCreationPotentialHumanHealthNmvocEq.py +30 -0
  111. tests/models/environmentalFootprintV3_1/test_soilQualityIndexTotalLandUseEffects.py +30 -7
  112. tests/models/faostat2018/product/test_price.py +27 -14
  113. tests/models/faostat2018/test_faostat_utils.py +4 -24
  114. tests/models/faostat2018/test_liveweightPerHead.py +9 -9
  115. tests/models/globalCropWaterModel2008/test_rootingDepth.py +7 -3
  116. tests/models/haversineFormula/transport/test_distance.py +1 -1
  117. tests/models/hestia/test_landCover.py +53 -5
  118. tests/models/ipcc2019/animal/test_pastureGrass.py +5 -3
  119. tests/models/ipcc2019/test_aboveGroundCropResidueTotal.py +4 -4
  120. tests/models/ipcc2019/test_belowGroundCropResidue.py +4 -4
  121. tests/models/ipcc2019/test_ch4ToAirEntericFermentation.py +10 -10
  122. tests/models/ipcc2019/test_croppingDuration.py +1 -1
  123. tests/models/ipcc2019/test_nonCo2EmissionsToAirNaturalVegetationBurning.py +83 -0
  124. tests/models/ipcc2019/test_organicCarbonPerHa.py +12 -12
  125. tests/models/ipcc2019/test_pastureGrass.py +5 -3
  126. tests/models/pooreNemecek2018/test_excretaKgN.py +5 -5
  127. tests/models/pooreNemecek2018/test_excretaKgVs.py +2 -2
  128. tests/models/site/post_checks/test_country.py +6 -0
  129. tests/models/site/pre_checks/test_cache_geospatialDatabase.py +1 -1
  130. tests/models/site/pre_checks/test_country.py +12 -0
  131. tests/models/test_ecoinventV3.py +7 -3
  132. tests/models/utils/test_blank_node.py +4 -12
  133. tests/models/utils/test_dataCompleteness.py +5 -5
  134. tests/models/utils/test_emission.py +2 -2
  135. tests/models/utils/test_indicator.py +2 -2
  136. tests/models/utils/test_input.py +2 -2
  137. tests/models/utils/test_measurement.py +2 -4
  138. tests/models/utils/test_practice.py +4 -2
  139. tests/models/utils/test_product.py +2 -2
  140. tests/models/utils/test_property.py +4 -2
  141. tests/models/utils/test_site.py +7 -0
  142. tests/orchestrator/strategies/run/test_add_blank_node_if_missing.py +4 -9
  143. hestia_earth/models/environmentalFootprintV3_1/utils.py +0 -17
  144. tests/models/utils/test_lookup.py +0 -10
  145. {hestia_earth_models-0.67.1.dist-info → hestia_earth_models-0.68.0.dist-info}/LICENSE +0 -0
  146. {hestia_earth_models-0.67.1.dist-info → hestia_earth_models-0.68.0.dist-info}/WHEEL +0 -0
  147. {hestia_earth_models-0.67.1.dist-info → hestia_earth_models-0.68.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,947 @@
1
+ """
2
+ Non-CO2 emissions, to air, natural vegetation burning
3
+
4
+ This model returns the amounts of non-CO2 emissions from natural vegetation burning:
5
+ 1. [CH4, to air, natural vegetation burning](https://www.hestia.earth/term/ch4ToAirNaturalVegetationBurning);
6
+ 2. [CO, to air, natural vegetation burning](https://www.hestia.earth/term/coToAirNaturalVegetationBurning);
7
+ 3. [N2O, to air, natural vegetation burning](https://www.hestia.earth/term/n2OToAirNaturalVegetationBurningDirect);
8
+ 4. [NOx, to air, natural vegetation burning](https://www.hestia.earth/term/noxToAirNaturalVegetationBurning).
9
+
10
+ For now, the V1 version of this model only calculates emissions from forests burning, as we have no reliable way of
11
+ recording savannah grassland and woodland fire regimes using the HESTIA glossary.
12
+ """
13
+ from enum import Enum
14
+ from functools import lru_cache, reduce
15
+ from itertools import product
16
+ import numpy as np
17
+ import numpy.typing as npt
18
+ from typing import Any, Callable, Literal, Optional, TypedDict, Union
19
+
20
+ from hestia_earth.schema import EmissionMethodTier, EmissionStatsDefinition, SiteSiteType
21
+ from hestia_earth.utils.lookup import download_lookup, get_table_value, column_name
22
+ from hestia_earth.utils.tools import safe_parse_float
23
+
24
+ from hestia_earth.models.log import debugMissingLookup, log_as_table, logRequirements, logShouldRun
25
+ from hestia_earth.models.utils.array_builders import gen_seed, repeat_single, truncated_normal_1d
26
+ from hestia_earth.models.utils.blank_node import group_nodes_by_year
27
+ from hestia_earth.models.utils.descriptive_stats import calc_descriptive_stats
28
+ from hestia_earth.models.utils.ecoClimateZone import EcoClimateZone, get_eco_climate_zone_value
29
+ from hestia_earth.models.utils.emission import _new_emission
30
+ from hestia_earth.models.utils.lookup import get_region_lookup_value
31
+ from hestia_earth.models.utils.site import related_cycles
32
+
33
+ from . import MODEL
34
+ from .biomass_utils import BiomassCategory, get_valid_management_nodes, summarise_land_cover_nodes
35
+
36
+ REQUIREMENTS = {
37
+ "Cycle": {
38
+ "site": {
39
+ "management": [
40
+ {
41
+ "@type": "Management",
42
+ "value": "",
43
+ "term.termType": "landCover",
44
+ "endDate": "",
45
+ "optional": {
46
+ "startDate": ""
47
+ }
48
+ }
49
+ ],
50
+ "measurements": [
51
+ {
52
+ "@type": "Measurement",
53
+ "value": "",
54
+ "term.@id": "ecoClimateZone",
55
+ "none": {
56
+ "value": ["5, 6"]
57
+ }
58
+ }
59
+ ],
60
+ "none": {
61
+ "siteType": ["glass or high accessible cover"]
62
+ }
63
+ }
64
+ }
65
+ }
66
+ LOOKUPS = {
67
+ "emissionToAirNaturalVegetationBurning_emissionCategory_gEmittedPerKgDryMatterCombusted": [
68
+ "IPCC_2019_G_EMITTED_PER_KG_DRY_MATTER_COMBUSTED_{EMISSION_CATEGORY}_value",
69
+ "IPCC_2019_G_EMITTED_PER_KG_DRY_MATTER_COMBUSTED_{EMISSION_CATEGORY}_sd"
70
+ ],
71
+ "ipcc2019FuelCategory_tonnesDryMatterCombustedPerHaBurned": "value",
72
+ "landCover": "BIOMASS_CATEGORY",
73
+ "region-percentageAreaBurnedDuringForestClearance": "percentage_area_burned_during_forest_clearance"
74
+ }
75
+ RETURNS = {
76
+ "Emission": [{
77
+ "value": "",
78
+ "sd": "",
79
+ "min": "",
80
+ "max": "",
81
+ "statsDefinition": "simulated",
82
+ "observations": "",
83
+ "dates": "",
84
+ "methodClassification": "tier 1 model"
85
+ }]
86
+ }
87
+ TERM_ID = 'ch4ToAirNaturalVegetationBurning,coToAirNaturalVegetationBurning,n2OToAirNaturalVegetationBurningDirect,noxToAirNaturalVegetationBurning' # noqa: E501
88
+
89
+ EMISSION_TERM_IDS = TERM_ID.split(",")
90
+ TIER = EmissionMethodTier.TIER_1.value
91
+ STATS_DEFINITION = EmissionStatsDefinition.SIMULATED.value
92
+
93
+ _ITERATIONS = 10000 # N interations for which the model will run as a Monte Carlo simulation
94
+ _AMORTISATION_PERIOD = 20 # Emissions should be amortised over 20 years
95
+
96
+ _EXCLUDED_ECO_CLIMATE_ZONES = {EcoClimateZone.POLAR_MOIST, EcoClimateZone.POLAR_DRY}
97
+ _EXCLUDED_SITE_TYPES = {SiteSiteType.GLASS_OR_HIGH_ACCESSIBLE_COVER.value}
98
+ _NATURAL_VEGETATION_CATEGORIES = {
99
+ BiomassCategory.FOREST,
100
+ BiomassCategory.NATURAL_FOREST,
101
+ BiomassCategory.PLANTATION_FOREST
102
+ }
103
+ _DEFAULT_FACTOR = {"value": 0}
104
+ _DEFAULT_PERCENT_BURNED = 0
105
+
106
+
107
+ class _FuelCategory(Enum):
108
+ """
109
+ Natural vegetation fuel categories from IPCC (2019).
110
+ """
111
+ BOREAL_FOREST = "boreal-forest"
112
+ EUCALYPT_FOREST = "eucalypt-forest"
113
+ NATURAL_TROPICAL_FOREST = "natural-tropical-forest" # mean of primary and secondary tropical forest
114
+ PRIMARY_TROPICAL_FOREST = "primary-tropical-forest"
115
+ SAVANNA_GRASSLAND_EARLY_DRY_SEASON_BURNS = "savanna-grassland-early-dry-season-burns"
116
+ SAVANNA_GRASSLAND_MID_TO_LATE_DRY_SEASON_BURNS = "savanna-grassland-mid-to-late-dry-season-burns"
117
+ SAVANNA_WOODLAND_EARLY_DRY_SEASON_BURNS = "savanna-woodland-early-dry-season-burns"
118
+ SAVANNA_WOODLAND_MID_TO_LATE_DRY_SEASON_BURNS = "savanna-woodland-mid-to-late-dry-season-burns"
119
+ SECONDARY_TROPICAL_FOREST = "secondary-tropical-forest"
120
+ SHRUBLAND = "shrubland"
121
+ TEMPERATE_FOREST = "temperate-forest"
122
+ TERTIARY_TROPICAL_FOREST = "tertiary-tropical-forest"
123
+ UNKNOWN_TROPICAL_FOREST = "unknown-tropical-forest" # mean of primary, secondary and tertiary tropical forest
124
+
125
+
126
+ class _EmissionCategory(Enum):
127
+ """
128
+ Natural vegetation burning emission categories from IPCC (2019).
129
+ """
130
+ AGRICULTURAL_RESIDUES = "agricultural-residues"
131
+ BIOFUEL_BURNING = "biofuel-burning"
132
+ OTHER_FOREST = "other-forest"
133
+ SAVANNA_AND_GRASSLAND = "savanna-and-grassland"
134
+ TROPICAL_FOREST = "tropical-forest"
135
+
136
+
137
+ _EmissionTermId = Literal[
138
+ "ch4ToAirNaturalVegetationBurning",
139
+ "coToAirNaturalVegetationBurning",
140
+ "n2OToAirNaturalVegetationBurningDirect",
141
+ "noxToAirNaturalVegetationBurning"
142
+ ]
143
+
144
+
145
+ class _InventoryYear(TypedDict, total=False):
146
+ biomass_category_summary: dict[BiomassCategory, float]
147
+ natural_vegetation_delta: dict[BiomassCategory, float]
148
+ fuel_burnt_per_category: dict[_FuelCategory, npt.NDArray]
149
+ annual_emissions: dict[_EmissionTermId, npt.NDArray]
150
+ amortised_emissions: dict[_EmissionTermId, npt.NDArray]
151
+ share_of_emissions: dict[str, float] # {cycle_id (str): value, ...}
152
+ allocated_emissions: dict[_EmissionTermId, dict[str, npt.NDArray]]
153
+
154
+
155
+ _InventoryKey = Literal[
156
+ "biomass_category_summary",
157
+ "natural_vegetation_delta",
158
+ "fuel_burnt_per_category",
159
+ "annual_emissions",
160
+ "amortised_emissions",
161
+ "share_of_emissions",
162
+ "allocated_emissions"
163
+ ]
164
+
165
+ _Inventory = dict[int, _InventoryYear]
166
+ """
167
+ {year (int): data (_InventoryYear)}
168
+ """
169
+
170
+ _EmissionInventory = dict[_EmissionTermId, npt.NDArray]
171
+
172
+
173
+ _BIOMASS_CATEGORY_TO_FUEL_CATEGORY = {
174
+ BiomassCategory.FOREST: {
175
+ EcoClimateZone.WARM_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
176
+ EcoClimateZone.WARM_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
177
+ EcoClimateZone.COOL_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
178
+ EcoClimateZone.COOL_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
179
+ EcoClimateZone.BOREAL_MOIST: _FuelCategory.BOREAL_FOREST,
180
+ EcoClimateZone.BOREAL_DRY: _FuelCategory.BOREAL_FOREST,
181
+ EcoClimateZone.TROPICAL_MONTANE: _FuelCategory.UNKNOWN_TROPICAL_FOREST,
182
+ EcoClimateZone.TROPICAL_WET: _FuelCategory.UNKNOWN_TROPICAL_FOREST,
183
+ EcoClimateZone.TROPICAL_MOIST: _FuelCategory.UNKNOWN_TROPICAL_FOREST,
184
+ EcoClimateZone.TROPICAL_DRY: _FuelCategory.UNKNOWN_TROPICAL_FOREST
185
+ },
186
+ BiomassCategory.NATURAL_FOREST: {
187
+ EcoClimateZone.WARM_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
188
+ EcoClimateZone.WARM_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
189
+ EcoClimateZone.COOL_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
190
+ EcoClimateZone.COOL_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
191
+ EcoClimateZone.BOREAL_MOIST: _FuelCategory.BOREAL_FOREST,
192
+ EcoClimateZone.BOREAL_DRY: _FuelCategory.BOREAL_FOREST,
193
+ EcoClimateZone.TROPICAL_MONTANE: _FuelCategory.NATURAL_TROPICAL_FOREST,
194
+ EcoClimateZone.TROPICAL_WET: _FuelCategory.NATURAL_TROPICAL_FOREST,
195
+ EcoClimateZone.TROPICAL_MOIST: _FuelCategory.NATURAL_TROPICAL_FOREST,
196
+ EcoClimateZone.TROPICAL_DRY: _FuelCategory.NATURAL_TROPICAL_FOREST
197
+ },
198
+ BiomassCategory.PLANTATION_FOREST: {
199
+ EcoClimateZone.WARM_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
200
+ EcoClimateZone.WARM_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
201
+ EcoClimateZone.COOL_TEMPERATE_MOIST: _FuelCategory.TEMPERATE_FOREST,
202
+ EcoClimateZone.COOL_TEMPERATE_DRY: _FuelCategory.TEMPERATE_FOREST,
203
+ EcoClimateZone.BOREAL_MOIST: _FuelCategory.BOREAL_FOREST,
204
+ EcoClimateZone.BOREAL_DRY: _FuelCategory.BOREAL_FOREST,
205
+ EcoClimateZone.TROPICAL_MONTANE: _FuelCategory.TERTIARY_TROPICAL_FOREST,
206
+ EcoClimateZone.TROPICAL_WET: _FuelCategory.TERTIARY_TROPICAL_FOREST,
207
+ EcoClimateZone.TROPICAL_MOIST: _FuelCategory.TERTIARY_TROPICAL_FOREST,
208
+ EcoClimateZone.TROPICAL_DRY: _FuelCategory.TERTIARY_TROPICAL_FOREST
209
+ }
210
+ }
211
+ """
212
+ Mapping from IPCC biomass category and eco-climate zone to natural vegetation fuel category.
213
+ """
214
+
215
+ _FUEL_CATEGORY_TO_EMISSION_CATEGORY = {
216
+ _FuelCategory.BOREAL_FOREST: _EmissionCategory.OTHER_FOREST,
217
+ _FuelCategory.EUCALYPT_FOREST: _EmissionCategory.OTHER_FOREST,
218
+ _FuelCategory.NATURAL_TROPICAL_FOREST: _EmissionCategory.TROPICAL_FOREST,
219
+ _FuelCategory.PRIMARY_TROPICAL_FOREST: _EmissionCategory.TROPICAL_FOREST,
220
+ _FuelCategory.SAVANNA_GRASSLAND_EARLY_DRY_SEASON_BURNS: _EmissionCategory.SAVANNA_AND_GRASSLAND,
221
+ _FuelCategory.SAVANNA_GRASSLAND_MID_TO_LATE_DRY_SEASON_BURNS: _EmissionCategory.SAVANNA_AND_GRASSLAND,
222
+ _FuelCategory.SAVANNA_WOODLAND_EARLY_DRY_SEASON_BURNS: _EmissionCategory.SAVANNA_AND_GRASSLAND,
223
+ _FuelCategory.SAVANNA_WOODLAND_MID_TO_LATE_DRY_SEASON_BURNS: _EmissionCategory.SAVANNA_AND_GRASSLAND,
224
+ _FuelCategory.SECONDARY_TROPICAL_FOREST: _EmissionCategory.TROPICAL_FOREST,
225
+ _FuelCategory.SHRUBLAND: _EmissionCategory.SAVANNA_AND_GRASSLAND,
226
+ _FuelCategory.TEMPERATE_FOREST: _EmissionCategory.OTHER_FOREST,
227
+ _FuelCategory.TERTIARY_TROPICAL_FOREST: _EmissionCategory.TROPICAL_FOREST,
228
+ _FuelCategory.UNKNOWN_TROPICAL_FOREST: _EmissionCategory.TROPICAL_FOREST
229
+ }
230
+ """
231
+ Mapping from natural vegetation fuel category to natural vegetation burning emission category.
232
+ """
233
+
234
+
235
+ def _get_fuel_category(biomass_category: BiomassCategory, eco_climate_zone: EcoClimateZone) -> _FuelCategory:
236
+ """
237
+ Get the IPCC (2019) natural vegetation fuel category that corresponds to a specific combination of biomass category
238
+ and eco-climate zone.
239
+ """
240
+ return _BIOMASS_CATEGORY_TO_FUEL_CATEGORY.get(biomass_category, {}).get(eco_climate_zone)
241
+
242
+
243
+ def _get_emission_category(fuel_category: _FuelCategory) -> _EmissionCategory:
244
+ """
245
+ Get the IPCC (2019) emission category that corresponds to a fuel category.
246
+ """
247
+ return _FUEL_CATEGORY_TO_EMISSION_CATEGORY.get(fuel_category)
248
+
249
+
250
+ def _sample_truncated_normal(
251
+ *, iterations: int, value: float, sd: float, seed: Union[int, np.random.Generator, None] = None, **_
252
+ ) -> npt.NDArray:
253
+ """
254
+ Randomly sample a model parameter with a truncated normal distribution. Neither fuel factors nor emission factors
255
+ can be below 0, so truncated normal sampling used.
256
+ """
257
+ return truncated_normal_1d(shape=(1, iterations), mu=value, sigma=sd, low=0, high=np.inf, seed=seed)
258
+
259
+
260
+ def _sample_constant(*, iterations: int, value: float, **_) -> npt.NDArray:
261
+ """Sample a constant model parameter."""
262
+ return repeat_single(shape=(1, iterations), value=value)
263
+
264
+
265
+ _KWARGS_TO_SAMPLE_FUNC = {
266
+ # ("value", "se", "n"): _sample_standard_error_normal,
267
+ ("value", "sd"): _sample_truncated_normal,
268
+ ("value",): _sample_constant
269
+ }
270
+ """
271
+ Mapping from available distribution data to sample function.
272
+ """
273
+
274
+
275
+ def _get_sample_func(kwargs: dict) -> Callable:
276
+ """
277
+ Select the correct sample function for a parameter based on the distribution data available. All possible
278
+ parameters for the model should have, at a minimum, a `value`, meaning that no default function needs to be
279
+ specified.
280
+
281
+ This function has been extracted into it's own method to allow for mocking of sample function.
282
+
283
+ Keyword Args
284
+ ------------
285
+ value : float
286
+ The distribution mean.
287
+ sd : float
288
+ The standard deviation of the distribution.
289
+ se : float
290
+ The standard error of the distribution.
291
+ n : float
292
+ Sample size.
293
+
294
+ Returns
295
+ -------
296
+ Callable
297
+ The sample function for the distribution.
298
+ """
299
+ return next(
300
+ sample_func for required_kwargs, sample_func in _KWARGS_TO_SAMPLE_FUNC.items()
301
+ if all(kwarg in kwargs.keys() for kwarg in required_kwargs)
302
+ )
303
+
304
+
305
+ def _get_fuel_factor(fuel_category: _FuelCategory) -> dict:
306
+ """
307
+ Retrieve distribution data for a specific fuel category.
308
+ """
309
+ LOOKUP_KEY = "ipcc2019FuelCategory_tonnesDryMatterCombustedPerHaBurned"
310
+ LOOKUP_FILENAME = f"{LOOKUP_KEY}.csv"
311
+ TARGET_DATA = (
312
+ "value",
313
+ # "se", # useless without n data
314
+ # "n" # TODO: add n data to lookup
315
+ )
316
+
317
+ row = fuel_category.name
318
+
319
+ lookup = download_lookup(LOOKUP_FILENAME)
320
+
321
+ data = {
322
+ target: get_table_value(lookup, column_name("FuelCategory"), row, column_name(target))
323
+ for target in TARGET_DATA
324
+ }
325
+
326
+ for term_id, target in product(EMISSION_TERM_IDS, TARGET_DATA):
327
+ debugMissingLookup(LOOKUP_FILENAME, "FuelCategory", row, target, data.get(target), model=MODEL, term=term_id)
328
+
329
+ return (
330
+ {k: parsed for k, v in data.items() if (parsed := safe_parse_float(v, None)) is not None} # remove missing
331
+ or _DEFAULT_FACTOR # if parsed dict empty, return default
332
+ )
333
+
334
+
335
+ def _get_emission_factor(term_id: _EmissionTermId, emission_category: _EmissionCategory) -> dict:
336
+ """
337
+ Retrieve distribution data for a specific emission and emission category.
338
+ """
339
+ LOOKUP_KEY = "emissionToAirNaturalVegetationBurning_emissionCategory_gEmittedPerKgDryMatterCombusted"
340
+ LOOKUP_FILENAME = f"{LOOKUP_KEY}.csv"
341
+ TARGET_DATA = ("value", "sd")
342
+
343
+ row = term_id
344
+ column_root = f"IPCC_2019_G_EMITTED_PER_KG_DRY_MATTER_COMBUSTED_{emission_category.name}"
345
+
346
+ lookup = download_lookup(LOOKUP_FILENAME)
347
+
348
+ data = {
349
+ target: get_table_value(lookup, column_name("term.id"), row, column_name(f"{column_root}_{target}"))
350
+ for target in TARGET_DATA
351
+ }
352
+
353
+ for target in TARGET_DATA:
354
+ debugMissingLookup(
355
+ LOOKUP_FILENAME, "term.id", row, f"{column_root}_{target}", data.get(target), model=MODEL, term=term_id
356
+ )
357
+
358
+ return (
359
+ {k: parsed for k, v in data.items() if (parsed := safe_parse_float(v, None)) is not None} # remove missing
360
+ or _DEFAULT_FACTOR # if parsed dict empty, return default
361
+ )
362
+
363
+
364
+ def _sample_fuel_factor(
365
+ fuel_category: _FuelCategory, *, seed: Union[int, np.random.Generator, None] = None
366
+ ) -> npt.NDArray:
367
+ """
368
+ Generate random samples from a fuel factor's distribution data.
369
+ """
370
+ factor_data = _get_fuel_factor(fuel_category)
371
+ sample_func = _get_sample_func(factor_data)
372
+ return sample_func(iterations=_ITERATIONS, seed=seed, **factor_data)
373
+
374
+
375
+ def _sample_emission_factor(
376
+ term_id: _EmissionTermId,
377
+ emission_category: _EmissionCategory,
378
+ *,
379
+ seed: Union[int, np.random.Generator, None] = None
380
+ ) -> npt.NDArray:
381
+ """
382
+ Generate random samples from an emission factor's distribution data.
383
+ """
384
+ factor_data = _get_emission_factor(term_id, emission_category)
385
+ sample_func = _get_sample_func(factor_data)
386
+ return sample_func(iterations=_ITERATIONS, seed=seed, **factor_data)
387
+
388
+
389
+ def _emission(term_id: str, **kwargs) -> dict:
390
+ """
391
+ Build a HESTIA [Emission node](https://www.hestia.earth/schema/Emission) using model output data.
392
+ """
393
+ emission = _new_emission(term_id, MODEL)
394
+ return emission | {
395
+ **{k: v for k, v in kwargs.items()},
396
+ "methodTier": TIER
397
+ }
398
+
399
+
400
+ def _get_site(cycle: dict) -> dict:
401
+ """
402
+ Get the site data from a [Cycle node](https://www.hestia.earth/schema/Cycle).
403
+
404
+ Used as a test utility to mock the 'site' data in during testing.
405
+ """
406
+ return cycle.get("site", {})
407
+
408
+
409
+ def get_percent_burned(site: str):
410
+ LOOKUP_KEY = "region-percentageAreaBurnedDuringForestClearance"
411
+ LOOKUP_FILENAME = f"{LOOKUP_KEY}.csv"
412
+ country_id = site.get("country", {}).get("@id")
413
+
414
+ value = get_region_lookup_value(LOOKUP_FILENAME, country_id, LOOKUPS[LOOKUP_KEY])
415
+ return safe_parse_float(value, _DEFAULT_PERCENT_BURNED)
416
+
417
+
418
+ def _calc_burnt_fuel(area_converted: npt.NDArray, fuel_factor: npt.NDArray, frac_burnt: npt.NDArray) -> npt.NDArray:
419
+ """
420
+ Calculate the amount of fuel burnt during a fire event.
421
+
422
+ Parameters
423
+ ----------
424
+ area_converted : NDArray
425
+ Area of land converted (ha).
426
+ fuel_factor : NDArray
427
+ Conversion factor (kg fuel per ha of land cover converted).
428
+ frac_burnt : NDArray
429
+ The fraction of land converted using burning during a land use change event (decimal percentage, 0-1).
430
+
431
+ Returns
432
+ -------
433
+ NDArray
434
+ The mass of burnt fuel (kg)
435
+ """
436
+ return area_converted * fuel_factor * frac_burnt
437
+
438
+
439
+ def _build_fuel_burnt_accumulator(
440
+ percent_burned: npt.ArrayLike,
441
+ eco_climate_zone: EcoClimateZone,
442
+ sample_fuel_factor_func: Callable[[_FuelCategory], npt.NDArray]
443
+ ):
444
+ """
445
+ Build an `accumulate_fuel_burnt` function to reduce natural vegetation deltas into mass of fuel burnt per
446
+ `_FuelCategory`.
447
+
448
+ Parameters
449
+ ----------
450
+ percent_burned : NDArray
451
+ The percentage of land converted using burning during a land use change event (percentage, 0-100%).
452
+ eco_climate_zone : EcoClimateZone
453
+ The eco-climate zone of the Site.
454
+ sample_fuel_factor_func : Callable[[_FuelCategory], npt.NDArray]
455
+ Function to sample fuel factor parameter.
456
+
457
+ Returns
458
+ -------
459
+ NDArray
460
+ The mass of burnt fuel (kg)
461
+ """
462
+ frac_burnt = percent_burned / 100
463
+
464
+ def accumulate_fuel_burnt(
465
+ result: dict[_FuelCategory, npt.NDArray], biomass_category: BiomassCategory, delta: float
466
+ ) -> dict[_FuelCategory, npt.NDArray]:
467
+ """
468
+ Calculate the amount of fuel burnt when natural vegetation is lost. Accumulate fuel burnt by `_FuelCategory`.
469
+
470
+ Parameters
471
+ ----------
472
+ result : dict[_FuelCategory, npt.NDArray]
473
+ A dict with the format `{_FuelCategory: kg_fuel_burnt (npt.NDArray)}`.
474
+ biomass_category : BiomassCategory
475
+ A biomass category undergoing change during a LUC event.
476
+ delta : float
477
+ The change in land cover for the biomass category (% area).
478
+
479
+ Returns
480
+ -------
481
+ dict[_FuelCategory, npt.NDArray]
482
+ """
483
+
484
+ fuel_category = _get_fuel_category(biomass_category, eco_climate_zone)
485
+ fuel_factor = sample_fuel_factor_func(fuel_category)
486
+
487
+ area_converted = abs(delta) / 100 if delta < 0 else 0 # We only care about losses
488
+
489
+ already_burnt = result.get(fuel_category, np.array(0))
490
+
491
+ update_dict = {} if area_converted == 0 else {
492
+ fuel_category: already_burnt + _calc_burnt_fuel(area_converted, fuel_factor, frac_burnt)
493
+ }
494
+
495
+ return result | update_dict
496
+
497
+ return accumulate_fuel_burnt
498
+
499
+
500
+ def _calc_emission(fuel_burnt: npt.NDArray, emission_factor: npt.NDArray,) -> npt.NDArray:
501
+ """
502
+ Calculate the emission from a fuel burning.
503
+
504
+ Parameters
505
+ ----------
506
+ fuel_burnt : NDArray
507
+ The mass of burnt fuel (kg).
508
+ emission_factor : NDArray
509
+ Conversion factor (kg emission per kg of fuel burnt).
510
+
511
+ Returns
512
+ -------
513
+ NDArray
514
+ The mass of emission (kg)
515
+ """
516
+ return fuel_burnt * emission_factor
517
+
518
+
519
+ def _sum_cycle_emissions(term_id: _EmissionTermId, cycle_id: str, inventory: _Inventory) -> npt.NDArray:
520
+ """
521
+ Sum the emissions allocated to a cycle.
522
+ """
523
+ KEY = "allocated_emissions"
524
+
525
+ def add_cycle_emissions(result: npt.NDArray, year: int) -> npt.NDArray:
526
+ allocated_emissions = inventory.get(year, {}).get(KEY, {}).get(term_id, {})
527
+ return result + allocated_emissions.get(cycle_id, np.array(0))
528
+
529
+ return reduce(add_cycle_emissions, inventory.keys(), np.array(0))
530
+
531
+
532
+ def _compile_run_data(
533
+ cycle: dict, site: dict, land_cover_nodes: list[dict], eco_climate_zone: EcoClimateZone
534
+ ) -> tuple[_EmissionInventory, _Inventory, dict]:
535
+ """
536
+ Compile the run data for the model, collating data from `site.management` and related cycles. An annualised
537
+ inventory of land cover change and natural vegetation burning events is constructed. Emissions from burning events
538
+ are estimated, amortised over 20 years and allocated to cycles.
539
+
540
+ Parameters
541
+ ----------
542
+ cycle : dict
543
+ The HESTIA [Cycle](https://www.hestia.earth/schema/Cycle) the model is running on.
544
+ site : dict
545
+ The HESTIA [Site](https://www.hestia.earth/schema/Site) the Cycle takes place on.
546
+ land_cover_nodes : list[dict]
547
+ Valid land cover [Management nodes](https://www.hestia.earth/schema/Management) extracted from the Site.
548
+ eco_climate_zone : EcoClimateZone
549
+ The eco-climate zone of the Site.
550
+
551
+ Returns
552
+ -------
553
+ emission_inventory : _EmissionInventory
554
+ A dictionary of emissions relevant to the cycle the model is run on, in the format:
555
+ ```
556
+ {
557
+ emission_term_id (str): value (NDArray),
558
+ ...
559
+ }
560
+ ```
561
+ inventory : _Inventory
562
+ An inventory of model data
563
+ logs : dict
564
+ Data from the compilation process that should be logged.
565
+ """
566
+ cycle_id = cycle.get("@id")
567
+ related_cycles_ = related_cycles(site, cycles_mapping={cycle_id: cycle})
568
+
569
+ seed = gen_seed(site, MODEL, TERM_ID)
570
+ rng = np.random.default_rng(seed)
571
+
572
+ cycles_grouped = group_nodes_by_year(related_cycles_)
573
+ land_cover_grouped = group_nodes_by_year(land_cover_nodes)
574
+ percent_burned = get_percent_burned(site)
575
+
576
+ @lru_cache(maxsize=len(_FuelCategory))
577
+ def sample_fuel_factor(*args):
578
+ """Fuel factors should not be re-sampled between years, so cache results."""
579
+ return _sample_fuel_factor(*args, seed=rng)
580
+
581
+ @lru_cache(maxsize=len(EMISSION_TERM_IDS)*len(_EmissionCategory))
582
+ def sample_emission_factor(*args):
583
+ """Emission factors should not be re-sampled between years, so cache results."""
584
+ return _sample_emission_factor(*args, seed=rng)
585
+
586
+ accumulate_fuel_burnt = _build_fuel_burnt_accumulator(percent_burned, eco_climate_zone, sample_fuel_factor)
587
+
588
+ def build_inventory_year(inventory: _Inventory, year: int) -> dict:
589
+ """
590
+ Parameters
591
+ ----------
592
+ inventory : _Inventory
593
+ An inventory of model data.
594
+ year : int
595
+ The year of the inventory to build.
596
+
597
+ Returns
598
+ -------
599
+ inventory : dict
600
+ An inventory of model data, updated to include the new model year.
601
+ """
602
+ land_cover_nodes = next((nodes for year_, nodes in land_cover_grouped.items() if year_ >= year), []) # Backfill
603
+
604
+ biomass_category_summary = summarise_land_cover_nodes(land_cover_nodes)
605
+ prev_biomass_category_summary = inventory.get(year-1, {}).get("biomass_category_summary", {})
606
+
607
+ natural_vegetation_delta = {
608
+ category: biomass_category_summary.get(category, 0) - prev_biomass_category_summary.get(category, 0)
609
+ for category in _NATURAL_VEGETATION_CATEGORIES
610
+ }
611
+
612
+ fuel_burnt_per_category = reduce(
613
+ lambda result, item: accumulate_fuel_burnt(result, *item),
614
+ natural_vegetation_delta.items(),
615
+ dict()
616
+ )
617
+
618
+ annual_emissions = {
619
+ term_id: sum(
620
+ _calc_emission(amount, sample_emission_factor(term_id, _get_emission_category(fuel_category)))
621
+ for fuel_category, amount in fuel_burnt_per_category.items()
622
+ ) for term_id in EMISSION_TERM_IDS
623
+ }
624
+
625
+ previous_years = list(inventory.keys())
626
+ amortisation_slice_index = max(0, len(previous_years) - (_AMORTISATION_PERIOD - 1))
627
+ amortisation_years = previous_years[amortisation_slice_index:] # get the previous 19 years, if available
628
+
629
+ amortised_emissions = {
630
+ term_id: 0.05 * (
631
+ annual_emissions[term_id] + sum(
632
+ inventory[year_]["annual_emissions"][term_id] for year_ in amortisation_years
633
+ )
634
+ ) for term_id in EMISSION_TERM_IDS
635
+ }
636
+
637
+ cycles = cycles_grouped.get(year, [])
638
+ total_cycle_duration = sum(c.get("fraction_of_group_duration", 0) for c in cycles)
639
+
640
+ share_of_emissions = {
641
+ cycle["@id"]: cycle.get("fraction_of_group_duration", 0) / total_cycle_duration
642
+ for cycle in cycles
643
+ }
644
+
645
+ allocated_emissions = {
646
+ term_id: {
647
+ cycle_id: share_of_emission * amortised_emissions[term_id]
648
+ for cycle_id, share_of_emission in share_of_emissions.items()
649
+ }
650
+ for term_id in EMISSION_TERM_IDS
651
+ }
652
+
653
+ inventory[year] = _InventoryYear(
654
+ biomass_category_summary=biomass_category_summary,
655
+ natural_vegetation_delta=natural_vegetation_delta,
656
+ fuel_burnt_per_category=fuel_burnt_per_category,
657
+ annual_emissions=annual_emissions,
658
+ amortised_emissions=amortised_emissions,
659
+ share_of_emissions=share_of_emissions,
660
+ allocated_emissions=allocated_emissions
661
+ )
662
+
663
+ return inventory
664
+
665
+ all_years = list(cycles_grouped.keys()) + list(land_cover_grouped.keys())
666
+ min_year, max_year = min(all_years), max(all_years)
667
+
668
+ inventory = reduce(build_inventory_year, range(min_year, max_year+1), dict())
669
+
670
+ emission_inventory = {
671
+ term_id: value for term_id in EMISSION_TERM_IDS
672
+ if np.all((value := _sum_cycle_emissions(term_id, cycle_id, inventory)) > 0)
673
+ }
674
+
675
+ logs = {
676
+ "percent_burned": percent_burned,
677
+ "seed": seed,
678
+ }
679
+
680
+ return emission_inventory, inventory, logs
681
+
682
+
683
+ def _format_bool(value: Optional[bool]) -> str:
684
+ """Format a bool for logging in a table."""
685
+ return str(bool(value))
686
+
687
+
688
+ def _format_number(value: Optional[float], unit: Optional[str] = None) -> str:
689
+ """Format a float for logging in a table."""
690
+ return f"{value:.1f}{f' {unit}' if unit else ''}" if isinstance(value, (float, int)) else "None"
691
+
692
+
693
+ def _format_nd_array(value: Optional[npt.NDArray], unit: Optional[str] = None) -> str:
694
+ """Format a numpy array for logging in a table."""
695
+ return (
696
+ f"{_format_number(value.mean())} ± {_format_number(value.std())}" + f"{f' {unit}' if unit else ''}"
697
+ if isinstance(value, np.ndarray) else "None"
698
+ )
699
+
700
+
701
+ def _format_decimal_percentage(value: Optional[float], unit: Optional[str] = "pct") -> str:
702
+ """Format a decimal percentage (0-1) as a percentage (0-100%) for logging in a table."""
703
+ return _format_number(value * 100, unit) if isinstance(value, (float, int)) else "None"
704
+
705
+
706
+ _INVALID_CHARS = {"_", ":", ",", "="}
707
+ _REPLACEMENT_CHAR = "-"
708
+
709
+
710
+ def _format_str(value: str, *_) -> str:
711
+ """Format a string for logging in a table. Remove all characters used to render the table on the front end."""
712
+ return reduce(lambda x, char: x.replace(char, _REPLACEMENT_CHAR), _INVALID_CHARS, str(value))
713
+
714
+
715
+ def _format_column_header(*keys: tuple[Union[Enum, str], ...]) -> str:
716
+ """Format a variable number of enums and strings for logging as a table column header."""
717
+ return " ".join(_format_str(k.value if isinstance(k, Enum) else str(k)) for k in keys)
718
+
719
+
720
+ def _format_eco_climate_zone(value: EcoClimateZone) -> str:
721
+ """Format an eco-climate zone for logging."""
722
+ return (
723
+ _format_str(str(value.name).lower().replace("_", " ").capitalize()) if isinstance(value, EcoClimateZone)
724
+ else "None"
725
+ )
726
+
727
+
728
+ _LOGS_FORMAT_DATA: dict[str, Callable] = {
729
+ "has_valid_site_type": _format_bool,
730
+ "eco_climate_zone": _format_eco_climate_zone,
731
+ "has_valid_eco_climate_zone": _format_bool,
732
+ "has_land_cover_nodes": _format_bool,
733
+ "should_compile_inventory": _format_bool,
734
+ "percent_burned": lambda x: _format_number(x, "pct"),
735
+ }
736
+ _DEFAULT_FORMAT_FUNC = _format_str
737
+
738
+
739
+ def _format_logs(logs: dict) -> dict[str, str]:
740
+ """
741
+ Format model logs - excluding the inventory data, which must be formatted separately.
742
+ """
743
+ return {key: _LOGS_FORMAT_DATA.get(key, _DEFAULT_FORMAT_FUNC)(value) for key, value in logs.items()}
744
+
745
+
746
+ _INVENTORY_FORMAT_DATA: dict[_InventoryKey, dict[Literal["filter_by", "format_func"], Any]] = {
747
+ "fuel_burnt_per_category": {
748
+ "format_func": lambda x: _format_nd_array(x, "kg")
749
+ },
750
+ "annual_emissions": {
751
+ "filter_by": ("term_id", ),
752
+ "format_func": lambda x: _format_nd_array(x, "kg")
753
+ },
754
+ "amortised_emissions": {
755
+ "filter_by": ("term_id", ),
756
+ "format_func": lambda x: _format_nd_array(x, "kg")
757
+ },
758
+ "share_of_emissions": {
759
+ "filter_by": ("cycle_id", ),
760
+ "format_func": _format_decimal_percentage
761
+ },
762
+ "allocated_emissions": {
763
+ "filter_by": ("term_id", "cycle_id"),
764
+ "format_func": lambda x: _format_nd_array(x, "kg")
765
+ }
766
+ }
767
+ """
768
+ Mapping between inventory key and formatting options for logging in a table. Inventory keys not included in the dict
769
+ will not be logged in the table.
770
+ """
771
+
772
+
773
+ def _flatten_dict(d: dict) -> dict[tuple, Any]:
774
+ """
775
+ Flatten a nested dict, returns dict with keys as tuples with format `(key_level_1, key_level_2, ..., key_level_n)`.
776
+ """
777
+ def flatten(d: dict, c: Optional[list] = None):
778
+ c = c or []
779
+ for a, b in d.items():
780
+ if not isinstance(b, dict):
781
+ yield (tuple(c+[a]), b)
782
+ else:
783
+ yield from flatten(b, c+[a])
784
+
785
+ return dict(flatten(d))
786
+
787
+
788
+ def _get_relevant_inner_keys(
789
+ term_id: _EmissionTermId,
790
+ cycle_id: str,
791
+ key: str,
792
+ inventory: _Inventory,
793
+ *,
794
+ filter_by: Optional[tuple[Literal["term_id", "cycle_id"], ...]] = None,
795
+ **_
796
+ ) -> list[tuple]:
797
+ """
798
+ Get the column headings for the formatted table. Nested inventory values should be flattened, with nested keys
799
+ being transformed into a tuple with the format `(key_level_1, key_level_2, ..., key_level_n)`.
800
+
801
+ Inner keys not relevant to the emission term being logged or the cycle the model is running on should be excluded.
802
+ """
803
+ FILTER_VALUES = {"term_id": term_id, "cycle_id": cycle_id}
804
+ filter_target = (
805
+ tuple(val for f in filter_by if (val := FILTER_VALUES.get(f)))
806
+ if filter_by else None
807
+ )
808
+
809
+ inner_keys = {
810
+ tuple(k) for inner in inventory.values() for k in _flatten_dict(inner.get(key, {}))
811
+ if not filter_target or k == filter_target
812
+ }
813
+
814
+ return sorted(
815
+ inner_keys,
816
+ key=lambda category: category.value if isinstance(category, Enum) else str(category)
817
+ )
818
+
819
+
820
+ def _format_inventory(term_id: _EmissionTermId, cycle_id: str, inventory: dict) -> str:
821
+ """
822
+ Format the inventory for logging as a table.
823
+
824
+ Extract relevant data, flatten nested dicts and format inventory values based on expected data type.
825
+ """
826
+ relevant_inventory_keys = {
827
+ inventory_key: _get_relevant_inner_keys(term_id, cycle_id, inventory_key, inventory, **kwargs)
828
+ for inventory_key, kwargs in _INVENTORY_FORMAT_DATA.items()
829
+ }
830
+
831
+ return log_as_table(
832
+ {
833
+ "year": year,
834
+ **{
835
+ _format_column_header(inventory_key, *inner_key): _INVENTORY_FORMAT_DATA[inventory_key]["format_func"](
836
+ reduce(lambda d, k: d.get(k, {}), [year, inventory_key, *inner_key], inventory)
837
+ )
838
+ for inventory_key, relevant_inner_keys in relevant_inventory_keys.items()
839
+ for inner_key in relevant_inner_keys
840
+ }
841
+ } for year in inventory
842
+ ) if inventory else "None"
843
+
844
+
845
+ def _should_run_emission(
846
+ term_id: _EmissionTermId, cycle: dict, emission_inventory: _EmissionInventory, inventory: dict, logs: dict
847
+ ):
848
+ """
849
+ Determine, based on the compiled data, whether the model should run for a specifc emission term id. Format and log
850
+ the model logs and inventory.
851
+ """
852
+ should_run = term_id in emission_inventory
853
+
854
+ formatted_logs = _format_logs(logs)
855
+ formatted_inventory = _format_inventory(term_id, cycle.get("@id"), inventory)
856
+
857
+ logRequirements(cycle, model=MODEL, term=term_id, **formatted_logs, inventory=formatted_inventory)
858
+ logShouldRun(cycle, MODEL, term_id, should_run)
859
+
860
+ return should_run
861
+
862
+
863
+ def _should_run(cycle: dict):
864
+ """
865
+ Extract, organise and pre-process required data from the input [Cycle node](https://www.hestia.earth/schema/Site)
866
+ and determine whether the model should run.
867
+
868
+ Parameters
869
+ ----------
870
+ cycle : dict
871
+ A HESTIA [Cycle](https://www.hestia.earth/schema/Cycle).
872
+
873
+ Returns
874
+ -------
875
+ tuple[bool, dict]
876
+ should_run, emission_inventory
877
+ """
878
+ site = _get_site(cycle)
879
+
880
+ site_type = site.get("siteType")
881
+ eco_climate_zone = get_eco_climate_zone_value(site, as_enum=True)
882
+
883
+ land_cover_nodes = get_valid_management_nodes(site)
884
+
885
+ has_valid_site_type = all([site_type, site_type not in _EXCLUDED_SITE_TYPES])
886
+ has_valid_eco_climate_zone = all([eco_climate_zone, eco_climate_zone not in _EXCLUDED_ECO_CLIMATE_ZONES])
887
+ has_land_cover_nodes = len(land_cover_nodes) > 0
888
+
889
+ should_compile_inventory = all([
890
+ has_valid_site_type,
891
+ has_valid_eco_climate_zone,
892
+ has_land_cover_nodes
893
+ ])
894
+
895
+ emission_inventory, inventory, compilation_logs = (
896
+ _compile_run_data(cycle, site, land_cover_nodes, eco_climate_zone)
897
+ if should_compile_inventory else ({}, {}, {})
898
+ )
899
+
900
+ logs = {
901
+ "site_id": site.get("@id"),
902
+ "site_type": site_type,
903
+ "has_valid_site_type": has_valid_site_type,
904
+ "eco_climate_zone": eco_climate_zone,
905
+ "has_valid_eco_climate_zone": has_valid_eco_climate_zone,
906
+ "has_land_cover_nodes": has_land_cover_nodes,
907
+ "should_compile_inventory": should_compile_inventory,
908
+ **compilation_logs
909
+ }
910
+
911
+ should_run = all([
912
+ any([
913
+ _should_run_emission(term_id, cycle, emission_inventory, inventory, logs) for term_id in EMISSION_TERM_IDS
914
+ ])
915
+ ])
916
+
917
+ return should_run, emission_inventory
918
+
919
+
920
+ def _run_emission(term_id: _EmissionTermId, emissions: dict[_EmissionTermId, npt.NDArray]) -> list[dict]:
921
+ """
922
+ Retrieve the pre-computed emissions and format them as a HESTIA
923
+ [Emission node](https://www.hestia.earth/schema/Emission).
924
+ """
925
+ emission = emissions[term_id]
926
+ descriptive_stats = calc_descriptive_stats(emission, STATS_DEFINITION, decimals=3)
927
+ return _emission(term_id, **descriptive_stats)
928
+
929
+
930
+ def run(cycle: dict):
931
+ """
932
+ Run the `nonCo2EmissionsToAirNaturalVegetationBurning` model on a Cycle.
933
+
934
+ Parameters
935
+ ----------
936
+ cycle : dict
937
+ A HESTIA [Cycle](https://www.hestia.earth/schema/Cycle).
938
+
939
+ Returns
940
+ -------
941
+ list[dict]
942
+ A list of HESTIA [Emission](https://www.hestia.earth/schema/Emission) nodes with `term.termType` =
943
+ `ch4ToAirNaturalVegetationBurning` **OR** `coToAirNaturalVegetationBurning` **OR**
944
+ `n2OToAirNaturalVegetationBurningDirect` **OR** `noxToAirNaturalVegetationBurning`.
945
+ """
946
+ should_run, emission_inventory = _should_run(cycle)
947
+ return [_run_emission(term_id, emission_inventory) for term_id in emission_inventory] if should_run else []