hestia-earth-models 0.65.0__py3-none-any.whl → 0.65.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hestia-earth-models might be problematic. Click here for more details.

@@ -134,9 +134,10 @@ def _run_input(cycle: dict):
134
134
  logRequirements(cycle, model=MODEL, term=input_term_id,
135
135
  has_ecoinvent_mappings=has_mappings,
136
136
  ecoinvent_mappings=';'.join([v[0] for v in mappings]),
137
- has_no_gap_filled_background_emissions=has_no_gap_filled_background_emissions)
137
+ has_no_gap_filled_background_emissions=has_no_gap_filled_background_emissions,
138
+ input_value=input_value)
138
139
 
139
- should_run = all([has_mappings, has_no_gap_filled_background_emissions])
140
+ should_run = all([has_mappings, has_no_gap_filled_background_emissions, input_value])
140
141
  logShouldRun(cycle, MODEL, input_term_id, should_run, methodTier=TIER)
141
142
  grouped_emissions = reduce(_add_emission(cycle, input), mappings, {}) if should_run else {}
142
143
  return [
@@ -1,5 +1,5 @@
1
1
  from hestia_earth.utils.model import find_term_match
2
- from hestia_earth.utils.tools import list_sum, flatten, non_empty_list
2
+ from hestia_earth.utils.tools import flatten, non_empty_list
3
3
 
4
4
  from hestia_earth.models.utils.term import get_lookup_value
5
5
 
@@ -12,7 +12,6 @@ def _animal_inputs(animal: dict):
12
12
  def _should_run_input(products: list):
13
13
  def should_run(input: dict):
14
14
  return all([
15
- list_sum(input.get('value', [])) > 0,
16
15
  # make sure Input is not a Product as well or we might double-count emissions
17
16
  find_term_match(products, input.get('term', {}).get('@id'), None) is None,
18
17
  # ignore inputs which are flagged as Product of the Cycle
@@ -122,9 +122,10 @@ def _run_input(cycle: dict):
122
122
 
123
123
  logRequirements(cycle, model=MODEL, term=input_term_id,
124
124
  has_ecoinvent_mappings=has_mappings,
125
- ecoinvent_mappings=';'.join([v[0] for v in mappings]))
125
+ ecoinvent_mappings=';'.join([v[0] for v in mappings]),
126
+ input_value=input_value)
126
127
 
127
- should_run = all([electricity_complete, has_mappings])
128
+ should_run = all([electricity_complete, has_mappings, input_value])
128
129
  logShouldRun(cycle, MODEL, input_term_id, should_run, methodTier=TIER)
129
130
 
130
131
  grouped_emissions = reduce(_add_emission(cycle, input), mappings, {}) if should_run else {}
@@ -67,8 +67,10 @@ def _indicator(value: float):
67
67
 
68
68
 
69
69
  def _run(transformations: List[dict]):
70
- values = [(transformation['factor-from'] + transformation['factor-to']) * transformation['area'] for transformation
71
- in transformations]
70
+ values = [
71
+ (transformation.get('factor-from', 0) + transformation.get('factor-to', 0)) * transformation.get('area', 0) * 20
72
+ for transformation in transformations
73
+ ]
72
74
  return _indicator(list_sum(values))
73
75
 
74
76
 
@@ -76,7 +78,7 @@ def _should_run(impact_assessment: dict) -> Tuple[bool, list]:
76
78
  resource_uses = filter_list_term_type(impact_assessment.get('emissionsResourceUse', []), TermTermType.RESOURCEUSE)
77
79
  found_transformations = [
78
80
  {
79
- 'area': _node_value(transformation_indicator) * 20,
81
+ 'area': _node_value(transformation_indicator),
80
82
  'land-cover-id-from': transformation_indicator.get('previousLandCover', {}).get("@id"),
81
83
  'land-cover-id-to': transformation_indicator.get('landCover', {}).get("@id"),
82
84
  'indicator-id': transformation_indicator.get('term', {}).get('@id', ''),
@@ -91,7 +93,7 @@ def _should_run(impact_assessment: dict) -> Tuple[bool, list]:
91
93
 
92
94
  found_transformations_with_coefficient = [
93
95
  transformation | {
94
- "using-fallback-country-region-world-CFs": transformation['lookup-country'] != transformation['country-id'],
96
+ 'using-fallback-country-region-world-CFs': transformation['lookup-country'] != transformation['country-id'],
95
97
  'factor-from': get_coefficient_factor(
96
98
  lookup_name=from_lookup_file,
97
99
  country_id=transformation['lookup-country'],
@@ -150,7 +150,7 @@ def should_run_landTransformationFromCropland(term_id: str, impact: dict):
150
150
  if all([
151
151
  i.get('term', {}).get('@id') == term_id,
152
152
  i.get('previousLandCover', {}).get('@id') == 'cropland',
153
- i.get('value', -1) > 0
153
+ (i.get('value') or -1) > 0
154
154
  ])
155
155
  ]
156
156
  has_cropland = bool(indicators)
@@ -19,6 +19,7 @@ from hestia_earth.utils.tools import non_empty_list, flatten, list_sum, safe_par
19
19
  from hestia_earth.utils.emission import cycle_emissions_in_system_boundary
20
20
 
21
21
  from hestia_earth.models.log import logRequirements, logShouldRun, log_as_table
22
+ from hestia_earth.models.utils import _omit
22
23
  from hestia_earth.models.utils.emission import _new_emission
23
24
  from hestia_earth.models.utils.site import valid_site_type
24
25
  from hestia_earth.models.utils.cycle import cycle_end_year
@@ -190,7 +191,7 @@ def _should_run(cycle: dict):
190
191
  {
191
192
  'product': product.get('term', {}).get('@id'),
192
193
  'seed-id': get_lookup_value(
193
- product.get('term', {}), 'correspondingSeedTermIds', model=MODEL, key=MODEL_KEY),
194
+ product.get('term', {}), 'correspondingSeedTermIds', model=MODEL, key=MODEL_KEY) or None,
194
195
  'economicValueShare': _evs(product),
195
196
  'yield': _yield(country_id, end_year, product),
196
197
  'landCover-id': get_landCover_term_id(product.get('term', {}), model=MODEL, key=MODEL_KEY)
@@ -210,20 +211,27 @@ def _should_run(cycle: dict):
210
211
  seed_term_ids = list(set(flatten([v.get('seed-id').split(';') for v in valid_crop_products if v.get('seed-id')])))
211
212
 
212
213
  seed_inputs = [
213
- i
214
- for i in cycle.get('inputs', [])
215
- if all([
216
- i.get('term', {}).get('termType') == TermTermType.SEED.value,
217
- i.get('term', {}).get('@id') in seed_term_ids,
218
- list_sum(i.get('value'), 0) > 0,
219
- not i.get('impactAssessment'),
220
- # ignore inputs which are flagged as Product of the Cycle
221
- not i.get('fromCycle', False),
222
- not i.get('producedInCycle', False)
223
- ])
214
+ {
215
+ 'input': i,
216
+ 'is-corresponding-seed': i.get('term', {}).get('@id') in seed_term_ids,
217
+ 'input-value': i.get('value'),
218
+ 'has-linked-impact-assessment': bool(i.get('impactAssessment')),
219
+ 'is-fromCycle': i.get('fromCycle', False),
220
+ 'is-producedInCycle': i.get('producedInCycle', False),
221
+ }
222
+ for i in filter_list_term_type(cycle.get('inputs', []), TermTermType.SEED)
224
223
  ]
225
224
  # sum up seed inputs with the same id
226
- seed_inputs = _group_seed_inputs(seed_inputs)
225
+ grouped_seed_inputs = _group_seed_inputs([
226
+ v.get('input') for v in seed_inputs
227
+ if all([
228
+ v.get('is-corresponding-seed', False),
229
+ list_sum(v.get('input-value') or [-1]) > 0,
230
+ not v.get('has-linked-impact-assessment'),
231
+ not v.get('is-fromCycle'),
232
+ not v.get('is-producedInCycle'),
233
+ ])
234
+ ])
227
235
 
228
236
  crop_land_cover_ids = list(set([p.get('landCover-id') for p in valid_crop_products]))
229
237
  total_economicValueShare = list_sum([p.get('economicValueShare') for p in valid_crop_products])
@@ -243,12 +251,12 @@ def _should_run(cycle: dict):
243
251
  is_product_complete,
244
252
  total_economicValueShare,
245
253
  total_yield,
246
- bool(seed_inputs),
254
+ bool(grouped_seed_inputs),
247
255
  bool(emissions)
248
256
  ])
249
257
 
250
258
  for seed_input in seed_inputs:
251
- term_id = seed_input.get('term', {}).get('@id')
259
+ term_id = seed_input.get('input').get('term', {}).get('@id')
252
260
 
253
261
  logRequirements(cycle, model=MODEL, term=term_id, model_key=MODEL_KEY,
254
262
  site_type_valid=site_type_valid,
@@ -260,11 +268,12 @@ def _should_run(cycle: dict):
260
268
  end_year=end_year,
261
269
  country_id=country_id,
262
270
  emissions=log_as_table(emissions),
263
- emissions_per_group=log_as_table(emissions_per_group))
271
+ emissions_per_group=log_as_table(emissions_per_group),
272
+ **_omit(seed_input, 'input'))
264
273
 
265
274
  logShouldRun(cycle, MODEL, term_id, should_run, key=MODEL_KEY)
266
275
 
267
- return should_run, total_economicValueShare, total_yield, seed_inputs, grouped_emissions
276
+ return should_run, total_economicValueShare, total_yield, grouped_seed_inputs, grouped_emissions
268
277
 
269
278
 
270
279
  def run(cycle: dict):
@@ -17,7 +17,10 @@ REQUIREMENTS = {
17
17
  "@type": "ImpactAssessment",
18
18
  "emissionsResourceUse": [{
19
19
  "@type": "Indicator",
20
- "term.@id": "freshwaterWithdrawalsDuringCycle",
20
+ "term.@id": [
21
+ "freshwaterWithdrawalsDuringCycle",
22
+ "freshwaterWithdrawalsInputsProduction"
23
+ ],
21
24
  "value": "> 0"
22
25
  }]
23
26
  }
@@ -10,13 +10,28 @@ REQUIREMENTS = {
10
10
  "primary": "True",
11
11
  "value": "> 0",
12
12
  "economicValueShare": "> 0"
13
+ }],
14
+ "inputs": [{
15
+ "@type": "Input",
16
+ "impactAssessment": {
17
+ "@type": "ImpactAssessment",
18
+ "emissionsResourceUse": [{
19
+ "@type": "Indicator",
20
+ "term.@id": [
21
+ "landOccupationDuringCycle",
22
+ "landOccupationInputsProduction"
23
+ ],
24
+ "value": "> 0"
25
+ }]
26
+ }
13
27
  }]
14
28
  }
15
29
  }
16
30
  }
17
31
  RETURNS = {
18
32
  "Indicator": [{
19
- "value": ""
33
+ "value": "",
34
+ "landCover": ""
20
35
  }]
21
36
  }
22
37
  TERM_ID = 'landOccupationInputsProduction'
@@ -30,7 +30,9 @@ REQUIREMENTS = {
30
30
  }
31
31
  RETURNS = {
32
32
  "Indicator": [{
33
- "value": ""
33
+ "value": "",
34
+ "landCover": "",
35
+ "previousLandCover": ""
34
36
  }]
35
37
  }
36
38
  TERM_ID = 'landTransformation100YearAverageInputsProduction'
@@ -30,7 +30,9 @@ REQUIREMENTS = {
30
30
  }
31
31
  RETURNS = {
32
32
  "Indicator": [{
33
- "value": ""
33
+ "value": "",
34
+ "landCover": "",
35
+ "previousLandCover": ""
34
36
  }]
35
37
  }
36
38
  TERM_ID = 'landTransformation20YearAverageInputsProduction'
@@ -23,7 +23,9 @@ def _run_indicators(product: dict, term_id: str):
23
23
  for value in values
24
24
  ])
25
25
  value = convert_value_from_cycle(product, sum_values(values_from_cycle), model=MODEL, term_id=term_id)
26
- return _indicator(term_id, value) | _include(indicator, ['landCover', 'previousLandCover'])
26
+ return (
27
+ _indicator(term_id, value) | _include(indicator, ['landCover', 'previousLandCover'])
28
+ ) if value is not None else None
27
29
  return run
28
30
 
29
31
 
@@ -80,17 +82,22 @@ def _run_inputs_production(impact_assessment: dict, product: dict, term_id: str)
80
82
  should_run = all([has_indicators])
81
83
  logShouldRun(impact_assessment, MODEL, term_id, should_run)
82
84
 
83
- return flatten(map(_run_indicators(product, term_id), grouped_indicators.values()))
85
+ return non_empty_list(flatten(map(_run_indicators(product, term_id), grouped_indicators.values())))
84
86
 
85
87
 
86
88
  def _should_run_inputs_production(impact_assessment: dict, term_id: str):
87
- product = get_product(impact_assessment)
88
- product_id = (product or {}).get('term', {}).get('@id')
89
+ product = get_product(impact_assessment) or {}
90
+ product_id = product.get('term', {}).get('@id')
91
+
92
+ product_value = list_sum(product.get('value', []), default=None)
93
+ economic_value = product.get('economicValueShare')
89
94
 
90
95
  logRequirements(impact_assessment, model=MODEL, term=term_id,
91
- product=product_id)
96
+ product_id=product_id,
97
+ product_value=product_value,
98
+ product_economicValueShare=economic_value)
92
99
 
93
- should_run = all([product])
100
+ should_run = all([product, product_value, economic_value])
94
101
  logShouldRun(impact_assessment, MODEL, term_id, should_run)
95
102
  return should_run, product
96
103
 
@@ -1298,7 +1298,7 @@
1298
1298
  },
1299
1299
  {
1300
1300
  "@type": "Term",
1301
- "@id": "residueIncorporatedLessThan30DaysBeforeCultivation"
1301
+ "@id": "residueIncorporated"
1302
1302
  },
1303
1303
  {
1304
1304
  "@type": "Term",
@@ -1306,7 +1306,7 @@
1306
1306
  },
1307
1307
  {
1308
1308
  "@type": "Term",
1309
- "@id": "residueIncorporated"
1309
+ "@id": "residueIncorporatedLessThan30DaysBeforeCultivation"
1310
1310
  },
1311
1311
  {
1312
1312
  "@type": "Term",
@@ -1350,27 +1350,27 @@
1350
1350
  },
1351
1351
  {
1352
1352
  "@type": "Term",
1353
- "@id": "discardedCropRemoved"
1353
+ "@id": "aboveGroundCropResidueBurnt"
1354
1354
  },
1355
1355
  {
1356
1356
  "@type": "Term",
1357
- "@id": "aboveGroundCropResidueTotal"
1357
+ "@id": "belowGroundCropResidue"
1358
1358
  },
1359
1359
  {
1360
1360
  "@type": "Term",
1361
- "@id": "aboveGroundCropResidueIncorporated"
1361
+ "@id": "aboveGroundCropResidueLeftOnField"
1362
1362
  },
1363
1363
  {
1364
1364
  "@type": "Term",
1365
- "@id": "aboveGroundCropResidueBurnt"
1365
+ "@id": "discardedCropRemoved"
1366
1366
  },
1367
1367
  {
1368
1368
  "@type": "Term",
1369
- "@id": "belowGroundCropResidue"
1369
+ "@id": "aboveGroundCropResidueTotal"
1370
1370
  },
1371
1371
  {
1372
1372
  "@type": "Term",
1373
- "@id": "aboveGroundCropResidueLeftOnField"
1373
+ "@id": "aboveGroundCropResidueIncorporated"
1374
1374
  }
1375
1375
  ]
1376
1376
  },
@@ -1398,10 +1398,6 @@
1398
1398
  }
1399
1399
  },
1400
1400
  "results": [
1401
- {
1402
- "@type": "Term",
1403
- "@id": "digestibleEnergyRuminants"
1404
- },
1405
1401
  {
1406
1402
  "@type": "Term",
1407
1403
  "@id": "digestibleEnergySalmonids"
@@ -1412,12 +1408,16 @@
1412
1408
  },
1413
1409
  {
1414
1410
  "@type": "Term",
1415
- "@id": "digestibleEnergyPoultry"
1411
+ "@id": "digestibleEnergyRuminants"
1416
1412
  },
1417
1413
  {
1418
1414
  "@type": "Term",
1419
1415
  "@id": "digestibleEnergyRabbits"
1420
1416
  },
1417
+ {
1418
+ "@type": "Term",
1419
+ "@id": "digestibleEnergyPoultry"
1420
+ },
1421
1421
  {
1422
1422
  "@type": "Term",
1423
1423
  "@id": "digestibleEnergyAquaticSpecies"
@@ -1493,11 +1493,11 @@
1493
1493
  "results": [
1494
1494
  {
1495
1495
  "@type": "Term",
1496
- "@id": "energyDigestibilityPoultry"
1496
+ "@id": "energyDigestibilityRabbits"
1497
1497
  },
1498
1498
  {
1499
1499
  "@type": "Term",
1500
- "@id": "energyDigestibilityRabbits"
1500
+ "@id": "energyDigestibilityPoultry"
1501
1501
  },
1502
1502
  {
1503
1503
  "@type": "Term",
@@ -1505,19 +1505,19 @@
1505
1505
  },
1506
1506
  {
1507
1507
  "@type": "Term",
1508
- "@id": "energyDigestibilityRuminants"
1508
+ "@id": "energyDigestibilitySalmonids"
1509
1509
  },
1510
1510
  {
1511
1511
  "@type": "Term",
1512
- "@id": "energyDigestibilitySalmonids"
1512
+ "@id": "energyDigestibilityRuminants"
1513
1513
  },
1514
1514
  {
1515
1515
  "@type": "Term",
1516
- "@id": "energyDigestibilityAquaticSpecies"
1516
+ "@id": "energyDigestibilityOtherAnimals"
1517
1517
  },
1518
1518
  {
1519
1519
  "@type": "Term",
1520
- "@id": "energyDigestibilityOtherAnimals"
1520
+ "@id": "energyDigestibilityAquaticSpecies"
1521
1521
  }
1522
1522
  ]
1523
1523
  },
@@ -1768,7 +1768,7 @@
1768
1768
  "@type": "Term",
1769
1769
  "name": "Generic crop, seed",
1770
1770
  "@id": "genericCropSeed",
1771
- "_score": 24.87239
1771
+ "_score": 24.912773
1772
1772
  }
1773
1773
  ]
1774
1774
  },
@@ -2004,157 +2004,157 @@
2004
2004
  "@type": "Term",
2005
2005
  "name": "Glass or high accessible cover",
2006
2006
  "@id": "glassOrHighAccessibleCover",
2007
- "_score": 59.580826
2007
+ "_score": 59.591824
2008
2008
  },
2009
2009
  {
2010
2010
  "@type": "Term",
2011
2011
  "name": "Sea or ocean",
2012
2012
  "@id": "seaOrOcean",
2013
- "_score": 49.219673
2013
+ "_score": 49.211555
2014
2014
  },
2015
2015
  {
2016
2016
  "@type": "Term",
2017
2017
  "name": "River or stream",
2018
2018
  "@id": "riverOrStream",
2019
- "_score": 48.07742
2019
+ "_score": 48.1141
2020
2020
  },
2021
2021
  {
2022
2022
  "@type": "Term",
2023
2023
  "name": "Other natural vegetation",
2024
2024
  "@id": "otherNaturalVegetation",
2025
- "_score": 42.030323
2025
+ "_score": 41.84881
2026
2026
  },
2027
2027
  {
2028
2028
  "@type": "Term",
2029
2029
  "name": "Food retailer",
2030
2030
  "@id": "foodRetailer",
2031
- "_score": 40.473133
2031
+ "_score": 40.49202
2032
2032
  },
2033
2033
  {
2034
2034
  "@type": "Term",
2035
2035
  "name": "Agri-food processor",
2036
2036
  "@id": "agriFoodProcessor",
2037
- "_score": 40.11944
2037
+ "_score": 40.30419
2038
2038
  },
2039
2039
  {
2040
2040
  "@type": "Term",
2041
2041
  "name": "Natural forest",
2042
2042
  "@id": "naturalForest",
2043
- "_score": 31.730024
2043
+ "_score": 31.557312
2044
2044
  },
2045
2045
  {
2046
2046
  "@type": "Term",
2047
2047
  "name": "Permanent pasture",
2048
2048
  "@id": "permanentPasture",
2049
- "_score": 28.174412
2049
+ "_score": 28.212002
2050
2050
  },
2051
2051
  {
2052
2052
  "@type": "Term",
2053
2053
  "name": "Animal housing",
2054
2054
  "@id": "animalHousing",
2055
- "_score": 27.288857
2055
+ "_score": 27.554867
2056
2056
  },
2057
2057
  {
2058
2058
  "@type": "Term",
2059
2059
  "name": "High intensity grazing pasture",
2060
2060
  "@id": "highIntensityGrazingPasture",
2061
- "_score": 24.550583
2061
+ "_score": 24.59872
2062
2062
  },
2063
2063
  {
2064
2064
  "@type": "Term",
2065
2065
  "name": "Root or tuber crop plant",
2066
2066
  "@id": "rootOrTuberCropPlant",
2067
- "_score": 23.820816
2067
+ "_score": 23.863335
2068
2068
  },
2069
2069
  {
2070
2070
  "@type": "Term",
2071
2071
  "name": "Forest",
2072
2072
  "@id": "forest",
2073
- "_score": 20.620052
2073
+ "_score": 20.173904
2074
2074
  },
2075
2075
  {
2076
2076
  "@type": "Term",
2077
- "name": "Plantation forest",
2078
- "@id": "plantationForest",
2079
- "_score": 19.783655
2077
+ "name": "Permanent cropland",
2078
+ "@id": "permanentCropland",
2079
+ "_score": 19.640331
2080
2080
  },
2081
2081
  {
2082
2082
  "@type": "Term",
2083
2083
  "name": "Other land",
2084
2084
  "@id": "otherLand",
2085
- "_score": 19.563587
2085
+ "_score": 19.463047
2086
2086
  },
2087
2087
  {
2088
2088
  "@type": "Term",
2089
- "name": "Permanent cropland",
2090
- "@id": "permanentCropland",
2091
- "_score": 19.553766
2089
+ "name": "Plantation forest",
2090
+ "@id": "plantationForest",
2091
+ "_score": 19.282543
2092
2092
  },
2093
2093
  {
2094
2094
  "@type": "Term",
2095
2095
  "name": "Lake",
2096
2096
  "@id": "lake",
2097
- "_score": 18.19668
2097
+ "_score": 18.21026
2098
2098
  },
2099
2099
  {
2100
2100
  "@type": "Term",
2101
2101
  "name": "Red sea plume alga",
2102
2102
  "@id": "redSeaPlumeAlga",
2103
- "_score": 17.590275
2103
+ "_score": 17.605654
2104
2104
  },
2105
2105
  {
2106
2106
  "@type": "Term",
2107
2107
  "name": "Sea kale plant",
2108
2108
  "@id": "seaKalePlant",
2109
- "_score": 17.506668
2109
+ "_score": 17.513813
2110
2110
  },
2111
2111
  {
2112
2112
  "@type": "Term",
2113
2113
  "name": "Improved pasture",
2114
2114
  "@id": "improvedPasture",
2115
- "_score": 17.359146
2115
+ "_score": 17.43089
2116
2116
  },
2117
2117
  {
2118
2118
  "@type": "Term",
2119
2119
  "name": "Native pasture",
2120
2120
  "@id": "nativePasture",
2121
- "_score": 17.330988
2121
+ "_score": 17.387138
2122
2122
  },
2123
2123
  {
2124
2124
  "@type": "Term",
2125
2125
  "name": "Nominally managed pasture",
2126
2126
  "@id": "nominallyManagedPasture",
2127
- "_score": 16.30069
2127
+ "_score": 16.351063
2128
2128
  },
2129
2129
  {
2130
2130
  "@type": "Term",
2131
2131
  "name": "Severely degraded pasture",
2132
2132
  "@id": "severelyDegradedPasture",
2133
- "_score": 15.709078
2133
+ "_score": 15.72388
2134
2134
  },
2135
2135
  {
2136
2136
  "@type": "Term",
2137
2137
  "name": "Pond",
2138
2138
  "@id": "pond",
2139
- "_score": 15.644154
2139
+ "_score": 15.666466
2140
2140
  },
2141
2141
  {
2142
2142
  "@type": "Term",
2143
2143
  "name": "River tamarind tree",
2144
2144
  "@id": "riverTamarindTree",
2145
- "_score": 15.328306
2145
+ "_score": 15.338312
2146
2146
  },
2147
2147
  {
2148
2148
  "@type": "Term",
2149
2149
  "name": "Cropland",
2150
2150
  "@id": "cropland",
2151
- "_score": 10.521658
2151
+ "_score": 10.534372
2152
2152
  },
2153
2153
  {
2154
2154
  "@type": "Term",
2155
2155
  "name": "Annual cropland",
2156
2156
  "@id": "annualCropland",
2157
- "_score": 10.00343
2157
+ "_score": 10.017572
2158
2158
  }
2159
2159
  ]
2160
2160
  },
@@ -5026,11 +5026,11 @@
5026
5026
  },
5027
5027
  {
5028
5028
  "@type": "Term",
5029
- "@id": "ureaFormaldehydeKgN"
5029
+ "@id": "ureaCalciumNitrateKgN"
5030
5030
  },
5031
5031
  {
5032
5032
  "@type": "Term",
5033
- "@id": "ureaCalciumNitrateKgN"
5033
+ "@id": "ureaFormaldehydeKgN"
5034
5034
  },
5035
5035
  {
5036
5036
  "@type": "Term",
@@ -1 +1 @@
1
- VERSION = '0.65.0'
1
+ VERSION = '0.65.1'
@@ -1,6 +1,6 @@
1
1
  MIT License
2
2
 
3
- Copyright (c) 2019-2024 Harmonised Environmental Storage and Tracking of the Impacts of Agriculture (HESTIA) Project
3
+ Copyright (c) 2019-2025 Harmonised Environmental Storage and Tracking of the Impacts of Agriculture (HESTIA) Project
4
4
 
5
5
  Permission is hereby granted, free of charge, to any person obtaining a copy
6
6
  of this software and associated documentation files (the "Software"), to deal
@@ -1,11 +1,11 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: hestia-earth-models
3
- Version: 0.65.0
3
+ Version: 0.65.1
4
4
  Summary: HESTIA's set of modules for filling gaps in the activity data using external datasets (e.g. populating soil properties with a geospatial dataset using provided coordinates) and internal lookups (e.g. populating machinery use from fuel use). Includes rules for when gaps should be filled versus not (e.g. never gap fill yield, gap fill crop residue if yield provided etc.).
5
5
  Home-page: https://gitlab.com/hestia-earth/hestia-engine-models
6
6
  Author: HESTIA Team
7
7
  Author-email: guillaumeroyer.mail@gmail.com
8
- License: GPL
8
+ License: MIT
9
9
  Platform: UNKNOWN
10
10
  Classifier: License :: OSI Approved :: GNU General Public License v3 (GPLv3)
11
11
  Classifier: Programming Language :: Python :: 3.6
@@ -4,7 +4,7 @@ hestia_earth/models/cache_sites.py,sha256=wcF8gr3gEaHoqCP62imvXVrvSLYPYEHTzxkayy
4
4
  hestia_earth/models/log.py,sha256=_zAfyOkL_VknEnMFvcpvenSMghadlDfZhiSx28545Gk,3558
5
5
  hestia_earth/models/preload_requests.py,sha256=vK_G1UzhNMhYy7ymnCtHUz_vv3cfApCSKqv29VREEBQ,1943
6
6
  hestia_earth/models/requirements.py,sha256=eU4yT443fx7BnaokhrLB_PCizJI7Y6m4auyo8vQauNg,17363
7
- hestia_earth/models/version.py,sha256=OX4X3GJCNkyCV2DdC_ucLHqSDyfUfnHE3doDBuyQcqk,19
7
+ hestia_earth/models/version.py,sha256=vYW7icTJkMQhZpnh5VBb5JC39oEdDjSle8gfE6x81-o,19
8
8
  hestia_earth/models/agribalyse2016/__init__.py,sha256=WvK0qCQbnYtg9oZxrACd1wGormZyXibPtpCnIQeDqbw,415
9
9
  hestia_earth/models/agribalyse2016/fuelElectricity.py,sha256=zcuarKatWLIUVwFy71wE2j--tftKga7tobxhasTlruY,4438
10
10
  hestia_earth/models/agribalyse2016/machineryInfrastructureDepreciatedAmountPerCycle.py,sha256=BPjnWmg73i_OxM2ouCdMTWZtPIqyoUAXrvutntyteE0,3390
@@ -121,9 +121,9 @@ hestia_earth/models/data/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZ
121
121
  hestia_earth/models/data/ecoinventV3/__init__.py,sha256=oevyurRuioXy_CsQCtG-S_FXEpiEDeQ-UK5a0jPBXcI,1155
122
122
  hestia_earth/models/deRuijterEtAl2010/__init__.py,sha256=lbH6mB98dmZZlwdZctNYtEmVwAow957l80Dv7JSPDsI,418
123
123
  hestia_earth/models/deRuijterEtAl2010/nh3ToAirCropResidueDecomposition.py,sha256=2z10WqMsGUDDO8xJ3lmXvSUHgzz2t6PPRDha5NHoT5s,3291
124
- hestia_earth/models/ecoinventV3/__init__.py,sha256=FctfsXFgEz23KbKNig1bY-fhoTN2QJz_eVy6AFwxG7g,6062
125
- hestia_earth/models/ecoinventV3/utils.py,sha256=HqtD8MzK9C_RCJ-ME-5G4J1KoCn5FqmAx4l0kjsCDbM,1577
126
- hestia_earth/models/ecoinventV3AndEmberClimate/__init__.py,sha256=XYFDUNpQpzbjPgLus0YlM3UdiXX7LLwn-XJqjrH9ywM,5801
124
+ hestia_earth/models/ecoinventV3/__init__.py,sha256=mg1d_nqD06ab-ZRxxhQB-3fpqAUcDk4vaV43vdK4xes,6124
125
+ hestia_earth/models/ecoinventV3/utils.py,sha256=odmFDw2PfudZM-fRQg2hBLBD7Qd3rq8SWJWTvy9ZWWw,1517
126
+ hestia_earth/models/ecoinventV3AndEmberClimate/__init__.py,sha256=RpxIwm8AELbzgedna5MgmOMuHNTmLQLi4HrXywDbhXs,5863
127
127
  hestia_earth/models/ecoinventV3AndEmberClimate/utils.py,sha256=INWB7gyhzk49GQ0KAcBS-Kzwdoyd5MQJcsCtuT6XxZA,1352
128
128
  hestia_earth/models/edip2003/__init__.py,sha256=nyB0CI2gNmRAXj-203aJHQMmETYhcY-dHbMABOhJ7YI,409
129
129
  hestia_earth/models/edip2003/ozoneDepletionPotential.py,sha256=YkBct4eDUidGukaVdd2iaEouq_FckuG8l_7pgBQgCBw,1033
@@ -142,7 +142,7 @@ hestia_earth/models/emissionNotRelevant/__init__.py,sha256=NkP635TDNs7bQBv2n9tUT
142
142
  hestia_earth/models/environmentalFootprintV3/__init__.py,sha256=lzg9qccwd9tbspw0lQ58YPprnvvSLTn3QV5T2-tPcC4,425
143
143
  hestia_earth/models/environmentalFootprintV3/freshwaterEcotoxicityPotentialCtue.py,sha256=N_gw2aNoCMW5Z1XM-uAyCF1kfpZUI07giv_bo3Lmr5Q,918
144
144
  hestia_earth/models/environmentalFootprintV3/soilQualityIndexLandOccupation.py,sha256=r3GV2pspKWAlKU46TMh_6D_rrXtY_onhk3RnukzJjD8,5095
145
- hestia_earth/models/environmentalFootprintV3/soilQualityIndexLandTransformation.py,sha256=LXf9Fyl02RfX42u79Z1TCQAEZAgGAfyd3SFPF1InrtY,6233
145
+ hestia_earth/models/environmentalFootprintV3/soilQualityIndexLandTransformation.py,sha256=idxeoR7n1Kq0A4pB4rkZ2_mW-yafEJVkc-gStoxPoE4,6262
146
146
  hestia_earth/models/environmentalFootprintV3/soilQualityIndexTotalLandUseEffects.py,sha256=SIjFYPv4n3mziohW2nlycaMssHQ3ws79hqHa4i3sCVI,2997
147
147
  hestia_earth/models/environmentalFootprintV3/utils.py,sha256=fZ99_G0Kh4OUW5wH-LglzCrKp8l2plKuCs4yvUH_3hs,699
148
148
  hestia_earth/models/epa2014/__init__.py,sha256=ckGf_6X7CCzI_18OqchEkuJAXKXM1x7V53u480ckknM,408
@@ -157,7 +157,7 @@ hestia_earth/models/faostat2018/landTransformation20YearAverageDuringCycle.py,sh
157
157
  hestia_earth/models/faostat2018/liveweightPerHead.py,sha256=flI3_TyG-7xoWp6cU6pZAFiXyHyFkfRz7Lmb7cQAffI,5140
158
158
  hestia_earth/models/faostat2018/readyToCookWeightPerHead.py,sha256=b1_GZQ3oFl88w6TY5DqLSqXNaYX6TcRBK4R9M2cWSjM,3165
159
159
  hestia_earth/models/faostat2018/seed.py,sha256=ts9PKs9UnZnJ9nPFlL7etL1Qb9uIWIES8Mz8W7FWbOw,2917
160
- hestia_earth/models/faostat2018/utils.py,sha256=hHlSjQPi518p4QYisaqFbc2F8As5VHyocjA_7WESGcw,7523
160
+ hestia_earth/models/faostat2018/utils.py,sha256=vJxDILARNxE6DM_lTtoLIh5PvdDneSb9S41YAuD1HvY,7527
161
161
  hestia_earth/models/faostat2018/product/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
162
162
  hestia_earth/models/faostat2018/product/price.py,sha256=X7Zxa-rXthzYdgw2lzybbHc-oKGE5nyXpBn-BfZC_7w,7753
163
163
  hestia_earth/models/frischknechtEtAl2000/__init__.py,sha256=Fixyy9UwoCGP5-MHyJu_ctS40SQ2imfvZo8a547029U,421
@@ -201,7 +201,7 @@ hestia_earth/models/haversineFormula/transport/__init__.py,sha256=47DEQpj8HBSa-_
201
201
  hestia_earth/models/haversineFormula/transport/distance.py,sha256=163KrmKzlEQuKYT1ZvpPgmKlv_-mmvxp0A1_uKya99w,4203
202
202
  hestia_earth/models/hestia/__init__.py,sha256=o5vAmPzSaK9XPgL8GCne3-lugfCOgZhHELYolNgqyyY,407
203
203
  hestia_earth/models/hestia/landCover.py,sha256=odmRx30UhT_MyOj5jIVtsmLsTcxqC4l-QkCXae_MQEo,28105
204
- hestia_earth/models/hestia/seed_emissions.py,sha256=a-jUBoU5sb_KUTMInvB5Ios2BwGobHtmPHM_tzXEdHo,10576
204
+ hestia_earth/models/hestia/seed_emissions.py,sha256=omvFmrwngZyonoqxadAy8C0YjUbNV1isqfsOjUF_D5o,11025
205
205
  hestia_earth/models/impact_assessment/__init__.py,sha256=gTR_PhWps593fPhm-V826VLLrZVH8CNQTqxExB7GGNI,418
206
206
  hestia_earth/models/impact_assessment/allocationMethod.py,sha256=Qz41nTtMpDCcPy7PjhVtafE13dfJLX_D3Rg3yNhdY_Q,1279
207
207
  hestia_earth/models/impact_assessment/emissions.py,sha256=mJsTasM-5AFtZeKzQ9Q38SDLcnl_lQwfjQ52ro2Pjmg,3444
@@ -387,15 +387,15 @@ hestia_earth/models/lcImpactCertainEffectsInfinite/damageToTerrestrialEcosystems
387
387
  hestia_earth/models/lcImpactCertainEffectsInfinite/damageToTerrestrialEcosystemsTerrestrialEcotoxicity.py,sha256=dyUfAD74qEzfIGFei1IcI2RfQXgkjns7AhJ0iYzgCBk,963
388
388
  hestia_earth/models/linkedImpactAssessment/__init__.py,sha256=SPP09DMS4zUThyQfcgLpivFwsey4WSt77CDMYHJPKWE,423
389
389
  hestia_earth/models/linkedImpactAssessment/emissions.py,sha256=ZU68ljsidyqIKIdFqtR9mze5Am0fK_PE1x4GBTwBTr0,6395
390
- hestia_earth/models/linkedImpactAssessment/freshwaterWithdrawalsInputsProduction.py,sha256=DSLX_aEWaUFcFZRD46bG5lIQ4TtAtIqH-sMkVCJH2Dg,990
391
- hestia_earth/models/linkedImpactAssessment/landOccupationInputsProduction.py,sha256=SggB_4tpiKNeb6TIQWBm-X9VwG4pzLoyHdK8JroRIsE,576
392
- hestia_earth/models/linkedImpactAssessment/landTransformation100YearAverageInputsProduction.py,sha256=DPBAr6RxM2X7rL1yNogqxHYdm-ZDYp_jFZaNmO1g_-o,1148
393
- hestia_earth/models/linkedImpactAssessment/landTransformation20YearAverageInputsProduction.py,sha256=5TbUVK5Tkm9UGtzq3iSFk--f_oc3fA4LyihqInegphI,1145
394
- hestia_earth/models/linkedImpactAssessment/utils.py,sha256=WgWhFgrPC-ZJuoAVhLWZvJ7NIDj6QXdblGKOu6jsr-s,3965
390
+ hestia_earth/models/linkedImpactAssessment/freshwaterWithdrawalsInputsProduction.py,sha256=bWTUaqff4u0Q2fVJBl-S2mXIougZwOBbeGyWoFznJd4,1115
391
+ hestia_earth/models/linkedImpactAssessment/landOccupationInputsProduction.py,sha256=yLC9SiZx9Es9ADVAoW1Db1zs-QQTTjQUmcFOQGAdz28,1119
392
+ hestia_earth/models/linkedImpactAssessment/landTransformation100YearAverageInputsProduction.py,sha256=5ypKZWmMsZhA7f6fEqJ8pMxiiOrlDgdnx6PKLJr5aLE,1206
393
+ hestia_earth/models/linkedImpactAssessment/landTransformation20YearAverageInputsProduction.py,sha256=wjQhCIrdsP99dCaudGx0o2pfLgLV1I-F53zxVi3UQDA,1203
394
+ hestia_earth/models/linkedImpactAssessment/utils.py,sha256=QSf-DPrsPfermpd4vKYAvx2k_vkv8ozpDGhb4LUc-5o,4305
395
395
  hestia_earth/models/mocking/__init__.py,sha256=9VX50c-grz-snfd-7MBS0KfF7AadtbKuj7kK6PqtsgE,687
396
396
  hestia_earth/models/mocking/build_mock_search.py,sha256=p15ccEUmkmLp1RiGNznxMz3OFHbI8P1-29ExuohiQN8,1355
397
397
  hestia_earth/models/mocking/mock_search.py,sha256=ccFe_WrI73JElFmxp4hPNLCX7eeU--lBC1JFR901KJY,1069
398
- hestia_earth/models/mocking/search-results.json,sha256=zJwxkbn7uvCFScsfxub4Ad26J8pMRVh_9ZILRfy6qnE,101694
398
+ hestia_earth/models/mocking/search-results.json,sha256=gIseVZyk9Vw9TuB1imvmK2V5oMdqLtpQhrr48c_FHKE,101691
399
399
  hestia_earth/models/pooreNemecek2018/__init__.py,sha256=nPboL7ULJzL5nJD5q7q9VOZt_fxbKVm8fmn1Az5YkVY,417
400
400
  hestia_earth/models/pooreNemecek2018/aboveGroundCropResidueTotal.py,sha256=Qt-mel4dkhK6N5uUOutNOinCTFjbjtGzITaaI0LvYc4,2396
401
401
  hestia_earth/models/pooreNemecek2018/belowGroundCropResidue.py,sha256=JT0RybbvWVlo01FO8K0Yj41HrEaJT3Kj1xfayr2X-xw,2315
@@ -1154,8 +1154,8 @@ tests/models/utils/test_term.py,sha256=M5Sa26v2gzQYbZ4H_fo7DspnaCx__-WtL-MULGapC
1154
1154
  tests/models/utils/test_time_series.py,sha256=LMhRPf8rp3nAriKAC-2K3FDkrMWntRTUUCERw7Lt68g,2686
1155
1155
  tests/models/webbEtAl2012AndSintermannEtAl2012/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
1156
1156
  tests/models/webbEtAl2012AndSintermannEtAl2012/test_nh3ToAirOrganicFertiliser.py,sha256=qi2FNXS5Af2WDtm7nq_FsprH3BfCF0XxnE0XHmC4aIY,2244
1157
- hestia_earth_models-0.65.0.dist-info/LICENSE,sha256=AC7h7GAgCZGJK_Tzh6LUCrML9gQEfowWwecEw2w54QM,1154
1158
- hestia_earth_models-0.65.0.dist-info/METADATA,sha256=2e3GQ347IfJjjuBJVQUd8BIykz5h7WfEZagPofz2MI4,3344
1159
- hestia_earth_models-0.65.0.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
1160
- hestia_earth_models-0.65.0.dist-info/top_level.txt,sha256=1dqA9TqpOLTEgpqa-YBsmbCmmNU1y56AtfFGEceZ2A0,19
1161
- hestia_earth_models-0.65.0.dist-info/RECORD,,
1157
+ hestia_earth_models-0.65.1.dist-info/LICENSE,sha256=TD25LoiRJsA5CPUNrcyt1PXlGcbUGFMAeZoBcfCrCNE,1154
1158
+ hestia_earth_models-0.65.1.dist-info/METADATA,sha256=qPejp4e_oqYXsFZWAtgNUHrJ-hg9JPBUbX_QDhxu0So,3344
1159
+ hestia_earth_models-0.65.1.dist-info/WHEEL,sha256=tZoeGjtWxWRfdplE7E3d45VPlLNQnvbKiYnx7gwAy8A,92
1160
+ hestia_earth_models-0.65.1.dist-info/top_level.txt,sha256=1dqA9TqpOLTEgpqa-YBsmbCmmNU1y56AtfFGEceZ2A0,19
1161
+ hestia_earth_models-0.65.1.dist-info/RECORD,,