hestia-earth-models 0.64.4__py3-none-any.whl → 0.64.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hestia-earth-models might be problematic. Click here for more details.

Files changed (62) hide show
  1. hestia_earth/models/blonkConsultants2016/ch4ToAirNaturalVegetationBurning.py +5 -9
  2. hestia_earth/models/blonkConsultants2016/co2ToAirAboveGroundBiomassStockChangeLandUseChange.py +5 -9
  3. hestia_earth/models/blonkConsultants2016/n2OToAirNaturalVegetationBurningDirect.py +6 -13
  4. hestia_earth/models/cycle/animal/input/properties.py +6 -0
  5. hestia_earth/models/cycle/completeness/soilAmendment.py +3 -2
  6. hestia_earth/models/cycle/concentrateFeed.py +10 -4
  7. hestia_earth/models/cycle/input/properties.py +6 -0
  8. hestia_earth/models/cycle/liveAnimal.py +2 -2
  9. hestia_earth/models/cycle/milkYield.py +3 -3
  10. hestia_earth/models/cycle/otherSitesArea.py +59 -0
  11. hestia_earth/models/cycle/otherSitesUnusedDuration.py +9 -8
  12. hestia_earth/models/cycle/pastureSystem.py +3 -2
  13. hestia_earth/models/cycle/product/properties.py +6 -0
  14. hestia_earth/models/cycle/siteArea.py +83 -0
  15. hestia_earth/models/cycle/stockingDensityAnimalHousingAverage.py +28 -16
  16. hestia_earth/models/cycle/utils.py +1 -1
  17. hestia_earth/models/environmentalFootprintV3/soilQualityIndexLandOccupation.py +128 -0
  18. hestia_earth/models/environmentalFootprintV3/utils.py +17 -0
  19. hestia_earth/models/ipcc2006/co2ToAirOrganicSoilCultivation.py +17 -6
  20. hestia_earth/models/ipcc2006/n2OToAirOrganicSoilCultivationDirect.py +17 -6
  21. hestia_earth/models/ipcc2019/co2ToAirCarbonStockChange_utils.py +904 -0
  22. hestia_earth/models/ipcc2019/co2ToAirSoilOrganicCarbonStockChangeManagementChange.py +70 -618
  23. hestia_earth/models/mocking/search-results.json +395 -323
  24. hestia_earth/models/pooreNemecek2018/saplings.py +10 -7
  25. hestia_earth/models/site/management.py +18 -14
  26. hestia_earth/models/utils/__init__.py +38 -0
  27. hestia_earth/models/utils/array_builders.py +63 -52
  28. hestia_earth/models/utils/blank_node.py +137 -82
  29. hestia_earth/models/utils/descriptive_stats.py +3 -239
  30. hestia_earth/models/utils/feedipedia.py +15 -2
  31. hestia_earth/models/utils/landCover.py +9 -0
  32. hestia_earth/models/utils/lookup.py +13 -2
  33. hestia_earth/models/utils/measurement.py +3 -28
  34. hestia_earth/models/utils/stats.py +429 -0
  35. hestia_earth/models/utils/term.py +15 -3
  36. hestia_earth/models/utils/time_series.py +90 -0
  37. hestia_earth/models/version.py +1 -1
  38. {hestia_earth_models-0.64.4.dist-info → hestia_earth_models-0.64.5.dist-info}/METADATA +1 -1
  39. {hestia_earth_models-0.64.4.dist-info → hestia_earth_models-0.64.5.dist-info}/RECORD +62 -48
  40. tests/models/blonkConsultants2016/test_ch4ToAirNaturalVegetationBurning.py +2 -2
  41. tests/models/blonkConsultants2016/test_co2ToAirAboveGroundBiomassStockChangeLandUseChange.py +2 -2
  42. tests/models/blonkConsultants2016/test_n2OToAirNaturalVegetationBurningDirect.py +2 -2
  43. tests/models/cycle/completeness/test_soilAmendment.py +1 -1
  44. tests/models/cycle/test_liveAnimal.py +1 -1
  45. tests/models/cycle/test_milkYield.py +1 -1
  46. tests/models/cycle/test_otherSitesArea.py +68 -0
  47. tests/models/cycle/test_siteArea.py +51 -0
  48. tests/models/cycle/test_stockingDensityAnimalHousingAverage.py +2 -2
  49. tests/models/environmentalFootprintV3/test_soilQualityIndexLandOccupation.py +136 -0
  50. tests/models/ipcc2019/test_co2ToAirCarbonStockChange_utils.py +50 -0
  51. tests/models/ipcc2019/test_co2ToAirSoilOrganicCarbonStockChangeManagementChange.py +1 -39
  52. tests/models/pooreNemecek2018/test_saplings.py +1 -1
  53. tests/models/site/test_management.py +3 -153
  54. tests/models/utils/test_array_builders.py +67 -6
  55. tests/models/utils/test_blank_node.py +191 -7
  56. tests/models/utils/test_descriptive_stats.py +2 -86
  57. tests/models/utils/test_measurement.py +1 -22
  58. tests/models/utils/test_stats.py +186 -0
  59. tests/models/utils/test_time_series.py +88 -0
  60. {hestia_earth_models-0.64.4.dist-info → hestia_earth_models-0.64.5.dist-info}/LICENSE +0 -0
  61. {hestia_earth_models-0.64.4.dist-info → hestia_earth_models-0.64.5.dist-info}/WHEEL +0 -0
  62. {hestia_earth_models-0.64.4.dist-info → hestia_earth_models-0.64.5.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,429 @@
1
+ from functools import reduce
2
+ from numpy import abs, array, concatenate, exp, float64, inf, pi, prod, random, sign, sqrt
3
+ from numpy.typing import NDArray
4
+ from typing import Union
5
+
6
+
7
+ def calc_z_critical(
8
+ confidence_interval: float,
9
+ n_sided: int = 2
10
+ ) -> float64:
11
+ """
12
+ Calculate the z-critical value from the confidence interval.
13
+
14
+ Parameters
15
+ ----------
16
+ confidence_interval : float
17
+ The confidence interval as a percentage between 0 and 100%.
18
+ n_sided : int, optional
19
+ The number of tails (default value = `2`).
20
+
21
+ Returns
22
+ -------
23
+ float64
24
+ The z-critical value as a floating point between 0 and infinity.
25
+ """
26
+ alpha = 1 - confidence_interval / 100
27
+ return _normal_ppf(1 - alpha / n_sided)
28
+
29
+
30
+ def _normal_ppf(q: float64, tol: float64 = 1e-10) -> float64:
31
+ """
32
+ Calculates the percent point function (PPF), also known as the inverse cumulative distribution function (CDF), of a
33
+ standard normal distribution using the Newton-Raphson method.
34
+
35
+ Parameters
36
+ ----------
37
+ q : float64
38
+ The quantile at which to evaluate the PPF.
39
+ tol : float64, optional
40
+ The tolerance for the Newton-Raphson method. Defaults to 1e-10.
41
+
42
+ Returns
43
+ -------
44
+ float64
45
+ The PPF value at the given quantile.
46
+ """
47
+ INITIAL_GUESS = 0
48
+ MAX_ITER = 100
49
+
50
+ def step(x):
51
+ """Perform one step of the Newton-Raphson method."""
52
+ x_new = x - (_normal_cdf(x) - q) / _normal_pdf(x)
53
+ return x_new if abs(x_new - x) >= tol else x
54
+
55
+ return (
56
+ inf if q == 1 else
57
+ -inf if q == 0 else
58
+ reduce(lambda x, _: step(x), range(MAX_ITER), INITIAL_GUESS)
59
+ )
60
+
61
+
62
+ def _normal_cdf(x: float64) -> float64:
63
+ """
64
+ Calculates the cumulative distribution function (CDF) of a standard normal distribution for a single value using a
65
+ custom error function (erf).
66
+
67
+ Parameters
68
+ ----------
69
+ x : float64
70
+ The point at which to evaluate the CDF.
71
+
72
+ Returns
73
+ -------
74
+ float64
75
+ The CDF value at the given point.
76
+ """
77
+ return 0.5 * (1 + _erf(x / sqrt(2)))
78
+
79
+
80
+ def _erf(x: float64) -> float64:
81
+ """
82
+ Approximates the error function of a standard normal distribution using a numerical approximation based on
83
+ Abramowitz and Stegun formula 7.1.26.
84
+
85
+ Parameters
86
+ ----------
87
+ x : float64
88
+ The input value.
89
+
90
+ Returns
91
+ -------
92
+ float64
93
+ The approximated value of the error function.
94
+ """
95
+ # constants
96
+ A_1 = 0.254829592
97
+ A_2 = -0.284496736
98
+ A_3 = 1.421413741
99
+ A_4 = -1.453152027
100
+ A_5 = 1.061405429
101
+ P = 0.3275911
102
+
103
+ # Save the sign of x
104
+ sign_ = sign(x)
105
+ x_ = abs(x)
106
+
107
+ # A&S formula 7.1.26
108
+ t = 1.0 / (1.0 + P * x_)
109
+ y = 1.0 - (((((A_5 * t + A_4) * t) + A_3) * t + A_2) * t + A_1) * t * exp(-x_ * x_)
110
+
111
+ return sign_ * y
112
+
113
+
114
+ def _normal_pdf(x: float64) -> float64:
115
+ """
116
+ Calculates the probability density function (PDF) of a standard normal distribution for a single value.
117
+
118
+ Parameters
119
+ ----------
120
+ x : float64
121
+ The point at which to evaluate the PDF.
122
+
123
+ Returns
124
+ -------
125
+ float64
126
+ The PDF value at the given point.
127
+ """
128
+ return 1 / sqrt(2 * pi) * exp(-0.5 * x**2)
129
+
130
+
131
+ def _calc_confidence_level(
132
+ z_critical: float64,
133
+ n_sided: int = 2
134
+ ) -> float64:
135
+ """
136
+ Calculate the confidence interval from the z-critical value.
137
+
138
+ Parameters
139
+ ----------
140
+ z_critical_value : np.float64
141
+ The confidence interval as a floating point number between 0 and infinity.
142
+ n_sided : int, optional
143
+ The number of tails (default value = `2`).
144
+
145
+ Returns
146
+ -------
147
+ np.float64
148
+ The confidence interval as a percentage between 0 and 100%.
149
+ """
150
+ alpha = (1 - _normal_cdf(z_critical)) * n_sided
151
+ return (1 - alpha) * 100
152
+
153
+
154
+ def calc_required_iterations_monte_carlo(
155
+ confidence_level: float,
156
+ precision: float,
157
+ sd: float
158
+ ) -> int:
159
+ """
160
+ Calculate the number of iterations required for a Monte Carlo simulation to have a desired precision, subject to a
161
+ given confidence level.
162
+
163
+ Parameters
164
+ ----------
165
+ confidence_level : float
166
+ The confidence level, as a percentage out of 100, that the precision should be subject too (i.e., we are x%
167
+ sure that the sample mean deviates from the true populatation mean by less than the desired precision).
168
+ precision : float
169
+ The desired precision as a floating point value (i.e., if the Monte Carlo simulation will be used to estimate
170
+ `organicCarbonPerHa` to a precision of 100 kg C ha-1 this value should be 100).
171
+ sd : float
172
+ The standard deviation of the sample. This can be estimated by running the model 500 times (a number that does
173
+ not take too much time to run but is large enough for the sample standard deviation to converge reasonably
174
+ well).
175
+
176
+ Returns
177
+ -------
178
+ int
179
+ The required number of iterations.
180
+ """
181
+ z_critical_value = calc_z_critical(confidence_level)
182
+ return round(((sd * z_critical_value) / precision) ** 2)
183
+
184
+
185
+ def calc_confidence_level_monte_carlo(
186
+ n_iterations: int,
187
+ precision: float,
188
+ sd: float
189
+ ) -> float:
190
+ """
191
+ Calculate the confidence level that the sample mean calculated by the Monte Carlo simulation deviates from the
192
+ true population mean by less than the desired precision.
193
+
194
+ Parameters
195
+ ----------
196
+ n_iterations : int
197
+ The number of iterations that the Monte Carlo simulation was run for.
198
+ precision : float
199
+ The desired precision as a floating point value (i.e., if the Monte Carlo simulation will be used to estimate
200
+ `organicCarbonPerHa` to a precision of 100 kg C ha-1 this value should be 100).
201
+ sd : float
202
+ The standard deviation of the sample.
203
+
204
+ Returns
205
+ -------
206
+ float
207
+ The confidence level, as a percentage out of 100, that the precision should be subject too (i.e., we are x%
208
+ sure that the sample mean deviates from the true populatation mean by less than the desired precision).
209
+ """
210
+ return _calc_confidence_level(precision*sqrt(n_iterations)/sd)
211
+
212
+
213
+ def calc_precision_monte_carlo(
214
+ confidence_level: float,
215
+ n_iterations: int,
216
+ sd: float
217
+ ) -> float:
218
+ """
219
+ Calculate the +/- precision of a Monte Carlo simulation for a desired confidence level.
220
+
221
+ Parameters
222
+ ----------
223
+ confidence_level : float
224
+ The confidence level, as a percentage out of 100, that the precision should be subject too (i.e., we are x%
225
+ sure that the sample mean deviates from the true populatation mean by less than the desired precision).
226
+ n_iterations : int
227
+ The number of iterations that the Monte Carlo simulation was run for.
228
+ sd : float
229
+ The standard deviation of the sample.
230
+
231
+ Returns
232
+ -------
233
+ float
234
+ The precision of the sample mean estimated by the Monte Carlo model as a floating point value with the same
235
+ units as the estimated mean.
236
+ """
237
+ z_critical = calc_z_critical(confidence_level)
238
+ return (sd*z_critical)/sqrt(n_iterations)
239
+
240
+
241
+ def truncnorm_rvs(
242
+ a: float,
243
+ b: float,
244
+ loc: float,
245
+ scale: float,
246
+ shape: Union[int, tuple[int, ...]],
247
+ seed: Union[int, random.Generator, None] = None
248
+ ) -> NDArray:
249
+ """
250
+ Generate random samples from a truncated normal distribution. Unlike the `scipy` equivalent, the `a` and `b` values
251
+ are the abscissae at which we wish to truncate the distribution (as opposed to the number of standard deviations
252
+ from `loc`).
253
+
254
+ Parameters
255
+ ----------
256
+ a : float
257
+ The lower bound of the distribution.
258
+ b : float
259
+ The upper bound of the distribution.
260
+ loc : float
261
+ Mean ("centre") of the distribution.
262
+ scale : float
263
+ Standard deviation (spread or "width") of the distribution. Must be non-negative.
264
+ size : int | tuple[int, ...]
265
+ Output shape. If the given shape is, e.g., (m, n, k), then m * n * k samples are drawn.
266
+ seed : int | Generator | None, optional
267
+ A seed to initialize the BitGenerator. If passed a Generator, it will be returned unaltered. If `None`, then
268
+ fresh, unpredictable entropy will be pulled from the OS.
269
+
270
+ Returns
271
+ -------
272
+ NDArray
273
+ Array of samples.
274
+ """
275
+ size = prod(shape)
276
+ samples = array([])
277
+ rng = random.default_rng(seed)
278
+
279
+ while samples.size < size:
280
+ samples_temp = rng.normal(loc, scale, (size - samples.size) * 2)
281
+ valid_samples = samples_temp[(a <= samples_temp) & (samples_temp <= b)]
282
+ samples = concatenate([samples, valid_samples])
283
+
284
+ return samples[:size].reshape(shape)
285
+
286
+
287
+ def add_normal_distributions(
288
+ mu_1: float, sigma_1: float, mu_2: float, sigma_2: float, rho: float = 0
289
+ ) -> tuple[float, float]:
290
+ """
291
+ Add together two normal distributions, with optional correlation.
292
+
293
+ Given two normal distributions **X<sub>1</sub> ~ N(mu<sub>1</sub>, sigma<sub>1</sub><sup>2</sup>)** and
294
+ **X<sub>2</sub> ~ N(mu<sub>2</sub>, sigma<sub>2</sub><sup>2</sup>)**, this function calculates the resulting mean
295
+ and standard deviation of the sum **Z = X<sub>1</sub> + X<sub>2</sub>**, taking into account the correlation
296
+ between them.
297
+
298
+ n.b. Positive correlations (`rho` > `0`) increase the standard deviation of **Z** because positively correlated
299
+ variables tend to move together, increasing combined uncertainty. Negative correlations (`rho` < `0`) reduces the
300
+ standard deviation since the variables move in opposite directions, cancelling out some of the variability.
301
+ Independant variables (`rho` = `0`) result in an intermediate level of uncertainty.
302
+
303
+ Parameters
304
+ ----------
305
+ mu_1 : float
306
+ Mean of the first normal distribution (X<sub>1</sub>).
307
+ sigma_1 : float
308
+ Standard deviation of the first normal distribution (X<sub>1</sub>).
309
+ mu_2 : float
310
+ Mean of the second normal distribution (X<sub>2</sub>).
311
+ sigma_2 : float
312
+ Standard deviation of the second normal distribution (X<sub>2</sub>).
313
+ rho : float, optional
314
+ Correlation coefficient between **X<sub>1</sub>** and **X<sub>2</sub>**. `rho` must be a value between -1
315
+ (perfectly negative correlation) and 1 (perfectly positive correlation). Default is 0 (independent variables).
316
+
317
+ Returns
318
+ -------
319
+ tuple[float, float]
320
+ A tuple in the shape `(mu_sum, sigma_sum)` containing the mean and standard deviation of the distribution
321
+ **Z = X<sub>1</sub> + X<sub>2</sub>**.
322
+ """
323
+ mu_sum = mu_1 + mu_2
324
+ sigma_sum = sqrt(
325
+ sigma_1 ** 2
326
+ + sigma_2 ** 2
327
+ + 2 * rho * sigma_1 * sigma_2
328
+ )
329
+ return mu_sum, sigma_sum
330
+
331
+
332
+ def subtract_normal_distributions(
333
+ mu_1: float, sigma_1: float, mu_2: float, sigma_2: float, rho: float = 0
334
+ ) -> tuple[float, float]:
335
+ """
336
+ Subtract a normal distribution from another, with optional correlation.
337
+
338
+ Given two normal distributions **X<sub>1</sub> ~ N(mu<sub>1</sub>, sigma<sub>1</sub><sup>2</sup>)** and
339
+ **X<sub>2</sub> ~ N(mu<sub>2</sub>, sigma<sub>2</sub><sup>2</sup>)**, this function calculates the resulting mean
340
+ and standard deviation of the difference **Z = X<sub>1</sub> - X<sub>2</sub>**, taking into account the correlation
341
+ between them.
342
+
343
+ n.b. Positive correlations (`rho` > `0`) reduce the standard deviation of **Z** because positively correlated
344
+ variables tend to move together, cancelling out some of the variability when subtracted. Negative correlations
345
+ (`rho` < `0`) increase the standard deviation since the variables move in opposite directions, amplifying the
346
+ variability when subtracted. Independant variables (`rho` = `0`) result in an intermediate level of uncertainty.
347
+
348
+ Parameters
349
+ ----------
350
+ mu_1 : float
351
+ Mean of the first normal distribution (X<sub>1</sub>).
352
+ sigma_1 : float
353
+ Standard deviation of the first normal distribution (X<sub>1</sub>).
354
+ mu_2 : float
355
+ Mean of the second normal distribution (X<sub>2</sub>).
356
+ sigma_2 : float
357
+ Standard deviation of the second normal distribution (X<sub>2</sub>).
358
+ rho : float, optional
359
+ Correlation coefficient between **X<sub>1</sub>** and **X<sub>2</sub>**. `rho` must be a value between -1
360
+ (perfectly negative correlation) and 1 (perfectly positive correlation). Default is 0 (independent variables).
361
+
362
+ Returns
363
+ -------
364
+ tuple[float, float]
365
+ A tuple in the shape `(mu_diff, sigma_diff)` containing the mean and standard deviation of the distribution
366
+ **Z = X<sub>1</sub> - X<sub>2</sub>**.
367
+ """
368
+ mu_sum = mu_1 - mu_2
369
+ sigma_sum = sqrt(
370
+ sigma_1 ** 2
371
+ + sigma_2 ** 2
372
+ - 2 * rho * sigma_1 * sigma_2
373
+ )
374
+ return mu_sum, sigma_sum
375
+
376
+
377
+ def lerp_normal_distributions(
378
+ mu_1: float,
379
+ sigma_1: float,
380
+ mu_2: float,
381
+ sigma_2: float,
382
+ alpha: float,
383
+ rho: float = 0
384
+ ) -> tuple[float, float]:
385
+ """
386
+ Linearly interpolate between two normal distributions, with optional correlation.
387
+
388
+ Given two normal distributions **X<sub>1</sub> ~ N(mu<sub>1</sub>, sigma<sub>1</sub><sup>2</sup>)** and
389
+ **X<sub>2</sub> ~ N(mu<sub>2</sub>, sigma<sub>2</sub><sup>2</sup>)**, this function calculates the resulting mean
390
+ and standard deviation of the interpolated distribution **Z = (1 - alpha) * X<sub>1</sub> + alpha * X<sub>2</sub>**,
391
+ taking into account the correlation between them.
392
+
393
+ n.b. Positive correlations (`rho` > `0`) increase the standard deviation of **Z** because positively correlated
394
+ variables tend to move together, increasing combined uncertainty. Negative correlations (`rho` < `0`) reduces the
395
+ standard deviation since the variables move in opposite directions, cancelling out some of the variability.
396
+ Independant variables (`rho` = `0`) result in an intermediate level of uncertainty.
397
+
398
+ Parameters
399
+ ----------
400
+ mu_1 : float
401
+ Mean of the first normal distribution (X<sub>1</sub>).
402
+ sigma_1 : float
403
+ Standard deviation of the first normal distribution (X<sub>1</sub>).
404
+ mu_2 : float
405
+ Mean of the second normal distribution (X<sub>2</sub>).
406
+ sigma_2 : float
407
+ Standard deviation of the second normal distribution (X<sub>2</sub>).
408
+ alpha : float
409
+ Interpolation factor (0 <= alpha <= 1). A value of 0 results in X1, a value of 1 results in X2, and values
410
+ between 0 and 1 interpolate between the two. Values of below 0 and above 1 will extrapolate beyond the
411
+ X<sub>1</sub> and X<sub>2</sub> respectively.
412
+ rho : float, optional
413
+ Correlation coefficient between **X<sub>1</sub>** and **X<sub>2</sub>**. `rho` must be a value between -1
414
+ (perfectly negative correlation) and 1 (perfectly positive correlation). Default is 0 (independent variables).
415
+
416
+ Returns
417
+ -------
418
+ tuple[float, float]
419
+ A tuple in the shape `(mu_Z sigma_Z)` containing the mean and standard deviation of the distribution
420
+ **Z = (1 - alpha) * X<sub>1</sub> + alpha * X<sub>2</sub>**.
421
+ """
422
+ mu_Z = (1 - alpha) * mu_1 + alpha * mu_2
423
+ var_Z = (
424
+ ((1 - alpha) ** 2) * sigma_1 ** 2
425
+ + (alpha ** 2) * sigma_2 ** 2
426
+ + 2 * alpha * (1 - alpha) * rho * sigma_1 * sigma_2
427
+ )
428
+ sigma_Z = sqrt(var_Z)
429
+ return mu_Z, sigma_Z
@@ -1,9 +1,9 @@
1
1
  from hestia_earth.schema import SchemaType, TermTermType, SiteSiteType
2
- from hestia_earth.utils.lookup import download_lookup, get_table_value, column_name
3
2
  from hestia_earth.utils.api import find_node, search
3
+ from hestia_earth.utils.lookup import download_lookup, get_table_value, column_name
4
4
 
5
- from ..log import debugMissingLookup
6
5
  from .constant import Units
6
+ from ..log import debugMissingLookup
7
7
 
8
8
  LIMIT = 1000
9
9
 
@@ -679,4 +679,16 @@ def get_land_cover_siteTypes():
679
679
  "should": [{"match": {"name": siteType.value}} for siteType in SiteSiteType],
680
680
  "minimum_should_match": 1
681
681
  },
682
- })
682
+ }, limit=LIMIT)
683
+
684
+
685
+ def download_all_land_cover_terms():
686
+ result = search({
687
+ "bool": {
688
+ "must": [
689
+ {"match": {"@type": "Term"}},
690
+ {"match": {"termType": "landCover"}}
691
+ ]
692
+ },
693
+ }, fields=['@id', 'nameNormalized', 'subClassOf'], limit=10000)
694
+ return result
@@ -0,0 +1,90 @@
1
+ from hestia_earth.utils.date import diff_in_days
2
+
3
+ from itertools import product
4
+ from numpy import array, exp, log
5
+ from numpy.typing import NDArray
6
+ from typing import Callable
7
+
8
+
9
+ def exponential_decay(t: float, tau: float = 1, initial_value: float = 1, final_value: float = 0) -> float:
10
+ """
11
+ Calculate the exponentially decaying value based on the time elapsed.
12
+
13
+ Parameters
14
+ ----------
15
+ t : float
16
+ The time elapsed.
17
+ tau : float, optional
18
+ The decay constant, related to the half-life (default = 1).
19
+ initial_value : float, optional
20
+ The value at time t = 0 (default = 1).
21
+ final_value : float, optional
22
+ The value as time approaches infinity (default = 0).
23
+
24
+ Returns
25
+ -------
26
+ float
27
+ The exponentially decaying value based on the given parameters.
28
+ """
29
+ return final_value + (initial_value - final_value) * exp(-t / tau)
30
+
31
+
32
+ def calc_tau(half_life: float) -> float:
33
+ """
34
+ Calculate the decay constant (tau) for an exponential_decay function from the half-life.
35
+
36
+ Parameters
37
+ ----------
38
+ half_life : float
39
+ The half-life period over which the value transitions to half its initial value.
40
+
41
+ Returns
42
+ -------
43
+ float
44
+ The decay constant tau corresponding to the specified half-life.
45
+ """
46
+ return half_life / log(2)
47
+
48
+
49
+ def compute_time_series_correlation_matrix(
50
+ datestrs: list[str],
51
+ delta_time_fn: Callable[[str, str], float] = diff_in_days,
52
+ decay_fn: Callable[[float], float] = exponential_decay
53
+ ) -> NDArray:
54
+ """
55
+ Computes a correlation matrix for a list of time points (dates). Correlations decay as the time difference between
56
+ dates increases. The time difference calculation and the decay function can be customized.
57
+
58
+ n.b. The default decay function produces correlations between 0 and 1. Alternative decay functions may allow for
59
+ negative correlations, giving values between -1 and 1.
60
+
61
+ n.b. The function assumes that the `delta_time_fn` and `decay_fn` are appropriate for the format of the provided
62
+ date strings.
63
+
64
+ Parameters
65
+ ----------
66
+ datestrs : list[str]
67
+ List of date strings representing time points in the time series.
68
+
69
+ delta_time_fn : Callable[[str, str], float], optional
70
+ Function to calculate the time difference between two date strings. Defaults to `diff_in_days`, which returns
71
+ the difference in days. The function must have the following signature `f(date_1: str, date_2: str) -> float`.
72
+
73
+ decay_fn : Callable[[float], float], optional
74
+ Function to apply decay to the time differences. Defaults to `exponential_decay`, which models an exponential
75
+ decay in correlation. The function must have the following signature `f(delta_time: float) -> float`.
76
+
77
+ Returns
78
+ -------
79
+ NDArray
80
+ A symmetric 2D array with shape `(len(datestrs), len(datestrs))` containing correlation values between time
81
+ points, with all values between -1 and 1.
82
+ """
83
+ n_dates = len(datestrs)
84
+
85
+ correlation_matrix = array([
86
+ decay_fn(abs(delta_time_fn(date_1, date_2)))
87
+ for date_1, date_2 in product(datestrs, repeat=2)
88
+ ]).reshape(n_dates, n_dates)
89
+
90
+ return correlation_matrix
@@ -1 +1 @@
1
- VERSION = '0.64.4'
1
+ VERSION = '0.64.5'
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: hestia-earth-models
3
- Version: 0.64.4
3
+ Version: 0.64.5
4
4
  Summary: HESTIA's set of modules for filling gaps in the activity data using external datasets (e.g. populating soil properties with a geospatial dataset using provided coordinates) and internal lookups (e.g. populating machinery use from fuel use). Includes rules for when gaps should be filled versus not (e.g. never gap fill yield, gap fill crop residue if yield provided etc.).
5
5
  Home-page: https://gitlab.com/hestia-earth/hestia-engine-models
6
6
  Author: HESTIA Team