hestia-earth-models 0.61.7__py3-none-any.whl → 0.61.8__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hestia-earth-models might be problematic. Click here for more details.

Files changed (43) hide show
  1. hestia_earth/models/cycle/completeness/electricityFuel.py +56 -0
  2. hestia_earth/models/emepEea2019/nh3ToAirInorganicFertiliser.py +44 -59
  3. hestia_earth/models/geospatialDatabase/histosol.py +4 -0
  4. hestia_earth/models/ipcc2006/co2ToAirOrganicSoilCultivation.py +4 -2
  5. hestia_earth/models/ipcc2006/n2OToAirOrganicSoilCultivationDirect.py +1 -1
  6. hestia_earth/models/ipcc2019/aboveGroundCropResidueTotal.py +1 -1
  7. hestia_earth/models/ipcc2019/belowGroundCropResidue.py +1 -1
  8. hestia_earth/models/ipcc2019/ch4ToAirExcreta.py +1 -1
  9. hestia_earth/models/ipcc2019/co2ToAirSoilOrganicCarbonStockChangeManagementChange.py +511 -458
  10. hestia_earth/models/ipcc2019/co2ToAirUreaHydrolysis.py +5 -1
  11. hestia_earth/models/ipcc2019/organicCarbonPerHa.py +117 -3881
  12. hestia_earth/models/ipcc2019/organicCarbonPerHa_tier_1_utils.py +2060 -0
  13. hestia_earth/models/ipcc2019/organicCarbonPerHa_tier_2_utils.py +1630 -0
  14. hestia_earth/models/ipcc2019/organicCarbonPerHa_utils.py +324 -0
  15. hestia_earth/models/mocking/search-results.json +252 -252
  16. hestia_earth/models/site/organicCarbonPerHa.py +58 -44
  17. hestia_earth/models/site/soilMeasurement.py +18 -13
  18. hestia_earth/models/utils/__init__.py +28 -0
  19. hestia_earth/models/utils/array_builders.py +578 -0
  20. hestia_earth/models/utils/blank_node.py +2 -3
  21. hestia_earth/models/utils/descriptive_stats.py +285 -0
  22. hestia_earth/models/utils/emission.py +73 -2
  23. hestia_earth/models/utils/inorganicFertiliser.py +2 -2
  24. hestia_earth/models/utils/measurement.py +118 -4
  25. hestia_earth/models/version.py +1 -1
  26. {hestia_earth_models-0.61.7.dist-info → hestia_earth_models-0.61.8.dist-info}/METADATA +1 -1
  27. {hestia_earth_models-0.61.7.dist-info → hestia_earth_models-0.61.8.dist-info}/RECORD +43 -31
  28. tests/models/cycle/completeness/test_electricityFuel.py +21 -0
  29. tests/models/emepEea2019/test_nh3ToAirInorganicFertiliser.py +2 -2
  30. tests/models/ipcc2019/test_co2ToAirSoilOrganicCarbonStockChangeManagementChange.py +54 -165
  31. tests/models/ipcc2019/test_organicCarbonPerHa.py +219 -460
  32. tests/models/ipcc2019/test_organicCarbonPerHa_tier_1_utils.py +471 -0
  33. tests/models/ipcc2019/test_organicCarbonPerHa_tier_2_utils.py +208 -0
  34. tests/models/ipcc2019/test_organicCarbonPerHa_utils.py +75 -0
  35. tests/models/site/test_organicCarbonPerHa.py +3 -12
  36. tests/models/site/test_soilMeasurement.py +3 -18
  37. tests/models/utils/test_array_builders.py +253 -0
  38. tests/models/utils/test_descriptive_stats.py +134 -0
  39. tests/models/utils/test_emission.py +51 -1
  40. tests/models/utils/test_measurement.py +54 -2
  41. {hestia_earth_models-0.61.7.dist-info → hestia_earth_models-0.61.8.dist-info}/LICENSE +0 -0
  42. {hestia_earth_models-0.61.7.dist-info → hestia_earth_models-0.61.8.dist-info}/WHEEL +0 -0
  43. {hestia_earth_models-0.61.7.dist-info → hestia_earth_models-0.61.8.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,75 @@
1
+ from pytest import mark
2
+
3
+ from hestia_earth.models.ipcc2019.organicCarbonPerHa_utils import (
4
+ format_bool, format_bool_list, format_enum, format_number, format_number_list, IpccSoilCategory
5
+ )
6
+
7
+
8
+ @mark.parametrize(
9
+ "value, expected",
10
+ [
11
+ (True, "True"),
12
+ (False, "False"),
13
+ ([], "False"),
14
+ ("str", "True"),
15
+ (None, "False")
16
+ ],
17
+ ids=["True", "False", "list", "str", "None"]
18
+ )
19
+ def test_format_bool(value, expected):
20
+ assert format_bool(value) == expected
21
+
22
+
23
+ @mark.parametrize(
24
+ "value, expected",
25
+ [
26
+ ([True, True, False], "True True False"),
27
+ ([], "None"),
28
+ (["Yes", "No", ""], "True True False"),
29
+ (None, "None")
30
+ ],
31
+ ids=["list", "empty list", "list[str]", "None"]
32
+ )
33
+ def test_format_bool_list(value, expected):
34
+ assert format_bool_list(value) == expected
35
+
36
+
37
+ @mark.parametrize(
38
+ "value, expected",
39
+ [
40
+ (IpccSoilCategory.WETLAND_SOILS, IpccSoilCategory.WETLAND_SOILS.value),
41
+ ("str", "None"),
42
+ (None, "None")
43
+ ],
44
+ ids=["Enum", "str", "None"]
45
+ )
46
+ def test_format_enum(value, expected):
47
+ assert format_enum(value) == expected
48
+
49
+
50
+ @mark.parametrize(
51
+ "value, expected",
52
+ [
53
+ (3.141592653, "3.1"),
54
+ (0, "0.0"),
55
+ ("20", "None"),
56
+ (None, "None")
57
+ ],
58
+ ids=["float", "zero", "str", "None"]
59
+ )
60
+ def test_format_number(value, expected):
61
+ assert format_number(value) == expected
62
+
63
+
64
+ @mark.parametrize(
65
+ "value, expected",
66
+ [
67
+ ([3.14, 31.4, 314], "3.1 31.4 314.0"),
68
+ ([], "None"),
69
+ (["Yes", "No", ""], "None None None"),
70
+ (None, "None")
71
+ ],
72
+ ids=["list", "empty list", "list[str]", "None"]
73
+ )
74
+ def test_format_number_list(value, expected):
75
+ assert format_number_list(value) == expected
@@ -5,7 +5,7 @@ from unittest.mock import patch
5
5
  from tests.utils import fixtures_path, fake_new_measurement
6
6
 
7
7
  from hestia_earth.models.site.organicCarbonPerHa import (
8
- MODEL, TERM_ID, run, _cdf, _c_to_depth, _get_most_relevant_soc_node, _get_last_date, _should_run_calculation_group
8
+ MODEL, TERM_ID, run, _cdf, _c_to_depth, _get_most_relevant_soc_node, _get_last_date
9
9
  )
10
10
 
11
11
  class_path = f"hestia_earth.models.{MODEL}.{TERM_ID}"
@@ -14,6 +14,8 @@ fixtures_folder = f"{fixtures_path}/{MODEL}/{TERM_ID}"
14
14
  SUBFOLDERS = [
15
15
  "calculate-single",
16
16
  "calculate-multiple",
17
+ "calculate-multiple-with-existing-soc-measurements", # Closes #823
18
+ "calculate-multiple-with-multiple-methods", # Closes #823
17
19
  "rescale-single",
18
20
  "rescale-multiple",
19
21
  "calculate-and-rescale"
@@ -82,17 +84,6 @@ def test_get_most_relevant_soc_node(nodes, expected_id):
82
84
  assert _get_most_relevant_soc_node(nodes).get("@id") == expected_id
83
85
 
84
86
 
85
- @patch(f"{class_path}.find_term_match")
86
- def test_should_run_measurements(mock_find):
87
- # no measurement => no run
88
- mock_find.return_value = {}
89
- assert _should_run_calculation_group([]) is False
90
-
91
- # with measurement => run
92
- mock_find.return_value = {'value': [10], 'depthUpper': 0, 'depthLower': 10}
93
- assert _should_run_calculation_group([]) is True
94
-
95
-
96
87
  @mark.parametrize("subfolder", SUBFOLDERS)
97
88
  @patch(f"{class_path}.get_source", return_value={})
98
89
  @patch(f"{class_path}._new_measurement", side_effect=fake_new_measurement)
@@ -135,23 +135,11 @@ def test_harmonise_measurements(measurements_list, returns_dict, expected_value)
135
135
  )
136
136
  ]
137
137
  )
138
- @patch(f"{class_path}.get_lookup_value")
139
- def test_should_run(mock_get_lookup, test_name, site, expected_should_run):
140
- mock_get_lookup.return_value = True
141
- model_key = "clayContent"
142
- should_run, *args = _should_run(site=site, model_key=model_key)
138
+ def test_should_run(test_name, site, expected_should_run):
139
+ should_run, *args = _should_run(site)
143
140
  assert should_run == expected_should_run, test_name
144
141
 
145
142
 
146
- def lookup_side_effect(*args, **kwargs):
147
- _ = kwargs
148
- if args[0]["@id"] == "soilPh" and args[1] == "depthSensitive":
149
- return False
150
- elif args[0]["@id"] in {"baseSaturation", "soilDepth", "rainfallHourly"}:
151
- return False
152
- return True
153
-
154
-
155
143
  @pytest.mark.parametrize(
156
144
  "test_name",
157
145
  [
@@ -165,10 +153,7 @@ def lookup_side_effect(*args, **kwargs):
165
153
  ]
166
154
  )
167
155
  @patch(f"{class_path}._new_measurement", side_effect=fake_new_measurement)
168
- @patch(f"{class_path}.get_lookup_value")
169
- def test_run(mock_lookup, mock_new_measurement, test_name):
170
- mock_lookup.side_effect = lookup_side_effect
171
-
156
+ def test_run(mock_new_measurement, test_name):
172
157
  with open(f"{fixtures_folder}/{test_name}/site.jsonld", encoding='utf-8') as f:
173
158
  site = json.load(f)
174
159
 
@@ -0,0 +1,253 @@
1
+ from numpy import array
2
+ from numpy.testing import assert_array_equal
3
+ from numpy.typing import NDArray
4
+ from pytest import mark
5
+
6
+ from hestia_earth.models.utils.array_builders import (
7
+ avg_run_in_columnwise, avg_run_in_rowwise, discrete_uniform_1d, discrete_uniform_2d, gen_seed, grouped_avg,
8
+ normal_1d, normal_2d, plus_minus_uncertainty_to_normal_1d, plus_minus_uncertainty_to_normal_2d,
9
+ repeat_1d_array_as_columns, repeat_array_as_columns, repeat_array_as_rows, repeat_single, triangular_1d,
10
+ triangular_2d, truncated_normal_1d, truncated_normal_2d
11
+ )
12
+
13
+ SEED = 0
14
+ SHAPE = (1000, 1000)
15
+
16
+
17
+ def assert_rows_identical(arr: NDArray):
18
+ """
19
+ Covert array to a set to remove repeated rows and check that number remaining rows is 1.
20
+ """
21
+ assert len(set(map(tuple, arr))) == 1
22
+
23
+
24
+ def assert_rows_unique(arr: NDArray):
25
+ """
26
+ Covert array to a set to remove repeated rows and check that number remaining rows is the same as the number of
27
+ original rows.
28
+ """
29
+ assert len(set(map(tuple, arr))) == len(arr)
30
+
31
+
32
+ def assert_elements_between(arr: NDArray, min: float, max: float):
33
+ assert ((min <= arr) & (arr <= max)).all()
34
+
35
+
36
+ PARAMS_REPEAT_SINGLE = [
37
+ (3.14159, None, 3.14159),
38
+ (3.14159, bool, True),
39
+ (True, None, True),
40
+ (True, float, 1)
41
+ ]
42
+
43
+ IDS_REPEAT_SINGLE = [
44
+ f"{type(value).__name__}{f' -> {dtype.__name__}' if dtype else ''}" for value, dtype, _ in PARAMS_REPEAT_SINGLE
45
+ ]
46
+
47
+
48
+ @mark.parametrize(
49
+ "value, dtype, expected_element",
50
+ [(3.14159, None, 3.14159), (3.14159, bool, True), (True, None, True), (True, float, 1)],
51
+ ids=IDS_REPEAT_SINGLE
52
+ )
53
+ def test_repeat_single(value, dtype, expected_element):
54
+ SHAPE = (3, 3)
55
+ EXPECTED = array([
56
+ [expected_element, expected_element, expected_element],
57
+ [expected_element, expected_element, expected_element],
58
+ [expected_element, expected_element, expected_element]
59
+ ])
60
+ result = repeat_single(SHAPE, value, dtype=dtype)
61
+ assert_array_equal(result, EXPECTED)
62
+
63
+
64
+ def test_repeat_array_as_columns():
65
+ INPUT = array([
66
+ [1, 2, 3],
67
+ [4, 5, 6]
68
+ ])
69
+ EXPECTED = array([
70
+ [1, 2, 3, 1, 2, 3],
71
+ [4, 5, 6, 4, 5, 6]
72
+ ])
73
+ result = repeat_array_as_columns(2, INPUT)
74
+ assert_array_equal(result, EXPECTED)
75
+
76
+
77
+ def test_repeat_array_as_rows():
78
+ INPUT = array([
79
+ [1, 2, 3],
80
+ [4, 5, 6]
81
+ ])
82
+ EXPECTED = array([
83
+ [1, 2, 3],
84
+ [4, 5, 6],
85
+ [1, 2, 3],
86
+ [4, 5, 6]
87
+ ])
88
+ result = repeat_array_as_rows(2, INPUT)
89
+ assert_array_equal(result, EXPECTED)
90
+
91
+
92
+ def test_repeat_1d_array_as_columns():
93
+ INPUT = array([1, 2, 3])
94
+ EXPECTED = array([
95
+ [1, 1, 1],
96
+ [2, 2, 2],
97
+ [3, 3, 3]
98
+ ])
99
+ result = repeat_1d_array_as_columns(3, INPUT)
100
+ assert_array_equal(result, EXPECTED)
101
+
102
+
103
+ def test_discrete_uniform_1d():
104
+ MIN, MAX = -100, 100
105
+ result = discrete_uniform_1d(SHAPE, MIN, MAX, seed=SEED)
106
+ assert_rows_identical(result)
107
+ assert_elements_between(result, MIN, MAX)
108
+ assert result.shape == SHAPE
109
+
110
+
111
+ def test_discrete_uniform_2d():
112
+ MIN, MAX = -100, 100
113
+ result = discrete_uniform_2d(SHAPE, MIN, MAX, seed=SEED)
114
+ assert_rows_unique(result)
115
+ assert_elements_between(result, MIN, MAX)
116
+ assert result.shape == SHAPE
117
+
118
+
119
+ def test_discrete_triangular_1d():
120
+ LOW, HIGH = -100, 100
121
+ MODE = -50
122
+ result = triangular_1d(SHAPE, LOW, HIGH, MODE, seed=SEED)
123
+ assert_rows_identical(result)
124
+ assert_elements_between(result, LOW, HIGH)
125
+ assert result.shape == SHAPE
126
+
127
+
128
+ def test_discrete_triangular_2d():
129
+ LOW, HIGH = -100, 100
130
+ MODE = 50
131
+ result = triangular_2d(SHAPE, LOW, HIGH, MODE, seed=SEED)
132
+ assert_rows_unique(result)
133
+ assert_elements_between(result, LOW, HIGH)
134
+ assert result.shape == SHAPE
135
+
136
+
137
+ def test_normal_1d():
138
+ MEAN = 0
139
+ SD = 50
140
+ result = normal_1d(SHAPE, MEAN, SD, seed=SEED)
141
+ assert_rows_identical(result)
142
+ assert result.shape == SHAPE
143
+
144
+
145
+ def test_normal_2d():
146
+ MEAN = 0
147
+ SD = 50
148
+ result = normal_2d(SHAPE, MEAN, SD, seed=SEED)
149
+ assert_rows_unique(result)
150
+ assert result.shape == SHAPE
151
+
152
+
153
+ def test_truncated_normal_1d():
154
+ MEAN = 0
155
+ SD = 50
156
+ LOW, HIGH = -50, 50
157
+ result = truncated_normal_1d(SHAPE, MEAN, SD, LOW, HIGH, seed=SEED)
158
+ assert_rows_identical(result)
159
+ assert_elements_between(result, LOW, HIGH)
160
+ assert result.shape == SHAPE
161
+
162
+
163
+ def test_truncated_normal_2d():
164
+ MEAN = 0
165
+ SD = 50
166
+ LOW, HIGH = -50, 50
167
+ result = truncated_normal_2d(SHAPE, MEAN, SD, LOW, HIGH, seed=SEED)
168
+ assert_rows_unique(result)
169
+ assert_elements_between(result, LOW, HIGH)
170
+ assert result.shape == SHAPE
171
+
172
+
173
+ def test_plus_minus_uncertainty_to_normal_1d():
174
+ MEAN = 10
175
+ UNCERTAINTY = 10
176
+ CONFIDENCE_INTERVAL = 95
177
+ result = plus_minus_uncertainty_to_normal_1d(SHAPE, MEAN, UNCERTAINTY, CONFIDENCE_INTERVAL)
178
+ assert_rows_identical(result)
179
+ assert result.shape == SHAPE
180
+
181
+
182
+ def test_plus_minus_uncertainty_to_normal_2d():
183
+ MEAN = 10
184
+ UNCERTAINTY = 10
185
+ CONFIDENCE_INTERVAL = 95
186
+ result = plus_minus_uncertainty_to_normal_2d(SHAPE, MEAN, UNCERTAINTY, CONFIDENCE_INTERVAL)
187
+ assert_rows_unique(result)
188
+ assert result.shape == SHAPE
189
+
190
+
191
+ def test_grouped_avg():
192
+ INPUT = array([
193
+ [1, 2, 3],
194
+ [4, 5, 6],
195
+ [7, 8, 9],
196
+ [10, 11, 12],
197
+ [13, 14, 15],
198
+ [16, 17, 18]
199
+ ])
200
+ EXPECTED = array([
201
+ [4, 5, 6],
202
+ [13, 14, 15]
203
+ ])
204
+ result = grouped_avg(INPUT, n=3)
205
+ assert_array_equal(result, EXPECTED)
206
+
207
+
208
+ def test_avg_run_in_columnwise():
209
+ INPUT = array([
210
+ [1, 2, 3],
211
+ [4, 5, 6],
212
+ [7, 8, 9],
213
+ [10, 11, 12],
214
+ [13, 14, 15],
215
+ [16, 17, 18]
216
+ ])
217
+ EXPECTED = array([
218
+ [4, 5, 6],
219
+ [10, 11, 12],
220
+ [13, 14, 15],
221
+ [16, 17, 18]
222
+ ])
223
+ result = avg_run_in_columnwise(INPUT, n=3)
224
+ assert_array_equal(result, EXPECTED)
225
+
226
+
227
+ def test_avg_run_in_rowwise():
228
+ INPUT = array([
229
+ [1, 2, 3, 4, 5],
230
+ [6, 7, 8, 9, 10],
231
+ [11, 12, 13, 14, 15]
232
+ ])
233
+ EXPECTED = array([
234
+ [2, 4, 5],
235
+ [7, 9, 10],
236
+ [12, 14, 15]
237
+ ])
238
+ result = avg_run_in_rowwise(INPUT, n=3)
239
+ assert_array_equal(result, EXPECTED)
240
+
241
+
242
+ def test_gen_seed():
243
+ NODE = {"@id": "site"}
244
+ EXPECTED = 2926675914
245
+ result = gen_seed(NODE)
246
+ assert result == EXPECTED
247
+
248
+
249
+ def test_gen_seed_no_id():
250
+ NODE = {}
251
+ EXPECTED = 2140941220
252
+ result = gen_seed(NODE)
253
+ assert result == EXPECTED
@@ -0,0 +1,134 @@
1
+ from numpy import array, inf
2
+ from numpy.testing import assert_almost_equal
3
+ from pytest import mark
4
+
5
+ from hestia_earth.schema import MeasurementStatsDefinition
6
+
7
+ from hestia_earth.models.utils.descriptive_stats import (
8
+ _calc_confidence_level, calc_confidence_level_monte_carlo, calc_descriptive_stats, calc_precision_monte_carlo,
9
+ calc_required_iterations_monte_carlo, calc_z_critical
10
+ )
11
+
12
+ # confidence_level, n_sided, z_critical
13
+ CONFIDENCE_INTERVAL_PARAMS = [
14
+ # 1 sided
15
+ (0, 1, -inf),
16
+ (50, 1, 0),
17
+ (80, 1, 0.8416),
18
+ (90, 1, 1.2816),
19
+ (95, 1, 1.6449),
20
+ (99, 1, 2.3263),
21
+ (100, 1, inf),
22
+ # 2 sided
23
+ (0, 2, 0),
24
+ (50, 2, 0.6745),
25
+ (80, 2, 1.2816),
26
+ (90, 2, 1.6449),
27
+ (95, 2, 1.9600),
28
+ (99, 2, 2.5758),
29
+ (100, 2, inf)
30
+ ]
31
+
32
+
33
+ @mark.parametrize(
34
+ "confidence_level, n_sided, z_critical",
35
+ CONFIDENCE_INTERVAL_PARAMS,
36
+ ids=[f"z={z}, n={n}" for _, n, z in CONFIDENCE_INTERVAL_PARAMS]
37
+ )
38
+ def test_calc_confidence_level(confidence_level, n_sided, z_critical):
39
+ result = _calc_confidence_level(z_critical, n_sided=n_sided)
40
+ assert_almost_equal(result, confidence_level, decimal=2)
41
+
42
+
43
+ @mark.parametrize(
44
+ "confidence_level, n_sided, z_critical",
45
+ CONFIDENCE_INTERVAL_PARAMS,
46
+ ids=[f"conf={conf}, n={n}" for conf, n, _ in CONFIDENCE_INTERVAL_PARAMS]
47
+ )
48
+ def test_calc_z_critical(confidence_level, n_sided, z_critical):
49
+ result = calc_z_critical(confidence_level, n_sided=n_sided)
50
+ assert_almost_equal(result, z_critical, decimal=4)
51
+
52
+
53
+ # confidence_level, n_iterations, precision, sd
54
+ MONTE_CARLO_PARAMS = [
55
+ (95, 80767, 0.01, 1.45),
56
+ (95, 1110, 0.01, 0.17),
57
+ (99, 1917, 0.01, 0.17),
58
+ (50, 102, 100.18, 1500)
59
+ ]
60
+
61
+
62
+ @mark.parametrize(
63
+ "confidence_level, n_iterations, precision, sd",
64
+ MONTE_CARLO_PARAMS,
65
+ ids=[f"n={n}, prec={prec}, sd={sd}" for _, n, prec, sd in MONTE_CARLO_PARAMS]
66
+ )
67
+ def test_calc_confidence_level_monte_carlo(confidence_level, n_iterations, precision, sd):
68
+ result = calc_confidence_level_monte_carlo(n_iterations, precision, sd,)
69
+ assert_almost_equal(result, confidence_level, decimal=2)
70
+
71
+
72
+ @mark.parametrize(
73
+ "confidence_level, n_iterations, precision, sd",
74
+ MONTE_CARLO_PARAMS,
75
+ ids=[f"conf={conf}, prec={prec}, sd={sd}" for conf, _, prec, sd in MONTE_CARLO_PARAMS]
76
+ )
77
+ def test_calc_required_iterations_monte_carlo(confidence_level, n_iterations, precision, sd):
78
+ result = calc_required_iterations_monte_carlo(confidence_level, precision, sd)
79
+ assert result == n_iterations
80
+
81
+
82
+ @mark.parametrize(
83
+ "confidence_level, n_iterations, precision, sd",
84
+ MONTE_CARLO_PARAMS,
85
+ ids=[f"conf={conf}, n={n}, sd={sd}" for conf, n, _, sd in MONTE_CARLO_PARAMS]
86
+ )
87
+ def test_calc_precision_monte_carlo(confidence_level, n_iterations, precision, sd):
88
+ result = calc_precision_monte_carlo(confidence_level, n_iterations, sd)
89
+ assert_almost_equal(result, precision, decimal=2)
90
+
91
+
92
+ EXPECTED_FLATTENED = {
93
+ "value": [5],
94
+ "sd": [2.581989],
95
+ "min": [1],
96
+ "max": [9],
97
+ "statsDefinition": "simulated",
98
+ "observations": [9]
99
+ }
100
+
101
+ EXPECTED_COLUMNWISE = {
102
+ "value": [4, 5, 6],
103
+ "sd": [2.44949, 2.44949, 2.44949],
104
+ "min": [1, 2, 3],
105
+ "max": [7, 8, 9],
106
+ "statsDefinition": "simulated",
107
+ "observations": [3, 3, 3]
108
+ }
109
+
110
+ EXPECTED_ROWWISE = {
111
+ "value": [2, 5, 8],
112
+ "sd": [0.816497, 0.816497, 0.816497],
113
+ "min": [1, 4, 7],
114
+ "max": [3, 6, 9],
115
+ "statsDefinition": "simulated",
116
+ "observations": [3, 3, 3]
117
+ }
118
+
119
+
120
+ @mark.parametrize(
121
+ "axis, expected",
122
+ [(None, EXPECTED_FLATTENED), (0, EXPECTED_COLUMNWISE), (1, EXPECTED_ROWWISE)],
123
+ ids=["flattened", "columnwise", "rowwise"]
124
+ )
125
+ @mark.parametrize("stats_definition", [MeasurementStatsDefinition.SIMULATED, "simulated"], ids=["Enum", "str"])
126
+ def test_calc_descriptive_stats(stats_definition, axis, expected):
127
+ ARR = array([
128
+ [1, 2, 3],
129
+ [4, 5, 6],
130
+ [7, 8, 9]
131
+ ])
132
+
133
+ result = calc_descriptive_stats(ARR, stats_definition, axis=axis)
134
+ assert result == expected
@@ -1,7 +1,10 @@
1
+ from pytest import mark
1
2
  from unittest.mock import patch
2
3
 
4
+ from hestia_earth.schema import EmissionMethodTier
5
+
3
6
  from tests.utils import TERM
4
- from hestia_earth.models.utils.emission import _new_emission, is_in_system_boundary
7
+ from hestia_earth.models.utils.emission import _new_emission, is_in_system_boundary, min_emission_method_tier
5
8
 
6
9
  class_path = 'hestia_earth.models.utils.emission'
7
10
 
@@ -27,3 +30,50 @@ def test_new_emission(*args):
27
30
  def test_is_in_system_boundary():
28
31
  assert is_in_system_boundary('ch4ToAirCropResidueBurning') is True
29
32
  assert is_in_system_boundary('codToWaterInputsProduction') is False
33
+
34
+
35
+ @mark.parametrize(
36
+ "input, expected",
37
+ [
38
+ (
39
+ (
40
+ EmissionMethodTier.TIER_1,
41
+ EmissionMethodTier.TIER_2,
42
+ EmissionMethodTier.TIER_3
43
+ ),
44
+ EmissionMethodTier.TIER_1
45
+ ),
46
+ (
47
+ [
48
+ EmissionMethodTier.TIER_1,
49
+ EmissionMethodTier.TIER_2,
50
+ EmissionMethodTier.TIER_3
51
+ ],
52
+ EmissionMethodTier.TIER_1
53
+ ),
54
+ (
55
+ [], EmissionMethodTier.NOT_RELEVANT
56
+ ),
57
+ (
58
+ (
59
+ EmissionMethodTier.TIER_1.value,
60
+ EmissionMethodTier.TIER_2.value,
61
+ EmissionMethodTier.TIER_3.value
62
+ ),
63
+ EmissionMethodTier.TIER_1
64
+ ),
65
+ (
66
+ [
67
+ EmissionMethodTier.TIER_1.value,
68
+ EmissionMethodTier.TIER_2.value,
69
+ EmissionMethodTier.TIER_3.value
70
+ ],
71
+ EmissionMethodTier.TIER_1
72
+ ),
73
+
74
+ ],
75
+ ids=["Enum", "list[Enum]", "None", "str", "list[str]"]
76
+ )
77
+ def test_min_emission_method_tier(input, expected):
78
+ result = min_emission_method_tier(input)
79
+ assert result == expected
@@ -1,9 +1,14 @@
1
- from unittest.mock import patch
2
1
  import json
2
+ from pytest import mark
3
+ from unittest.mock import patch
4
+
5
+ from hestia_earth.schema import MeasurementMethodClassification
6
+
3
7
  from tests.utils import fixtures_path, TERM
4
8
 
5
9
  from hestia_earth.models.utils.measurement import (
6
- _new_measurement, most_relevant_measurement_value, _most_recent_measurements, _shallowest_measurement
10
+ _new_measurement, most_relevant_measurement_value, _most_recent_measurements, _shallowest_measurement,
11
+ min_measurement_method_classification
7
12
  )
8
13
 
9
14
  class_path = 'hestia_earth.models.utils.measurement'
@@ -83,3 +88,50 @@ def test_shallowest_measurement():
83
88
  expected = json.load(f)
84
89
 
85
90
  assert _shallowest_measurement(measurements) == expected
91
+
92
+
93
+ @mark.parametrize(
94
+ "input, expected",
95
+ [
96
+ (
97
+ (
98
+ MeasurementMethodClassification.ON_SITE_PHYSICAL_MEASUREMENT,
99
+ MeasurementMethodClassification.TIER_2_MODEL,
100
+ MeasurementMethodClassification.TIER_1_MODEL
101
+ ),
102
+ MeasurementMethodClassification.TIER_1_MODEL
103
+ ),
104
+ (
105
+ [
106
+ MeasurementMethodClassification.ON_SITE_PHYSICAL_MEASUREMENT,
107
+ MeasurementMethodClassification.TIER_2_MODEL,
108
+ MeasurementMethodClassification.TIER_1_MODEL
109
+ ],
110
+ MeasurementMethodClassification.TIER_1_MODEL
111
+ ),
112
+ (
113
+ [], MeasurementMethodClassification.UNSOURCED_ASSUMPTION
114
+ ),
115
+ (
116
+ (
117
+ MeasurementMethodClassification.ON_SITE_PHYSICAL_MEASUREMENT.value,
118
+ MeasurementMethodClassification.TIER_2_MODEL.value,
119
+ MeasurementMethodClassification.TIER_1_MODEL.value
120
+ ),
121
+ MeasurementMethodClassification.TIER_1_MODEL
122
+ ),
123
+ (
124
+ [
125
+ MeasurementMethodClassification.ON_SITE_PHYSICAL_MEASUREMENT.value,
126
+ MeasurementMethodClassification.TIER_2_MODEL.value,
127
+ MeasurementMethodClassification.TIER_1_MODEL.value
128
+ ],
129
+ MeasurementMethodClassification.TIER_1_MODEL
130
+ ),
131
+
132
+ ],
133
+ ids=["Enum", "list[Enum]", "None", "str", "list[str]"]
134
+ )
135
+ def test_min_measurement_method_classification(input, expected):
136
+ result = min_measurement_method_classification(input)
137
+ assert result == expected