heavyball 1.7.0__py3-none-any.whl → 1.7.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
heavyball/__init__.py CHANGED
@@ -1,4 +1,5 @@
1
1
  import functools
2
+ import math
2
3
  from typing import Optional
3
4
 
4
5
  from . import chainable as C
@@ -564,6 +565,10 @@ class ForeachCachedNewtonPSGD(ForeachCachedPSGDKron):
564
565
  hessian_approx = True
565
566
 
566
567
 
568
+ class NewtonHybrid2PSGDKron(ForeachCachedNewtonPSGD):
569
+ hvp_interval = 2
570
+
571
+
567
572
  class ForeachPSGDLRA(C.BaseOpt):
568
573
  """
569
574
  Originally from Evan Walters and Omead Pooladzandi, 2024
@@ -582,7 +587,7 @@ class ForeachPSGDLRA(C.BaseOpt):
582
587
  weight_decay=0.0,
583
588
  preconditioner_update_probability=None,
584
589
  momentum_into_precond_update=True,
585
- rank: int = 4,
590
+ rank: Optional[int] = None,
586
591
  warmup_steps: int = 0,
587
592
  foreach: bool = True,
588
593
  q_dtype="float32",
@@ -608,6 +613,14 @@ class ForeachPSGDLRA(C.BaseOpt):
608
613
  )
609
614
  params = defaults.pop("params")
610
615
 
616
+ if rank is None:
617
+ utils.warn_once(
618
+ f"{rank=}. It will be set to log2(param_count). This requires `params` to be of type list. Currently, {type(params)=}"
619
+ )
620
+ params = list(params)
621
+ defaults["rank"] = round(math.log2(sum(p.numel() for p in params)))
622
+ utils.warn_once(f"rank was set to {defaults['rank']}")
623
+
611
624
  delayed = C.default(delayed, self.delayed)
612
625
  exp_avg_input = C.default(exp_avg_input, self.exp_avg_input)
613
626
  update_clipping = C.default(update_clipping, utils.trust_region_clip_)
@@ -632,6 +645,10 @@ class ForeachNewtonPSGDLRA(ForeachPSGDLRA):
632
645
  hessian_approx = True
633
646
 
634
647
 
648
+ class NewtonHybrid2PSGDLRA(ForeachNewtonPSGDLRA):
649
+ hvp_interval = 2
650
+
651
+
635
652
  PalmForEachSoap = PaLMForeachSOAP
636
653
  PaLMSOAP = PaLMForeachSOAP
637
654
  PaLMSFAdamW = PaLMForeachSFAdamW
@@ -696,4 +713,6 @@ __all__ = [
696
713
  "DelayedPSGD",
697
714
  "PSGDLRA",
698
715
  "NewtonPSGDLRA",
716
+ "NewtonHybrid2PSGDLRA",
717
+ "NewtonHybrid2PSGDKron",
699
718
  ]
heavyball/chainable.py CHANGED
@@ -1,4 +1,5 @@
1
1
  import functools
2
+ import math
2
3
  import random
3
4
  from typing import List, Literal, Optional, Union
4
5
 
@@ -43,7 +44,7 @@ class FunctionTransform:
43
44
  raise NotImplementedError
44
45
 
45
46
  def get_fn(self):
46
- if hasattr(self.fn, "get_fn"):
47
+ if utils.hasattr_none(self.fn, "get_fn"):
47
48
  return self.fn.get_fn()
48
49
  return self.fn
49
50
 
@@ -426,7 +427,7 @@ def _store_std(state, group, update, grad, param):
426
427
  state["init_std"] = torch.std(grad, dim=0)
427
428
 
428
429
 
429
- @general_guard("init_std", init_fn=_store_std)
430
+ @general_guard("init_std", init_fn=_store_std, skip_first=False)
430
431
  @no_state
431
432
  def mup_approx(group, updates, grads, params, init_std):
432
433
  _updates = [(u, i) for u, i in zip(updates, init_std) if u.ndim > 1]
@@ -435,6 +436,40 @@ def mup_approx(group, updates, grads, params, init_std):
435
436
  return updates
436
437
 
437
438
 
439
+ def _init_delta(state, group, update, grad, param, log_space: bool):
440
+ val = group["initial_d"]
441
+ state["delta"] = torch.full((), math.log(val) if log_space else val, dtype=param.dtype, device=param.device)
442
+
443
+
444
+ def _init_full_delta(state, group, update, grad, param, log_space: bool):
445
+ val = group["initial_d"]
446
+ state["delta"] = torch.full_like(param, math.log(val) if log_space else val)
447
+
448
+
449
+ @zero_guard("state")
450
+ @general_guard("delta", init_fn=functools.partial(_init_delta, log_space=False), skip_first=False)
451
+ @no_state
452
+ def scale_by_d_adaptation(group, update, grad, param, state, delta):
453
+ utils.d_adaptation(grad, update, state, delta)
454
+ return update
455
+
456
+
457
+ @zero_guard("state")
458
+ @general_guard("delta", init_fn=functools.partial(_init_delta, log_space=True), skip_first=False)
459
+ @no_state
460
+ def scale_by_lr_adaptation(group, update, grad, param, state, delta):
461
+ utils.lr_adaptation(grad, update, state, delta, group["lr_lr"])
462
+ return update
463
+
464
+
465
+ @zero_guard("state")
466
+ @general_guard("delta", init_fn=functools.partial(_init_full_delta, log_space=True), skip_first=False)
467
+ @no_state
468
+ def scale_by_pointwise_lr_adaptation(group, update, grad, param, state, delta):
469
+ utils.pointwise_lr_adaptation(grad, update, state, delta, group["lr_lr"])
470
+ return update
471
+
472
+
438
473
  @zero_guard("momentum")
439
474
  @no_state
440
475
  def heavyball_momentum(group, updates, grads, params, momentum):
@@ -484,18 +519,22 @@ def _update_psgd_precond(cached, Q_cache, group, param, grad, Q_mat, Q, exprs, p
484
519
  if not group["is_preconditioning"]:
485
520
  return Q_mat
486
521
 
522
+ if utils.hasattr_none(param, "vector"):
523
+ vector, hessian_vector = param.vector, param.hessian_vector
524
+ del param.vector
525
+ del param.hessian_vector
526
+ else:
527
+ vector, hessian_vector = utils.dampen_grad(grad)
528
+
487
529
  utils.psgd_update_precond(
488
530
  Q_mat,
489
531
  exprs,
490
- getattr(param, "hessian_vector", grad),
532
+ hessian_vector,
491
533
  group["precond_lr"],
492
534
  Q,
493
535
  group["store_triu_as_line"],
494
- getattr(param, "vector", None),
536
+ vector,
495
537
  )
496
- if hasattr(param, "vector"):
497
- del param.vector
498
- del param.hessian_vector
499
538
 
500
539
  if grad.dim() > 1 and precond_schedule(group, balance_probability, f"balance_prob_{id(Q)}"):
501
540
  if group["store_triu_as_line"]:
@@ -566,9 +605,12 @@ def _update_lra(
566
605
  if not group["is_preconditioning"]:
567
606
  return utils.flatten(U, 1), utils.flatten(V, 1), utils.flatten(d)
568
607
 
569
- if hasattr(params[0], "hessian_vector") and params[0].hessian_vector is not None:
608
+ if utils.hasattr_none(params[0], "hessian_vector"):
570
609
  vector = utils.flatten([p.vector for p in params])
571
610
  hessian_vector = utils.flatten([p.hessian_vector for p in params])
611
+ for p in params:
612
+ del p.vector
613
+ del p.hessian_vector
572
614
  else:
573
615
  vector, hessian_vector = utils.dampen_multiple(grads)
574
616
  return utils.update_lra_precond_(U, V, d, vector, hessian_vector, group["eps"], group["precond_lr"], delayed)
@@ -0,0 +1,38 @@
1
+ """
2
+ PSGD optimization module - optimized implementations of PSGD functions
3
+ to improve execution speed while maintaining numerical equivalence.
4
+ """
5
+
6
+ # Import optimized functions
7
+ # Import integrator API
8
+ from .integrator import (
9
+ enable_optimizations,
10
+ get_optimization_status,
11
+ restore_original_functions,
12
+ )
13
+ from .optimizations import (
14
+ # LRA optimizations
15
+ low_rank_mm_optimized,
16
+ lra_precond_optimized,
17
+ precond_grad_cached_optimized,
18
+ # KRON optimizations
19
+ psgd_calc_A_and_conjB_optimized,
20
+ psgd_precond_grad_optimized,
21
+ psgd_update_precond_optimized,
22
+ update_lra_precond_optimized,
23
+ )
24
+
25
+ __all__ = [
26
+ # Optimized functions
27
+ "low_rank_mm_optimized",
28
+ "update_lra_precond_optimized",
29
+ "lra_precond_optimized",
30
+ "psgd_calc_A_and_conjB_optimized",
31
+ "psgd_update_precond_optimized",
32
+ "psgd_precond_grad_optimized",
33
+ "precond_grad_cached_optimized",
34
+ # Integrator API
35
+ "enable_optimizations",
36
+ "restore_original_functions",
37
+ "get_optimization_status",
38
+ ]
@@ -0,0 +1,169 @@
1
+ """
2
+ Integration module to selectively enable optimized implementations
3
+ of PSGD functions while maintaining API compatibility.
4
+ """
5
+
6
+ import os
7
+ import sys
8
+ from typing import Any, Dict
9
+
10
+ import torch
11
+
12
+ from . import optimizations
13
+ from .. import utils
14
+
15
+ # Store original function references
16
+ _original_functions = {}
17
+ _optimized_functions = {}
18
+
19
+ # Mapping of original functions to their optimized versions
20
+ OPTIMIZATION_MAP = {
21
+ # LRA functions
22
+ utils.update_lra_precond_: optimizations.update_lra_precond_optimized,
23
+ utils.lra_precond: optimizations.lra_precond_optimized,
24
+ # KRON functions
25
+ utils.psgd_update_precond: optimizations.psgd_update_precond_optimized,
26
+ utils.psgd_precond_grad: optimizations.psgd_precond_grad_optimized,
27
+ utils.precond_grad_cached_: optimizations.precond_grad_cached_optimized,
28
+ }
29
+
30
+ # Config for enabling/disabling optimizations
31
+ _config = {
32
+ "enabled": os.environ.get("HEAVYBALL_OPTIMIZE", "1") == "1",
33
+ "torch_compile_allowed": os.environ.get("HEAVYBALL_USE_COMPILE", "1") == "1",
34
+ "enable_lra": True,
35
+ "enable_kron": True,
36
+ "verbose": os.environ.get("HEAVYBALL_VERBOSE", "0") == "1",
37
+ }
38
+
39
+
40
+ def _apply_monkey_patch(original_func, optimized_func):
41
+ """Monkey patch a function with its optimized version."""
42
+ if original_func not in _original_functions:
43
+ _original_functions[original_func] = original_func
44
+
45
+ # Store reference to the optimized function
46
+ _optimized_functions[original_func] = optimized_func
47
+
48
+ # Get the module where the original function is defined
49
+ module = original_func.__module__
50
+ func_name = original_func.__name__
51
+
52
+ # Replace the function in its module
53
+ if hasattr(sys.modules[module], func_name):
54
+ setattr(sys.modules[module], func_name, optimized_func)
55
+
56
+ if _config["verbose"]:
57
+ print(f"Replaced {module}.{func_name} with optimized version")
58
+ else:
59
+ if _config["verbose"]:
60
+ print(f"Warning: Could not find {func_name} in module {module}")
61
+
62
+
63
+ def enable_optimizations(
64
+ enable: bool = True, lra: bool = True, kron: bool = True, torch_compile: bool = True, verbose: bool = False
65
+ ):
66
+ """
67
+ Enable or disable PSGD optimizations.
68
+
69
+ Args:
70
+ enable: Whether to enable optimizations at all
71
+ lra: Whether to enable LRA-specific optimizations
72
+ kron: Whether to enable Kron-specific optimizations
73
+ torch_compile: Whether to allow torch.compile optimizations
74
+ verbose: Whether to print optimization status messages
75
+ """
76
+ _config["enabled"] = enable
77
+ _config["enable_lra"] = lra
78
+ _config["enable_kron"] = kron
79
+ _config["torch_compile_allowed"] = torch_compile
80
+ _config["verbose"] = verbose
81
+
82
+ if verbose:
83
+ print(f"PSGD Optimizations: {'enabled' if enable else 'disabled'}")
84
+ print(f" - LRA optimizations: {'enabled' if lra else 'disabled'}")
85
+ print(f" - KRON optimizations: {'enabled' if kron else 'disabled'}")
86
+ print(f" - torch.compile: {'allowed' if torch_compile else 'disabled'}")
87
+
88
+ if not enable:
89
+ # Restore original functions
90
+ restore_original_functions()
91
+ return
92
+
93
+ # Apply optimizations based on config
94
+ for orig_func, opt_func in OPTIMIZATION_MAP.items():
95
+ # Skip LRA functions if disabled
96
+ if not _config["enable_lra"] and orig_func in [utils.update_lra_precond_, utils.lra_precond]:
97
+ continue
98
+
99
+ # Skip KRON functions if disabled
100
+ if not _config["enable_kron"] and orig_func in [
101
+ utils.psgd_update_precond,
102
+ utils.psgd_precond_grad,
103
+ utils.precond_grad_cached_,
104
+ ]:
105
+ continue
106
+
107
+ _apply_monkey_patch(orig_func, opt_func)
108
+
109
+ # Disable torch.compile if not allowed
110
+ if not _config["torch_compile_allowed"]:
111
+ # Monkey patch torch.compile to be a no-op
112
+ def _noop_compile(fn, **kwargs):
113
+ return fn
114
+
115
+ if not hasattr(torch, "_original_compile"):
116
+ torch._original_compile = torch.compile
117
+ torch.compile = _noop_compile
118
+ if verbose:
119
+ print("Disabled torch.compile (replaced with no-op)")
120
+ else:
121
+ # Restore original torch.compile
122
+ if hasattr(torch, "_original_compile"):
123
+ torch.compile = torch._original_compile
124
+ del torch._original_compile
125
+ if verbose:
126
+ print("Restored original torch.compile")
127
+
128
+
129
+ def restore_original_functions():
130
+ """Restore all original function implementations."""
131
+ for orig_func, func_ref in _original_functions.items():
132
+ module = orig_func.__module__
133
+ func_name = orig_func.__name__
134
+
135
+ if hasattr(sys.modules[module], func_name):
136
+ setattr(sys.modules[module], func_name, func_ref)
137
+
138
+ if _config["verbose"]:
139
+ print(f"Restored original implementation of {module}.{func_name}")
140
+
141
+ # Also restore torch.compile if it was modified
142
+ if hasattr(torch, "_original_compile"):
143
+ torch.compile = torch._original_compile
144
+ del torch._original_compile
145
+ if _config["verbose"]:
146
+ print("Restored original torch.compile")
147
+
148
+
149
+ def get_optimization_status() -> Dict[str, Any]:
150
+ """Get current optimization status."""
151
+ return {
152
+ "enabled": _config["enabled"],
153
+ "lra_enabled": _config["enable_lra"],
154
+ "kron_enabled": _config["enable_kron"],
155
+ "torch_compile_allowed": _config["torch_compile_allowed"],
156
+ "optimized_functions": list(_optimized_functions.keys()),
157
+ "original_functions": list(_original_functions.keys()),
158
+ }
159
+
160
+
161
+ # Auto-initialize optimizations based on environment
162
+ if os.environ.get("HEAVYBALL_AUTO_OPTIMIZE", "1") == "1":
163
+ enable_optimizations(
164
+ enable=_config["enabled"],
165
+ lra=_config["enable_lra"],
166
+ kron=_config["enable_kron"],
167
+ torch_compile=_config["torch_compile_allowed"],
168
+ verbose=_config["verbose"],
169
+ )
@@ -0,0 +1,329 @@
1
+ import random
2
+ from typing import List, Optional
3
+
4
+ import torch
5
+ from torch import Tensor
6
+
7
+ from .. import utils
8
+ from ..utils import decorator, decorator_knowngood, min_dtype, scalar_guard, tiny_bf16
9
+
10
+ #############################
11
+ # PSGD LRA OPTIMIZATIONS
12
+ #############################
13
+
14
+
15
+ @decorator
16
+ def low_rank_mm_optimized(U: Tensor, V: Tensor, x: Tensor) -> Tensor:
17
+ """Optimized version of low_rank_mm using fused operations and memory reuse"""
18
+ dtype = min_dtype([U, V, x])
19
+ # Convert only once and cache the result
20
+ U_dt, V_dt, x_dt = U.to(dtype), V.to(dtype), x.to(dtype)
21
+
22
+ # Use a more efficient implementation that avoids multiple conversions
23
+ # torch.bmm can be more efficient than einsum for this specific pattern
24
+ if U.dim() == 2: # This is the common case (batch, rank)
25
+ # Shape of result: (batch, )
26
+ tmp = torch.mul(U_dt, x_dt.unsqueeze(-1)).sum(dim=0) # (rank, )
27
+ result = torch.mv(V_dt, tmp) # (batch, )
28
+ return result.to(x.dtype) + x
29
+ else:
30
+ # Fallback to original implementation for other dimensionalities
31
+ return x + torch.einsum("br,gr,g->b", U_dt, V_dt, x_dt).to(x.dtype)
32
+
33
+
34
+ @torch.compile(mode="reduce-overhead")
35
+ def update_lra_precond_core(
36
+ U: Tensor, V: Tensor, d: Tensor, vector: Tensor, hessian_vector: Tensor, eps: float, step: float, delayed: bool
37
+ ):
38
+ """Core computational part of update_lra_precond optimized with torch.compile"""
39
+ # Here we apply torch.compile to the computational bottleneck
40
+ # All inputs are already properly typed and processed
41
+
42
+ Qh = low_rank_mm_optimized(U, V, d * hessian_vector)
43
+ Ph = d * low_rank_mm_optimized(V, U, Qh)
44
+ rank = U.size(1)
45
+
46
+ # Cache VtU computation which is used multiple times
47
+ VtU = torch.einsum("br,bn->rn", V, U) # (rank, rank)
48
+ I = torch.eye(rank, dtype=VtU.dtype, device=VtU.device)
49
+ IpVtU = I + VtU
50
+ invQtv = vector / d
51
+
52
+ # LU factorization to reuse computation
53
+ LU, pivots = torch.linalg.lu_factor(IpVtU)
54
+
55
+ # Compute vectors inline to reduce memory allocation
56
+ invQtv = invQtv - V @ torch.linalg.lu_solve(LU, pivots, (U.T @ invQtv).view(-1, 1), adjoint=True).flatten()
57
+ invPv = invQtv - U @ torch.linalg.lu_solve(LU, pivots, (V.T @ invQtv).view(-1, 1)).flatten()
58
+ invPv = invPv / d
59
+
60
+ # Compute nabla D
61
+ nablaD = Ph * hessian_vector - vector * invPv
62
+
63
+ # Compute divisor more efficiently using fused operations
64
+ Ph_squared = Ph.square()
65
+ vector_squared = vector.square()
66
+ hv_squared = hessian_vector.square()
67
+ invPv_squared = invPv.square()
68
+
69
+ divisor = (Ph_squared + vector_squared) * (hv_squared + invPv_squared)
70
+ divisor = divisor.add(eps).sqrt().max()
71
+ d_step = step / divisor
72
+
73
+ # Compute for gradient update
74
+ a, b = Qh, invQtv
75
+
76
+ # Update either U or V, not both at the same time
77
+ precond_u = random.random() < 0.5
78
+ precond = V if precond_u else U
79
+
80
+ # Cache computations that get reused
81
+ atV = torch.einsum("b,br->r", a, precond)
82
+ btV = torch.einsum("b,br->r", b, precond)
83
+ atVVt = torch.einsum("r,br->b", atV, precond)
84
+ btVVt = torch.einsum("r,br->b", btV, precond)
85
+
86
+ # Compute step size
87
+ precond_step = step / (a.norm() * atVVt.norm() + b.norm() * btVVt.norm() + eps)
88
+
89
+ # Update precond matrix
90
+ if precond_u:
91
+ a_new = torch.einsum("b,r,rg->bg", a, atV, IpVtU)
92
+ b_new = torch.einsum("b,r,rg->bg", b, btV, IpVtU)
93
+ else:
94
+ # Optimize with in-place operations where possible
95
+ a_new = a + torch.einsum("br,r->b", V, atV)
96
+ b_new = b + torch.einsum("br,r->b", V, btV)
97
+ a_new = torch.einsum("b,r->br", a_new, atV)
98
+ b_new = torch.einsum("b,r->br", b_new, btV)
99
+
100
+ # Return updated values
101
+ return d, nablaD, d_step, U if precond_u else V, b_new - a_new, precond_step, precond_u
102
+
103
+
104
+ def update_lra_precond_optimized(
105
+ U: List[Tensor],
106
+ V: List[Tensor],
107
+ d: List[Tensor],
108
+ vector: Tensor,
109
+ hessian_vector: Tensor,
110
+ eps: float,
111
+ step: float,
112
+ delayed: bool,
113
+ ):
114
+ """
115
+ Optimized version of update_lra_precond_ with:
116
+ 1. Reduced memory allocations
117
+ 2. Fused operations
118
+ 3. Torch.compile for core computations
119
+ 4. Better caching of intermediate results
120
+ """
121
+ U_orig, V_orig, d_orig = U, V, d
122
+
123
+ # Flatten once
124
+ U_flat, V_flat, d_flat = utils.flatten(U, 1), utils.flatten(V, 1), utils.flatten(d)
125
+
126
+ # Convert dtype once
127
+ dtype = min_dtype([U_flat, V_flat, vector, hessian_vector])
128
+ U_dt = U_flat.to(dtype)
129
+ V_dt = V_flat.to(dtype)
130
+ vector_dt = vector.to(dtype)
131
+ hv_dt = hessian_vector.to(dtype)
132
+
133
+ # Convert scalar once
134
+ eps_tensor = scalar_guard(eps, vector)
135
+
136
+ try:
137
+ # Run optimized core computation with torch.compile
138
+ d_flat, nablaD, d_step, precond, update, precond_step, precond_u = update_lra_precond_core(
139
+ U_dt, V_dt, d_flat, vector_dt, hv_dt, eps, step, delayed
140
+ )
141
+
142
+ # Apply updates efficiently
143
+ utils.apply_flat_add(d_orig, d_flat * nablaD, -d_step)
144
+ utils.apply_flat_add(U_orig if precond_u else V_orig, update, precond_step)
145
+
146
+ # For immediate updates
147
+ if not delayed:
148
+ utils.stochastic_add_([d], [d_flat * nablaD], -d_step)
149
+ utils.stochastic_add_([U if precond_u else V], [update], precond_step)
150
+
151
+ return U_flat.to(U_orig[0].dtype), V_flat.to(V_orig[0].dtype), d_flat.to(d_orig[0].dtype)
152
+
153
+ except RuntimeError:
154
+ # Fallback to original implementation on failure
155
+ return utils.update_lra_precond_(U, V, d, vector, hessian_vector, eps, step, delayed)
156
+
157
+
158
+ @decorator
159
+ def lra_precond_optimized(U, V, d, g):
160
+ """
161
+ Optimized version of lra_precond using memory caching and fused operations
162
+ """
163
+ # Get the common dtype only once
164
+ dtype = min_dtype([U, V, d, g])
165
+
166
+ # Convert to this dtype once
167
+ U_dt, V_dt, d_dt, g_dt = U.to(dtype), V.to(dtype), d.to(dtype), g.to(dtype)
168
+
169
+ # First part: g_mid = d * g
170
+ g_mid = d_dt * g_dt
171
+
172
+ # Second part: Qh = low_rank_mm(U, V, g_mid)
173
+ # Use optimized low_rank_mm
174
+ Qh = low_rank_mm_optimized(U_dt, V_dt, g_mid)
175
+
176
+ # Third part: result = d * low_rank_mm(V, U, Qh)
177
+ result = d_dt * low_rank_mm_optimized(V_dt, U_dt, Qh)
178
+
179
+ # Return result in original dtype
180
+ return result.to(g.dtype)
181
+
182
+
183
+ #############################
184
+ # PSGD KRON OPTIMIZATIONS
185
+ #############################
186
+
187
+
188
+ @decorator
189
+ def psgd_calc_A_and_conjB_optimized(exprA, G, Q, conjB):
190
+ """Optimized version of psgd_calc_A_and_conjB using torch.compile and memory reuse"""
191
+ order = G.dim()
192
+ if order > 1:
193
+ conjB = conjB.view_as(G).permute(*range(1, order), 0)
194
+
195
+ # Convert dtype once
196
+ G_dtype = utils.promote(G.dtype)
197
+ conjB = conjB.to(G_dtype)
198
+
199
+ # Compute A using einsum (could be cached if called multiple times with same Q, G)
200
+ A = utils.casted_einsum(exprA, *Q, G)
201
+
202
+ # Process each Q matrix with potential optimizations
203
+ for i, q in enumerate(Q):
204
+ q = utils.promote(q)
205
+ if q.dim() <= 1:
206
+ # Scalar case - use in-place division
207
+ conjB.div_(q)
208
+ else:
209
+ # Matrix case - use optimized triangular solve
210
+ # Reshape once and contiguous to optimize memory access
211
+ conjB_reshaped = conjB.reshape(-1, q.size(0)).contiguous()
212
+ solved = torch.linalg.solve_triangular(q, conjB_reshaped, upper=True, left=False)
213
+ conjB = solved.reshape_as(conjB)
214
+
215
+ # Only transpose if needed for next iteration
216
+ if i < order - 1:
217
+ conjB = conjB.transpose(i, -1)
218
+
219
+ return A, conjB
220
+
221
+
222
+ @torch.compile(mode="reduce-overhead")
223
+ def psgd_update_precond_core(Q, term1, term2, precond_lr, norm, q):
224
+ """Core computation of psgd_update_precond optimized with torch.compile"""
225
+ term1 *= precond_lr
226
+ if q.dim() < 2:
227
+ term1 *= q / norm.clamp_(min=tiny_bf16)
228
+ else:
229
+ torch.triu(term1, out=term1)
230
+ term1 /= torch.where(norm > 0, utils.psgd_lb(term2, norm), norm).clamp_(tiny_bf16)
231
+ term1 = torch.mm(term1, q)
232
+ return term1
233
+
234
+
235
+ def psgd_update_precond_optimized(Q, exprs, G, precond_lr, oq, store_triu_as_line, V):
236
+ """Optimized version of psgd_update_precond with reduced allocations and torch.compile"""
237
+ exprA, exprGs, _ = exprs
238
+
239
+ # Use optimized A and conjB calculation
240
+ A, conjB = psgd_calc_A_and_conjB_optimized(exprA, G, Q, V)
241
+
242
+ # Process each Q matrix with optimizations
243
+ for q, exprG, o in zip(Q, exprGs, oq):
244
+ # Use optimized einsum implementations
245
+ term1 = utils.promote(torch.einsum(exprG, A, A))
246
+ term2 = utils.promote(torch.einsum(exprG, conjB, conjB))
247
+
248
+ # Compute the update using compiled core function
249
+ term1, term2 = term1 - term2, term1 + term2
250
+ norm = term2.norm(float("inf"))
251
+
252
+ try:
253
+ # Try to use the optimized core calculation
254
+ term1 = psgd_update_precond_core(Q, term1, term2, precond_lr, norm, q.to(term1.dtype))
255
+ except (RuntimeError, TypeError):
256
+ # Fallback to original implementation
257
+ term1 *= precond_lr
258
+ if q.dim() < 2:
259
+ term1 *= q.to(term1.dtype) / norm.clamp_(min=tiny_bf16)
260
+ else:
261
+ torch.triu(term1, out=term1)
262
+ term1 /= torch.where(norm > 0, utils.psgd_lb(term2, norm), norm).clamp_(tiny_bf16)
263
+ term1 = torch.mm(term1, q.to(term1.dtype))
264
+
265
+ # Convert to line format if needed
266
+ if store_triu_as_line:
267
+ term1 = utils.triu_to_line([term1])[0][1]
268
+ # Apply update directly
269
+ if o.dim() > 0:
270
+ o.add_(term1)
271
+ else:
272
+ o = term1
273
+ else:
274
+ # Apply update directly
275
+ o.add_(term1)
276
+
277
+
278
+ @decorator_knowngood
279
+ def psgd_precond_grad_optimized(
280
+ expr: str, ea: Tensor, *preconds: Tensor, caution: bool = False, grad: Optional[Tensor] = None
281
+ ):
282
+ """Optimized version of psgd_precond_grad with better memory management"""
283
+ if caution:
284
+ ea = utils._compilable_cautioning(grad, ea)
285
+
286
+ # Determine minimum dtype once
287
+ md = min_dtype(list(preconds) + [ea])
288
+
289
+ # Convert all tensors to the same dtype once
290
+ args = [q.to(md) for q in preconds]
291
+ ea_md = ea.to(md)
292
+
293
+ # Optimize the einsum operation by avoiding duplicate conversions
294
+ # and potentially making args contiguous if beneficial
295
+ args_contiguous = [arg.contiguous() if not arg.is_contiguous() else arg for arg in args]
296
+ args_double = args_contiguous + args_contiguous
297
+
298
+ # Call einsum once with the combined args list
299
+ new = torch.einsum(expr, *(args_double + [ea_md]))
300
+
301
+ # Convert result back to original dtype
302
+ return new.to(ea.dtype)
303
+
304
+
305
+ @decorator_knowngood
306
+ def precond_grad_cached_optimized(
307
+ expr: str, ea: Tensor, *cached_q: Tensor, caution: bool = False, grad: Optional[Tensor] = None, cast: bool = True
308
+ ):
309
+ """Optimized version of precond_grad_cached_ with better memory management"""
310
+ if caution:
311
+ ea = utils._compilable_cautioning(grad, ea)
312
+
313
+ # Determine minimum dtype once
314
+ md = min_dtype(list(cached_q) + [ea])
315
+
316
+ # Convert all tensors to the same dtype once and make contiguous if needed
317
+ args = [q.to(md).contiguous() if not q.is_contiguous() else q.to(md) for q in cached_q]
318
+ ea_md = ea.to(md).contiguous() if not ea.is_contiguous() else ea.to(md)
319
+
320
+ # Add ea_md to args
321
+ args.append(ea_md)
322
+
323
+ # Call einsum once with the optimized args
324
+ new = torch.einsum(expr, *args)
325
+
326
+ # Convert result back if needed
327
+ if cast:
328
+ return new.to(ea.dtype)
329
+ return new