heavyball 0.18.8__py3-none-any.whl → 0.19.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.optim
3
- from heavyball.utils import copy_stochastic_list_
4
3
 
4
+ from heavyball.utils import copy_stochastic_list_
5
5
  from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote
6
6
 
7
7
 
@@ -20,9 +20,9 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
20
20
 
21
21
  class ForeachAdamW(StatefulOptimizer):
22
22
  def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0,
23
- foreach: bool = True):
23
+ foreach: bool = True, storage_dtype: str = 'float32'):
24
24
  defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
25
- lr_max=-1.0, weight_decay=weight_decay)
25
+ lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
26
26
  super().__init__(params, defaults, foreach)
27
27
 
28
28
  def _step(self, group):
@@ -38,10 +38,12 @@ class ForeachAdamW(StatefulOptimizer):
38
38
  if not active_p:
39
39
  return
40
40
 
41
+ storage_dtype = getattr(torch, group['storage_dtype'])
42
+
41
43
  for p in active_p:
42
44
  if 'exp_avg' not in self.state_(p):
43
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float32)
44
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float32)
45
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
46
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
45
47
 
46
48
  y, grad, exp_avg_sq, exp_avg = zip(
47
49
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
@@ -27,9 +27,9 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
27
27
  class ForeachADOPT(StatefulOptimizer):
28
28
 
29
29
  def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0,
30
- foreach: bool = True):
30
+ foreach: bool = True, storage_dtype: str = 'float32'):
31
31
  defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
32
- lr_max=-1.0, weight_decay=weight_decay)
32
+ lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
33
33
  super().__init__(params, defaults, foreach)
34
34
 
35
35
  def _step(self, group):
@@ -45,10 +45,12 @@ class ForeachADOPT(StatefulOptimizer):
45
45
  if not active_p:
46
46
  return
47
47
 
48
+ storage_dtype = getattr(torch, group['storage_dtype'])
49
+
48
50
  for p in active_p:
49
51
  if 'exp_avg' not in self.state_(p):
50
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float32)
51
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float32)
52
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
53
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
52
54
 
53
55
  y, grad, exp_avg_sq, exp_avg = zip(
54
56
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) for p in active_p])
@@ -1,7 +1,7 @@
1
1
  import torch
2
2
  import torch.optim
3
3
 
4
- from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote
4
+ from .utils import warmup, exp_avg_sq_, beta_debias, update_param_, StatefulOptimizer, promote, copy_stochastic_list_
5
5
 
6
6
 
7
7
  @torch.compile(mode='max-autotune-no-cudagraphs', fullgraph=True, dynamic=True)
@@ -16,13 +16,16 @@ def _compilable_step_(y, grad, exp_avg_sq, exp_avg, beta1, beta2, step, lr, eps,
16
16
 
17
17
  update_param_(y, exp_avg32, lr, decay)
18
18
 
19
+ copy_stochastic_list_(exp_avg, exp_avg32)
20
+ copy_stochastic_list_(exp_avg_sq, exp_avg_sq32)
21
+
19
22
 
20
23
  class ForeachLaProp(StatefulOptimizer):
21
24
 
22
25
  def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=1,
23
- foreach: bool = True):
26
+ foreach: bool = True, storage_dtype: str = 'float32'):
24
27
  defaults = dict(lr=lr, betas=betas, eps=eps, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
25
- lr_max=-1.0, weight_decay=weight_decay)
28
+ lr_max=-1.0, weight_decay=weight_decay, storage_dtype=storage_dtype)
26
29
  super().__init__(params, defaults, foreach)
27
30
 
28
31
  def _step(self, group):
@@ -38,10 +41,12 @@ class ForeachLaProp(StatefulOptimizer):
38
41
  if not active_p:
39
42
  return
40
43
 
44
+ storage_dtype = getattr(torch, group['storage_dtype'])
45
+
41
46
  for p in active_p:
42
47
  if 'exp_avg' not in self.state_(p):
43
- self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=torch.float32)
44
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float32)
48
+ self.state_(p)['exp_avg'] = torch.zeros_like(p.data, dtype=storage_dtype)
49
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
45
50
 
46
51
  y, grad, exp_avg_sq, exp_avg = zip(
47
52
  *[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['exp_avg']) #
@@ -1,6 +1,6 @@
1
1
  import torch
2
2
  import torch.optim
3
- from heavyball.utils import get_ckp1
3
+ from heavyball.utils import get_ckp1, copy_stochastic_list_
4
4
 
5
5
  from .utils import warmup, ScheduleFree, exp_avg_sq_, beta_debias, promote, _compilable_schedule_free_
6
6
 
@@ -19,14 +19,15 @@ def _compilable_step_(y, grad, exp_avg_sq, z, beta1, beta2, step, ckp1, eps, dec
19
19
  for p, z_, g in zip(y, z, g32):
20
20
  _compilable_schedule_free_(p, z_, ckp1, g, lr, beta1)
21
21
 
22
+ copy_stochastic_list_(exp_avg_sq, exp_avg_sq32)
22
23
 
23
24
  class ForeachSFAdamW(ScheduleFree):
24
25
  def __init__(self, params, lr=0.0025, betas=(0.9, 0.99), eps=1e-8, weight_decay=0, warmup_steps=0, r=0.0,
25
- weight_lr_power=2.0, foreach: bool = True):
26
+ weight_lr_power=2.0, foreach: bool = True, storage_dtype: str = 'float32'):
26
27
 
27
28
  defaults = dict(lr=lr, betas=betas, eps=eps, r=r, k=0, warmup_steps=warmup_steps, train_mode=True,
28
29
  weight_sum=0.0, lr_max=-1.0, weight_lr_power=weight_lr_power, weight_decay=weight_decay,
29
- foreach=foreach)
30
+ foreach=foreach, storage_dtype=storage_dtype)
30
31
  super().__init__(params, defaults, foreach)
31
32
 
32
33
  def _step(self, group):
@@ -42,10 +43,12 @@ class ForeachSFAdamW(ScheduleFree):
42
43
  if not active_p:
43
44
  return
44
45
 
46
+ storage_dtype = getattr(torch, group['storage_dtype'])
47
+
45
48
  for p in active_p:
46
49
  if 'z' not in self.state_(p):
47
50
  self.state_(p)['z'] = torch.clone(p.data)
48
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float32)
51
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
49
52
 
50
53
  y, grad, exp_avg_sq, z = zip(*[(p.data, p.grad, self.state_(p)['exp_avg_sq'], self.state_(p)['z']) #
51
54
  for p in active_p])
@@ -1,7 +1,8 @@
1
1
  import torch
2
2
  import torch.optim
3
3
 
4
- from .utils import schedule_free_, warmup, ScheduleFree, exp_avg_sq_, beta_debias, get_ckp1, promote, _compilable_schedule_free_
4
+ from .utils import warmup, ScheduleFree, exp_avg_sq_, beta_debias, get_ckp1, promote, \
5
+ _compilable_schedule_free_, copy_stochastic_list_
5
6
 
6
7
 
7
8
  @torch.compile(mode='max-autotune-no-cudagraphs', fullgraph=True, dynamic=True)
@@ -18,15 +19,17 @@ def _compilable_step_(y, grad, exp_avg_sq, z, beta1, beta2, step, ckp1, eps, dec
18
19
  for p, z_, g in zip(y, z, g32):
19
20
  _compilable_schedule_free_(p, z_, ckp1, g, lr, beta1)
20
21
 
22
+ copy_stochastic_list_(exp_avg_sq, exp_avg_sq32)
23
+
21
24
 
22
25
  class PaLMForeachSFAdamW(ScheduleFree):
23
26
  def __init__(self, params, lr=0.0025, beta=0.9, betas=(None, None), eps=1e-8, weight_decay=0, warmup_steps=0, r=0.0,
24
- weight_lr_power=2.0, beta2_scale: float = 0.8, foreach: bool = True):
27
+ weight_lr_power=2.0, beta2_scale: float = 0.8, foreach: bool = True, storage_dtype: str = 'float32'):
25
28
  if betas[0] is not None:
26
29
  beta = betas[0]
27
30
  defaults = dict(lr=lr, beta=beta, eps=eps, r=r, k=0, warmup_steps=warmup_steps, train_mode=True, weight_sum=0.0,
28
31
  lr_max=-1.0, weight_lr_power=weight_lr_power, weight_decay=weight_decay,
29
- beta2_scale=beta2_scale)
32
+ beta2_scale=beta2_scale, storage_dtype=storage_dtype)
30
33
  super().__init__(params, defaults, foreach)
31
34
 
32
35
  def _step(self, group):
@@ -42,10 +45,12 @@ class PaLMForeachSFAdamW(ScheduleFree):
42
45
  if not active_p:
43
46
  return
44
47
 
48
+ storage_dtype = getattr(torch, group['storage_dtype'])
49
+
45
50
  for p in active_p:
46
51
  if 'z' not in self.state_(p):
47
52
  self.state_(p)['z'] = torch.clone(p.data)
48
- self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=torch.float32)
53
+ self.state_(p)['exp_avg_sq'] = torch.zeros_like(p.data, dtype=storage_dtype)
49
54
 
50
55
  # Decay the first moment running average coefficient
51
56
  beta2 = 1 - (k + 1) ** -group['beta2_scale']
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: heavyball
3
- Version: 0.18.8
3
+ Version: 0.19.0
4
4
  Summary: Efficient optimizers
5
5
  Home-page: https://github.com/clashluke/heavyball
6
6
  Author: Lucas Nestler
@@ -32,7 +32,7 @@ A simple package of efficient optimizers
32
32
  The goal is not to thrive for completeness, full maintenance or abstraction, but instead to provide a simple
33
33
  largely static alternative to `torch.optim` with more and better optimizers.
34
34
 
35
- Currently (2024-11-21, 0.18.6), the recommended stable optimizer is `PrecondSchedulePaLMSOAP` (see below). The
35
+ Currently (2024-11-22, 0.19), the recommended stable optimizer is `PrecondSchedulePaLMSOAP` (see below). The
36
36
  recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psgd_efficiency.md)).
37
37
 
38
38
  ## Features
@@ -45,8 +45,10 @@ recommended experimental optimizer is `DelayedPSGDKron` ([tuning guide](docs/psg
45
45
  * **ScheduleFree**: No learning rate schedule, but better convergence
46
46
  * [**Preconditioner Schedule**](https://github.com/lixilinx/psgd_torch/): Improved loss-per-step in early convergence,
47
47
  better step-per-second in late convergence (explained below)
48
- * **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) to trade off memory usage for memory
49
- bandwidth; turn it off for lower overheads (for more, see [PSGD Efficiency](docs/psgd_efficiency.md))
48
+ * **Memory-efficient storage** PSGD supports `store_triu_as_line` (default: `True`) and `q_dtype` to trade off memory
49
+ usage for memory
50
+ bandwidth; Other optimizers have `storage_dtype`, supporting lower-precision EMAs at no(?) performance drop via
51
+ stochastic rounding
50
52
 
51
53
  ## Getting started
52
54
 
@@ -76,19 +78,19 @@ for _ in range(1000):
76
78
 
77
79
  ## Optimizers
78
80
 
79
- | Name | Description | Advantages / Disadvantages |
80
- |-------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
81
- | **AdamW** | More efficient (speed, memory) [AdamW](https://arxiv.org/abs/1711.05101) | + Faster than AdamW<br>+ Possibly more (numerically) stable
82
- | **LaProp** | More efficient (speed, memory) [LaProp](https://arxiv.org/abs/2002.04839) | + Same cost as AdamW<br>+ Marginally better converence (better proofs)<br>+ Higher hyperparameter stability<br>- Not a guaranteed win (can be neutral)<br>- No "Slingshot" |
83
- | **ADOPT** | More efficient (speed, memory) [ADOPT](https://arxiv.org/abs/2411.02853) | + Same cost as AdamW<br>+ Rigorous mathematical convergence proofs, even for challenging models (GANs)<br>- Empirically underperforms LaProp<br>- no bf16 |
84
- | **SFAdamW** | More efficient (speed, memory) [ScheduleFree AdamW](https://arxiv.org/abs/2405.15682) | + Same cost as AdamW, but better eval perf<br>+ Full control over hyperparameters |
85
- | **PaLMSFAdamW** | ForeachSFAdamW with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Same cost as AdamW, but better eval perf<br>+ Less control, but faster early and more stable late convergence<br>+ ScheduleFree<br>- slow early convergence |
86
- | **SOAP** | More efficient (speed, memory) [SOAP](https://arxiv.org/abs/2409.11321) | + Faster convergence (loss-at-step)<br>+ Full control over hyperparameters<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
87
- | **PaLMSOAP** | ForeachSOAP with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Faster convergence (loss-at-step)<br>+ Less control, but faster early and more stable late convergence<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
88
- | **SFPaLMSOAP** | ScheduleFree PaLMForeachSOAP | + Fast convergence (loss-at-step)<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized) |
81
+ | Name | Description | Advantages / Disadvantages |
82
+ |-------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
83
+ | **AdamW** | More efficient (speed, memory) [AdamW](https://arxiv.org/abs/1711.05101) | + Faster than AdamW<br>+ Possibly more (numerically) stable
84
+ | **LaProp** | More efficient (speed, memory) [LaProp](https://arxiv.org/abs/2002.04839) | + Same cost as AdamW<br>+ Marginally better converence (better proofs)<br>+ Higher hyperparameter stability<br>- Not a guaranteed win (can be neutral)<br>- No "Slingshot" |
85
+ | **ADOPT** | More efficient (speed, memory) [ADOPT](https://arxiv.org/abs/2411.02853) | + Same cost as AdamW<br>+ Rigorous mathematical convergence proofs, even for challenging models (GANs)<br>- Empirically underperforms LaProp<br>- no bf16 |
86
+ | **SFAdamW** | More efficient (speed, memory) [ScheduleFree AdamW](https://arxiv.org/abs/2405.15682) | + Same cost as AdamW, but better eval perf<br>+ Full control over hyperparameters |
87
+ | **PaLMSFAdamW** | ForeachSFAdamW with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Same cost as AdamW, but better eval perf<br>+ Less control, but faster early and more stable late convergence<br>+ ScheduleFree<br>- slow early convergence |
88
+ | **SOAP** | More efficient (speed, memory) [SOAP](https://arxiv.org/abs/2409.11321) | + Faster convergence (loss-at-step)<br>+ Full control over hyperparameters<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
89
+ | **PaLMSOAP** | ForeachSOAP with [PaLM's beta2 schedule](https://arxiv.org/abs/2204.02311) | + Faster convergence (loss-at-step)<br>+ Less control, but faster early and more stable late convergence<br>- more memory usage<br>- more hyperparameters<br>- higher overhead than AdamW (can be ammortized; better loss-at-second) |
90
+ | **SFPaLMSOAP** | ScheduleFree PaLMForeachSOAP | + Fast convergence (loss-at-step)<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized) |
89
91
  | **PrecondScheduleSFPaLMSOAP** | SFPaLMForeachSOAP with [preconditioner schedule](https://github.com/lixilinx/psgd_torch/), matching the error of PrecondEvery=2 with the cost of PrecondEvery=512 | + Better initial convergence than SFPaLMForeachSOAP<br>+ Significantly faster (sec/it) later<br>+ less memory usage than PaLMForeachSOAP (more tham AdamW)<br>- slower initial convergence than PaLMForeachSOAP (but allows higher LRs)<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of step |
90
- | **PrecondSchedulePaLMSOAP** | PrecondScheduleSFPaLMForeachSOAP without schedule-free | + Best initial convergence<br>+ Significantly faster (sec/it) later<br>+ high stability<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
91
- | **PrecondScheduleSOAP** | PrecondScheduleSFPaLMForeachSOAP without PaLM's beta2 schedule | + Better initial convergence<br>+ Significantly faster (sec/it) later<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
92
+ | **PrecondSchedulePaLMSOAP** | PrecondScheduleSFPaLMForeachSOAP without schedule-free | + Best initial convergence<br>+ Significantly faster (sec/it) later<br>+ high stability<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
93
+ | **PrecondScheduleSOAP** | PrecondScheduleSFPaLMForeachSOAP without PaLM's beta2 schedule | + Better initial convergence<br>+ Significantly faster (sec/it) later<br>- more memory usage than PrecondScheduleSFPaLMForeachSOAP<br>- higher overhead than AdamW (can be ammortized), goes to 0 with increasing number of steps |
92
94
 
93
95
  ## Precond Schedule
94
96
 
@@ -2,13 +2,13 @@ heavyball/__init__.py,sha256=iqP428JWwwx-XDOZ0nUdbCkOLEyfoqVyWZLQLAcwxaw,2214
2
2
  heavyball/cached_delayed_psgd_kron.py,sha256=PQAER6UgVh5l87DGRZrJ8CVP9UhyCG5wJD9rPLnj_G8,6460
3
3
  heavyball/cached_psgd_kron.py,sha256=GaeneBp0irksCSBIrJY4D_0hCpZ-uSRPMhqVX_a-og8,6417
4
4
  heavyball/delayed_psgd.py,sha256=fhBWFLTSl1S2gHWCeYak-STaXRwpC56sWZGLFMKFEJM,5589
5
- heavyball/foreach_adamw.py,sha256=kluVzZquZII0NdakfubPOBJRubsavKpphlu6yrx3zks,2320
6
- heavyball/foreach_adopt.py,sha256=lOFrw4kCLmDacN3AVPnlb8ZLFENhDCsC-Vvig_LJEK0,3086
7
- heavyball/foreach_laprop.py,sha256=3lDrjPpHsUzSjR6rPA_FVNpZg2mh2zHleEnLZt11h5A,2224
8
- heavyball/foreach_sfadamw.py,sha256=pk7oI1nFQ8zo9M3Icn2c_GJ7EhqJt5plqa6aopBwljg,2553
5
+ heavyball/foreach_adamw.py,sha256=Rb5U80cgUcEqlEbUU250UTWdoqA7nyiqkV5w1U4bWX4,2445
6
+ heavyball/foreach_adopt.py,sha256=ecdi1fKg9i087OGjtKWVbE_DD6Yf4pvpzv4ELCcusvQ,3211
7
+ heavyball/foreach_laprop.py,sha256=vi6C_gfjXxw5uN0KHgzxI9itUI1dcgOf3ufoO_VVMp0,2471
8
+ heavyball/foreach_sfadamw.py,sha256=rLZORmCIMu9G09FdDgMSiI6pNq34IVoxsPVWtmeDdbQ,2753
9
9
  heavyball/foreach_soap.py,sha256=h6ptMch7oaynvu3eIJtWnVXypDA_5JDVm3Zb3PNEma0,4634
10
10
  heavyball/p_adam.py,sha256=4zJDGJrpgUyVzr3GiELETFre4xr3-PE10OuAZj-jFM8,5883
11
- heavyball/palm_foreach_sfadamw.py,sha256=QzSudBWBA8nfO-T3bhXpi7uqxyA5mULqUwbOnELY8-M,2834
11
+ heavyball/palm_foreach_sfadamw.py,sha256=JbNrcoquBGGUI5XNMFouDjpNurVHUW9DbX1A3tSrtno,3025
12
12
  heavyball/palm_foreach_soap.py,sha256=g4hbiGRcti-J-a0SwAkP4ii5pU-aalsZH5bssyhroLk,5938
13
13
  heavyball/precond_schedule_foreach_soap.py,sha256=WLg5SzpJnKPZUvFyIvdwSZa1Umt5cpr3Kow_42orM-E,4863
14
14
  heavyball/precond_schedule_palm_foreach_soap.py,sha256=ammQrvRZFF-wc-wEiPEoFhS_7b8pdV61QfcLoQfimSo,6211
@@ -17,8 +17,8 @@ heavyball/psgd_kron.py,sha256=wKjtI56iUnL5D8DseW60kxiXTAlMYNEf52CrvQaQMnI,5547
17
17
  heavyball/pure_psgd.py,sha256=iUy7mMKWxwNiVUMYrQ7SBnreu3t_XSbnhTW3a1yw4m0,4835
18
18
  heavyball/schedule_free_palm_foreach_soap.py,sha256=zkcikH5wWbzq4kOrmBjilvY3iWzuUddcv2HNEPKr3MI,6366
19
19
  heavyball/utils.py,sha256=BWscCHlGOw1_zfKYxNAAmfFeOXVpSJHuvqqlfL5A7_0,31690
20
- heavyball-0.18.8.dist-info/LICENSE,sha256=CGdGJim64YifGmUVPaeyRsxkvyExtClswhRNIp8FY_U,1322
21
- heavyball-0.18.8.dist-info/METADATA,sha256=lwSm2CcImS8GyuowrzKAzxEAU6EU94ixwMW7UF5JZbQ,11810
22
- heavyball-0.18.8.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
23
- heavyball-0.18.8.dist-info/top_level.txt,sha256=SzCxSVg_qCUPA4kZObW3Zyo4v-d_mMOD-p7a-WXTl2E,10
24
- heavyball-0.18.8.dist-info/RECORD,,
20
+ heavyball-0.19.0.dist-info/LICENSE,sha256=CGdGJim64YifGmUVPaeyRsxkvyExtClswhRNIp8FY_U,1322
21
+ heavyball-0.19.0.dist-info/METADATA,sha256=1wORoS9rrjlug9tuJqXsbtVA9PphOBGcifiLRxmZNjs,11924
22
+ heavyball-0.19.0.dist-info/WHEEL,sha256=GJ7t_kWBFywbagK5eo9IoUwLW6oyOeTKmQ-9iHFVNxQ,92
23
+ heavyball-0.19.0.dist-info/top_level.txt,sha256=SzCxSVg_qCUPA4kZObW3Zyo4v-d_mMOD-p7a-WXTl2E,10
24
+ heavyball-0.19.0.dist-info/RECORD,,