hdsp-jupyter-extension 2.0.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- agent_server/__init__.py +8 -0
- agent_server/core/__init__.py +92 -0
- agent_server/core/api_key_manager.py +427 -0
- agent_server/core/code_validator.py +1238 -0
- agent_server/core/context_condenser.py +308 -0
- agent_server/core/embedding_service.py +254 -0
- agent_server/core/error_classifier.py +577 -0
- agent_server/core/llm_client.py +95 -0
- agent_server/core/llm_service.py +649 -0
- agent_server/core/notebook_generator.py +274 -0
- agent_server/core/prompt_builder.py +35 -0
- agent_server/core/rag_manager.py +742 -0
- agent_server/core/reflection_engine.py +489 -0
- agent_server/core/retriever.py +248 -0
- agent_server/core/state_verifier.py +452 -0
- agent_server/core/summary_generator.py +484 -0
- agent_server/core/task_manager.py +198 -0
- agent_server/knowledge/__init__.py +9 -0
- agent_server/knowledge/watchdog_service.py +352 -0
- agent_server/main.py +160 -0
- agent_server/prompts/__init__.py +60 -0
- agent_server/prompts/file_action_prompts.py +113 -0
- agent_server/routers/__init__.py +9 -0
- agent_server/routers/agent.py +591 -0
- agent_server/routers/chat.py +188 -0
- agent_server/routers/config.py +100 -0
- agent_server/routers/file_resolver.py +293 -0
- agent_server/routers/health.py +42 -0
- agent_server/routers/rag.py +163 -0
- agent_server/schemas/__init__.py +60 -0
- hdsp_agent_core/__init__.py +158 -0
- hdsp_agent_core/factory.py +252 -0
- hdsp_agent_core/interfaces.py +203 -0
- hdsp_agent_core/knowledge/__init__.py +31 -0
- hdsp_agent_core/knowledge/chunking.py +356 -0
- hdsp_agent_core/knowledge/libraries/dask.md +188 -0
- hdsp_agent_core/knowledge/libraries/matplotlib.md +164 -0
- hdsp_agent_core/knowledge/libraries/polars.md +68 -0
- hdsp_agent_core/knowledge/loader.py +337 -0
- hdsp_agent_core/llm/__init__.py +13 -0
- hdsp_agent_core/llm/service.py +556 -0
- hdsp_agent_core/managers/__init__.py +22 -0
- hdsp_agent_core/managers/config_manager.py +133 -0
- hdsp_agent_core/managers/session_manager.py +251 -0
- hdsp_agent_core/models/__init__.py +115 -0
- hdsp_agent_core/models/agent.py +316 -0
- hdsp_agent_core/models/chat.py +41 -0
- hdsp_agent_core/models/common.py +95 -0
- hdsp_agent_core/models/rag.py +368 -0
- hdsp_agent_core/prompts/__init__.py +63 -0
- hdsp_agent_core/prompts/auto_agent_prompts.py +1260 -0
- hdsp_agent_core/prompts/cell_action_prompts.py +98 -0
- hdsp_agent_core/services/__init__.py +18 -0
- hdsp_agent_core/services/agent_service.py +438 -0
- hdsp_agent_core/services/chat_service.py +205 -0
- hdsp_agent_core/services/rag_service.py +262 -0
- hdsp_agent_core/tests/__init__.py +1 -0
- hdsp_agent_core/tests/conftest.py +102 -0
- hdsp_agent_core/tests/test_factory.py +251 -0
- hdsp_agent_core/tests/test_services.py +326 -0
- hdsp_jupyter_extension-2.0.0.data/data/etc/jupyter/jupyter_server_config.d/hdsp_jupyter_extension.json +7 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/build_log.json +738 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/install.json +5 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/package.json +134 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/frontend_styles_index_js.2607ff74c74acfa83158.js +4369 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/frontend_styles_index_js.2607ff74c74acfa83158.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/lib_index_js.622c1a5918b3aafb2315.js +12496 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/lib_index_js.622c1a5918b3aafb2315.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b80.c095373419d05e6f141a.js +94 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b80.c095373419d05e6f141a.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b81.61e75fb98ecff46cf836.js +94 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b81.61e75fb98ecff46cf836.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/remoteEntry.dae97cde171e13b8c834.js +623 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/remoteEntry.dae97cde171e13b8c834.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/style.js +4 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_babel_runtime_helpers_esm_extends_js-node_modules_emotion_serialize_dist-051195.e2553aab0c3963b83dd7.js +507 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_babel_runtime_helpers_esm_extends_js-node_modules_emotion_serialize_dist-051195.e2553aab0c3963b83dd7.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_cache_dist_emotion-cache_browser_development_esm_js-node_modules-782ee5.d9ed8645ef1d311657d8.js +2071 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_cache_dist_emotion-cache_browser_development_esm_js-node_modules-782ee5.d9ed8645ef1d311657d8.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_react_dist_emotion-react_browser_development_esm_js.36b49c71871f98d4f549.js +1059 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_react_dist_emotion-react_browser_development_esm_js.36b49c71871f98d4f549.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_styled_dist_emotion-styled_browser_development_esm_js.661fb5836f4978a7c6e1.js +376 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_emotion_styled_dist_emotion-styled_browser_development_esm_js.661fb5836f4978a7c6e1.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_mui_material_index_js.985697e0162d8d088ca2.js +60336 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_mui_material_index_js.985697e0162d8d088ca2.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_mui_material_utils_createSvgIcon_js.2e13df4ea61496e95d45.js +7132 -0
- hdsp_jupyter_extension-2.0.0.data/data/share/jupyter/labextensions/hdsp-agent/static/vendors-node_modules_mui_material_utils_createSvgIcon_js.2e13df4ea61496e95d45.js.map +1 -0
- hdsp_jupyter_extension-2.0.0.dist-info/METADATA +152 -0
- hdsp_jupyter_extension-2.0.0.dist-info/RECORD +121 -0
- hdsp_jupyter_extension-2.0.0.dist-info/WHEEL +4 -0
- hdsp_jupyter_extension-2.0.0.dist-info/licenses/LICENSE +21 -0
- jupyter_ext/__init__.py +233 -0
- jupyter_ext/_version.py +4 -0
- jupyter_ext/config.py +111 -0
- jupyter_ext/etc/jupyter/jupyter_server_config.d/hdsp_jupyter_extension.json +7 -0
- jupyter_ext/handlers.py +632 -0
- jupyter_ext/labextension/build_log.json +738 -0
- jupyter_ext/labextension/package.json +134 -0
- jupyter_ext/labextension/static/frontend_styles_index_js.2607ff74c74acfa83158.js +4369 -0
- jupyter_ext/labextension/static/frontend_styles_index_js.2607ff74c74acfa83158.js.map +1 -0
- jupyter_ext/labextension/static/lib_index_js.622c1a5918b3aafb2315.js +12496 -0
- jupyter_ext/labextension/static/lib_index_js.622c1a5918b3aafb2315.js.map +1 -0
- jupyter_ext/labextension/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b80.c095373419d05e6f141a.js +94 -0
- jupyter_ext/labextension/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b80.c095373419d05e6f141a.js.map +1 -0
- jupyter_ext/labextension/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b81.61e75fb98ecff46cf836.js +94 -0
- jupyter_ext/labextension/static/node_modules_emotion_use-insertion-effect-with-fallbacks_dist_emotion-use-insertion-effect-wi-3ba6b81.61e75fb98ecff46cf836.js.map +1 -0
- jupyter_ext/labextension/static/remoteEntry.dae97cde171e13b8c834.js +623 -0
- jupyter_ext/labextension/static/remoteEntry.dae97cde171e13b8c834.js.map +1 -0
- jupyter_ext/labextension/static/style.js +4 -0
- jupyter_ext/labextension/static/vendors-node_modules_babel_runtime_helpers_esm_extends_js-node_modules_emotion_serialize_dist-051195.e2553aab0c3963b83dd7.js +507 -0
- jupyter_ext/labextension/static/vendors-node_modules_babel_runtime_helpers_esm_extends_js-node_modules_emotion_serialize_dist-051195.e2553aab0c3963b83dd7.js.map +1 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_cache_dist_emotion-cache_browser_development_esm_js-node_modules-782ee5.d9ed8645ef1d311657d8.js +2071 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_cache_dist_emotion-cache_browser_development_esm_js-node_modules-782ee5.d9ed8645ef1d311657d8.js.map +1 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_react_dist_emotion-react_browser_development_esm_js.36b49c71871f98d4f549.js +1059 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_react_dist_emotion-react_browser_development_esm_js.36b49c71871f98d4f549.js.map +1 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_styled_dist_emotion-styled_browser_development_esm_js.661fb5836f4978a7c6e1.js +376 -0
- jupyter_ext/labextension/static/vendors-node_modules_emotion_styled_dist_emotion-styled_browser_development_esm_js.661fb5836f4978a7c6e1.js.map +1 -0
- jupyter_ext/labextension/static/vendors-node_modules_mui_material_index_js.985697e0162d8d088ca2.js +60336 -0
- jupyter_ext/labextension/static/vendors-node_modules_mui_material_index_js.985697e0162d8d088ca2.js.map +1 -0
- jupyter_ext/labextension/static/vendors-node_modules_mui_material_utils_createSvgIcon_js.2e13df4ea61496e95d45.js +7132 -0
- jupyter_ext/labextension/static/vendors-node_modules_mui_material_utils_createSvgIcon_js.2e13df4ea61496e95d45.js.map +1 -0
|
@@ -0,0 +1,489 @@
|
|
|
1
|
+
"""
|
|
2
|
+
Reflection Engine Service
|
|
3
|
+
실행 결과 분석 및 적응적 조정을 위한 서비스
|
|
4
|
+
|
|
5
|
+
Checkpoint 기반 실행 검증과 Reflection을 통한 계획 조정
|
|
6
|
+
"""
|
|
7
|
+
|
|
8
|
+
from dataclasses import dataclass, field
|
|
9
|
+
from enum import Enum
|
|
10
|
+
from typing import Any, Dict, List, Optional
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
class ImpactSeverity(Enum):
|
|
14
|
+
"""영향도 심각도"""
|
|
15
|
+
|
|
16
|
+
NONE = "none"
|
|
17
|
+
MINOR = "minor"
|
|
18
|
+
MAJOR = "major"
|
|
19
|
+
CRITICAL = "critical"
|
|
20
|
+
|
|
21
|
+
|
|
22
|
+
class ReflectionAction(Enum):
|
|
23
|
+
"""Reflection 결과에 따른 액션"""
|
|
24
|
+
|
|
25
|
+
CONTINUE = "continue" # 계속 진행
|
|
26
|
+
ADJUST = "adjust" # 조정 후 진행
|
|
27
|
+
RETRY = "retry" # 현재 단계 재시도
|
|
28
|
+
REPLAN = "replan" # 전체 계획 재수립
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
class AdjustmentType(Enum):
|
|
32
|
+
"""조정 유형"""
|
|
33
|
+
|
|
34
|
+
MODIFY_CODE = "modify_code"
|
|
35
|
+
ADD_STEP = "add_step"
|
|
36
|
+
REMOVE_STEP = "remove_step"
|
|
37
|
+
CHANGE_APPROACH = "change_approach"
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
@dataclass
|
|
41
|
+
class ReflectionEvaluation:
|
|
42
|
+
"""Checkpoint 평가 결과"""
|
|
43
|
+
|
|
44
|
+
checkpoint_passed: bool
|
|
45
|
+
output_matches_expected: bool
|
|
46
|
+
confidence_score: float # 0.0 ~ 1.0
|
|
47
|
+
|
|
48
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
49
|
+
return {
|
|
50
|
+
"checkpoint_passed": self.checkpoint_passed,
|
|
51
|
+
"output_matches_expected": self.output_matches_expected,
|
|
52
|
+
"confidence_score": self.confidence_score,
|
|
53
|
+
}
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
@dataclass
|
|
57
|
+
class ReflectionAnalysis:
|
|
58
|
+
"""실행 분석 결과"""
|
|
59
|
+
|
|
60
|
+
success_factors: List[str] = field(default_factory=list)
|
|
61
|
+
failure_factors: List[str] = field(default_factory=list)
|
|
62
|
+
unexpected_outcomes: List[str] = field(default_factory=list)
|
|
63
|
+
|
|
64
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
65
|
+
return {
|
|
66
|
+
"success_factors": self.success_factors,
|
|
67
|
+
"failure_factors": self.failure_factors,
|
|
68
|
+
"unexpected_outcomes": self.unexpected_outcomes,
|
|
69
|
+
}
|
|
70
|
+
|
|
71
|
+
|
|
72
|
+
@dataclass
|
|
73
|
+
class ReflectionImpact:
|
|
74
|
+
"""남은 단계에 대한 영향"""
|
|
75
|
+
|
|
76
|
+
affected_steps: List[int] = field(default_factory=list)
|
|
77
|
+
severity: ImpactSeverity = ImpactSeverity.NONE
|
|
78
|
+
description: str = ""
|
|
79
|
+
|
|
80
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
81
|
+
return {
|
|
82
|
+
"affected_steps": self.affected_steps,
|
|
83
|
+
"severity": self.severity.value,
|
|
84
|
+
"description": self.description,
|
|
85
|
+
}
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
@dataclass
|
|
89
|
+
class Adjustment:
|
|
90
|
+
"""계획 조정 항목"""
|
|
91
|
+
|
|
92
|
+
step_number: int
|
|
93
|
+
change_type: AdjustmentType
|
|
94
|
+
description: str
|
|
95
|
+
new_content: Optional[str] = None
|
|
96
|
+
|
|
97
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
98
|
+
result = {
|
|
99
|
+
"step_number": self.step_number,
|
|
100
|
+
"change_type": self.change_type.value,
|
|
101
|
+
"description": self.description,
|
|
102
|
+
}
|
|
103
|
+
if self.new_content:
|
|
104
|
+
result["new_content"] = self.new_content
|
|
105
|
+
return result
|
|
106
|
+
|
|
107
|
+
|
|
108
|
+
@dataclass
|
|
109
|
+
class ReflectionRecommendations:
|
|
110
|
+
"""조정 권장사항"""
|
|
111
|
+
|
|
112
|
+
action: ReflectionAction
|
|
113
|
+
adjustments: List[Adjustment] = field(default_factory=list)
|
|
114
|
+
reasoning: str = ""
|
|
115
|
+
|
|
116
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
117
|
+
return {
|
|
118
|
+
"action": self.action.value,
|
|
119
|
+
"adjustments": [adj.to_dict() for adj in self.adjustments],
|
|
120
|
+
"reasoning": self.reasoning,
|
|
121
|
+
}
|
|
122
|
+
|
|
123
|
+
|
|
124
|
+
@dataclass
|
|
125
|
+
class ReflectionResult:
|
|
126
|
+
"""Reflection 전체 결과"""
|
|
127
|
+
|
|
128
|
+
evaluation: ReflectionEvaluation
|
|
129
|
+
analysis: ReflectionAnalysis
|
|
130
|
+
impact_on_remaining: ReflectionImpact
|
|
131
|
+
recommendations: ReflectionRecommendations
|
|
132
|
+
|
|
133
|
+
def to_dict(self) -> Dict[str, Any]:
|
|
134
|
+
return {
|
|
135
|
+
"evaluation": self.evaluation.to_dict(),
|
|
136
|
+
"analysis": self.analysis.to_dict(),
|
|
137
|
+
"impact_on_remaining": self.impact_on_remaining.to_dict(),
|
|
138
|
+
"recommendations": self.recommendations.to_dict(),
|
|
139
|
+
}
|
|
140
|
+
|
|
141
|
+
|
|
142
|
+
class ReflectionEngine:
|
|
143
|
+
"""실행 결과 분석 및 Reflection 엔진"""
|
|
144
|
+
|
|
145
|
+
def __init__(self):
|
|
146
|
+
pass
|
|
147
|
+
|
|
148
|
+
def evaluate_checkpoint(
|
|
149
|
+
self,
|
|
150
|
+
execution_status: str,
|
|
151
|
+
execution_output: str,
|
|
152
|
+
expected_outcome: Optional[str],
|
|
153
|
+
validation_criteria: Optional[List[str]],
|
|
154
|
+
error_message: Optional[str] = None,
|
|
155
|
+
) -> ReflectionEvaluation:
|
|
156
|
+
"""
|
|
157
|
+
Checkpoint 평가
|
|
158
|
+
|
|
159
|
+
Args:
|
|
160
|
+
execution_status: 실행 상태 ('ok', 'error')
|
|
161
|
+
execution_output: 실행 출력
|
|
162
|
+
expected_outcome: 예상 결과
|
|
163
|
+
validation_criteria: 검증 기준 목록
|
|
164
|
+
error_message: 오류 메시지 (있는 경우)
|
|
165
|
+
|
|
166
|
+
Returns:
|
|
167
|
+
ReflectionEvaluation: 평가 결과
|
|
168
|
+
"""
|
|
169
|
+
# 기본 평가
|
|
170
|
+
is_success = execution_status == "ok" and not error_message
|
|
171
|
+
|
|
172
|
+
# 출력 매칭 평가 (간단한 휴리스틱)
|
|
173
|
+
output_matches = True
|
|
174
|
+
if expected_outcome and execution_output:
|
|
175
|
+
# 예상 결과의 키워드가 출력에 포함되는지 확인
|
|
176
|
+
expected_keywords = expected_outcome.lower().split()
|
|
177
|
+
output_lower = execution_output.lower()
|
|
178
|
+
matches = sum(1 for kw in expected_keywords if kw in output_lower)
|
|
179
|
+
output_matches = matches >= len(expected_keywords) * 0.5
|
|
180
|
+
|
|
181
|
+
# 검증 기준 평가
|
|
182
|
+
criteria_passed = 0
|
|
183
|
+
total_criteria = len(validation_criteria) if validation_criteria else 0
|
|
184
|
+
if validation_criteria:
|
|
185
|
+
for criterion in validation_criteria:
|
|
186
|
+
# 간단한 키워드 매칭
|
|
187
|
+
if any(
|
|
188
|
+
word in execution_output.lower()
|
|
189
|
+
for word in criterion.lower().split()
|
|
190
|
+
):
|
|
191
|
+
criteria_passed += 1
|
|
192
|
+
|
|
193
|
+
# 신뢰도 점수 계산
|
|
194
|
+
confidence = 0.0
|
|
195
|
+
if is_success:
|
|
196
|
+
confidence = 0.5
|
|
197
|
+
if output_matches:
|
|
198
|
+
confidence += 0.3
|
|
199
|
+
if total_criteria > 0:
|
|
200
|
+
confidence += 0.2 * (criteria_passed / total_criteria)
|
|
201
|
+
else:
|
|
202
|
+
confidence = 0.2 if execution_output else 0.0
|
|
203
|
+
|
|
204
|
+
return ReflectionEvaluation(
|
|
205
|
+
checkpoint_passed=is_success and output_matches,
|
|
206
|
+
output_matches_expected=output_matches,
|
|
207
|
+
confidence_score=min(confidence, 1.0),
|
|
208
|
+
)
|
|
209
|
+
|
|
210
|
+
def analyze_execution(
|
|
211
|
+
self,
|
|
212
|
+
execution_status: str,
|
|
213
|
+
execution_output: str,
|
|
214
|
+
error_message: Optional[str],
|
|
215
|
+
executed_code: str,
|
|
216
|
+
) -> ReflectionAnalysis:
|
|
217
|
+
"""
|
|
218
|
+
실행 결과 분석
|
|
219
|
+
|
|
220
|
+
Args:
|
|
221
|
+
execution_status: 실행 상태
|
|
222
|
+
execution_output: 실행 출력
|
|
223
|
+
error_message: 오류 메시지
|
|
224
|
+
executed_code: 실행된 코드
|
|
225
|
+
|
|
226
|
+
Returns:
|
|
227
|
+
ReflectionAnalysis: 분석 결과
|
|
228
|
+
"""
|
|
229
|
+
success_factors = []
|
|
230
|
+
failure_factors = []
|
|
231
|
+
unexpected_outcomes = []
|
|
232
|
+
|
|
233
|
+
if execution_status == "ok":
|
|
234
|
+
success_factors.append("코드가 오류 없이 실행됨")
|
|
235
|
+
|
|
236
|
+
# 출력 분석
|
|
237
|
+
if execution_output:
|
|
238
|
+
if (
|
|
239
|
+
"error" in execution_output.lower()
|
|
240
|
+
or "warning" in execution_output.lower()
|
|
241
|
+
):
|
|
242
|
+
unexpected_outcomes.append("출력에 오류/경고 메시지 포함")
|
|
243
|
+
if len(execution_output) > 10000:
|
|
244
|
+
unexpected_outcomes.append("출력이 예상보다 큼")
|
|
245
|
+
|
|
246
|
+
# 코드 패턴 분석
|
|
247
|
+
if "try:" in executed_code and "except" in executed_code:
|
|
248
|
+
success_factors.append("예외 처리 포함")
|
|
249
|
+
|
|
250
|
+
else:
|
|
251
|
+
failure_factors.append(f"실행 실패: {error_message or '알 수 없는 오류'}")
|
|
252
|
+
|
|
253
|
+
# 일반적인 오류 패턴 분석
|
|
254
|
+
if error_message:
|
|
255
|
+
error_lower = error_message.lower()
|
|
256
|
+
if "nameerror" in error_lower:
|
|
257
|
+
failure_factors.append("정의되지 않은 변수 사용")
|
|
258
|
+
elif (
|
|
259
|
+
"importerror" in error_lower or "modulenotfounderror" in error_lower
|
|
260
|
+
):
|
|
261
|
+
failure_factors.append("필요한 모듈 import 누락")
|
|
262
|
+
elif "syntaxerror" in error_lower:
|
|
263
|
+
failure_factors.append("문법 오류")
|
|
264
|
+
elif "typeerror" in error_lower:
|
|
265
|
+
failure_factors.append("타입 불일치")
|
|
266
|
+
elif "keyerror" in error_lower or "indexerror" in error_lower:
|
|
267
|
+
failure_factors.append("데이터 접근 오류")
|
|
268
|
+
|
|
269
|
+
return ReflectionAnalysis(
|
|
270
|
+
success_factors=success_factors,
|
|
271
|
+
failure_factors=failure_factors,
|
|
272
|
+
unexpected_outcomes=unexpected_outcomes,
|
|
273
|
+
)
|
|
274
|
+
|
|
275
|
+
def assess_impact(
|
|
276
|
+
self,
|
|
277
|
+
evaluation: ReflectionEvaluation,
|
|
278
|
+
analysis: ReflectionAnalysis,
|
|
279
|
+
remaining_steps: Optional[List[Dict[str, Any]]],
|
|
280
|
+
) -> ReflectionImpact:
|
|
281
|
+
"""
|
|
282
|
+
남은 단계에 대한 영향 평가
|
|
283
|
+
|
|
284
|
+
Args:
|
|
285
|
+
evaluation: Checkpoint 평가 결과
|
|
286
|
+
analysis: 실행 분석 결과
|
|
287
|
+
remaining_steps: 남은 단계 목록
|
|
288
|
+
|
|
289
|
+
Returns:
|
|
290
|
+
ReflectionImpact: 영향 평가 결과
|
|
291
|
+
"""
|
|
292
|
+
if not remaining_steps:
|
|
293
|
+
return ReflectionImpact(
|
|
294
|
+
affected_steps=[],
|
|
295
|
+
severity=ImpactSeverity.NONE,
|
|
296
|
+
description="남은 단계 없음",
|
|
297
|
+
)
|
|
298
|
+
|
|
299
|
+
affected_steps = []
|
|
300
|
+
severity = ImpactSeverity.NONE
|
|
301
|
+
description = ""
|
|
302
|
+
|
|
303
|
+
# Checkpoint 실패 시 영향 평가
|
|
304
|
+
if not evaluation.checkpoint_passed:
|
|
305
|
+
# 모든 후속 단계가 영향받을 가능성
|
|
306
|
+
affected_steps = [
|
|
307
|
+
step.get("stepNumber", i + 1) for i, step in enumerate(remaining_steps)
|
|
308
|
+
]
|
|
309
|
+
|
|
310
|
+
if analysis.failure_factors:
|
|
311
|
+
# 심각한 오류 유형 확인
|
|
312
|
+
critical_errors = [
|
|
313
|
+
"정의되지 않은 변수",
|
|
314
|
+
"필요한 모듈 import 누락",
|
|
315
|
+
"문법 오류",
|
|
316
|
+
]
|
|
317
|
+
if any(
|
|
318
|
+
err in factor
|
|
319
|
+
for factor in analysis.failure_factors
|
|
320
|
+
for err in critical_errors
|
|
321
|
+
):
|
|
322
|
+
severity = ImpactSeverity.CRITICAL
|
|
323
|
+
description = "핵심 오류로 인해 후속 단계 실행 불가"
|
|
324
|
+
else:
|
|
325
|
+
severity = ImpactSeverity.MAJOR
|
|
326
|
+
description = "실행 오류로 인해 후속 단계에 영향"
|
|
327
|
+
else:
|
|
328
|
+
severity = ImpactSeverity.MINOR
|
|
329
|
+
description = "예상과 다른 결과로 후속 단계 조정 필요"
|
|
330
|
+
|
|
331
|
+
elif analysis.unexpected_outcomes:
|
|
332
|
+
# 예상치 못한 결과가 있는 경우
|
|
333
|
+
severity = ImpactSeverity.MINOR
|
|
334
|
+
affected_steps = (
|
|
335
|
+
[remaining_steps[0].get("stepNumber", 1)] if remaining_steps else []
|
|
336
|
+
)
|
|
337
|
+
description = "예상치 못한 출력으로 다음 단계 검토 필요"
|
|
338
|
+
|
|
339
|
+
return ReflectionImpact(
|
|
340
|
+
affected_steps=affected_steps, severity=severity, description=description
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
def generate_recommendations(
|
|
344
|
+
self,
|
|
345
|
+
evaluation: ReflectionEvaluation,
|
|
346
|
+
analysis: ReflectionAnalysis,
|
|
347
|
+
impact: ReflectionImpact,
|
|
348
|
+
) -> ReflectionRecommendations:
|
|
349
|
+
"""
|
|
350
|
+
조정 권장사항 생성
|
|
351
|
+
|
|
352
|
+
Args:
|
|
353
|
+
evaluation: Checkpoint 평가 결과
|
|
354
|
+
analysis: 실행 분석 결과
|
|
355
|
+
impact: 영향 평가 결과
|
|
356
|
+
|
|
357
|
+
Returns:
|
|
358
|
+
ReflectionRecommendations: 권장사항
|
|
359
|
+
"""
|
|
360
|
+
adjustments = []
|
|
361
|
+
reasoning = ""
|
|
362
|
+
|
|
363
|
+
# 성공적인 경우
|
|
364
|
+
if evaluation.checkpoint_passed and evaluation.confidence_score >= 0.7:
|
|
365
|
+
return ReflectionRecommendations(
|
|
366
|
+
action=ReflectionAction.CONTINUE,
|
|
367
|
+
adjustments=[],
|
|
368
|
+
reasoning="실행이 성공적이며 예상 결과와 일치함",
|
|
369
|
+
)
|
|
370
|
+
|
|
371
|
+
# 실패 유형에 따른 권장사항
|
|
372
|
+
if impact.severity == ImpactSeverity.CRITICAL:
|
|
373
|
+
# 심각한 오류 - 재계획 권장
|
|
374
|
+
return ReflectionRecommendations(
|
|
375
|
+
action=ReflectionAction.REPLAN,
|
|
376
|
+
adjustments=[],
|
|
377
|
+
reasoning="핵심 오류로 인해 전체 계획 재수립 필요",
|
|
378
|
+
)
|
|
379
|
+
|
|
380
|
+
if impact.severity == ImpactSeverity.MAJOR:
|
|
381
|
+
# 주요 오류 - 재시도 또는 조정
|
|
382
|
+
if "정의되지 않은 변수" in str(analysis.failure_factors):
|
|
383
|
+
adjustments.append(
|
|
384
|
+
Adjustment(
|
|
385
|
+
step_number=0, # 현재 단계
|
|
386
|
+
change_type=AdjustmentType.ADD_STEP,
|
|
387
|
+
description="필요한 변수 정의 단계 추가",
|
|
388
|
+
)
|
|
389
|
+
)
|
|
390
|
+
elif "import 누락" in str(analysis.failure_factors):
|
|
391
|
+
adjustments.append(
|
|
392
|
+
Adjustment(
|
|
393
|
+
step_number=0,
|
|
394
|
+
change_type=AdjustmentType.MODIFY_CODE,
|
|
395
|
+
description="필요한 import 문 추가",
|
|
396
|
+
)
|
|
397
|
+
)
|
|
398
|
+
else:
|
|
399
|
+
adjustments.append(
|
|
400
|
+
Adjustment(
|
|
401
|
+
step_number=0,
|
|
402
|
+
change_type=AdjustmentType.MODIFY_CODE,
|
|
403
|
+
description="오류 수정",
|
|
404
|
+
)
|
|
405
|
+
)
|
|
406
|
+
|
|
407
|
+
return ReflectionRecommendations(
|
|
408
|
+
action=ReflectionAction.RETRY,
|
|
409
|
+
adjustments=adjustments,
|
|
410
|
+
reasoning="오류 수정 후 재시도 필요",
|
|
411
|
+
)
|
|
412
|
+
|
|
413
|
+
if impact.severity == ImpactSeverity.MINOR:
|
|
414
|
+
# 경미한 조정 - 조정 후 계속
|
|
415
|
+
return ReflectionRecommendations(
|
|
416
|
+
action=ReflectionAction.ADJUST,
|
|
417
|
+
adjustments=adjustments,
|
|
418
|
+
reasoning="경미한 조정 후 계속 진행 가능",
|
|
419
|
+
)
|
|
420
|
+
|
|
421
|
+
# 기본: 계속 진행
|
|
422
|
+
return ReflectionRecommendations(
|
|
423
|
+
action=ReflectionAction.CONTINUE,
|
|
424
|
+
adjustments=[],
|
|
425
|
+
reasoning="특별한 조정 없이 진행 가능",
|
|
426
|
+
)
|
|
427
|
+
|
|
428
|
+
def reflect(
|
|
429
|
+
self,
|
|
430
|
+
step_number: int,
|
|
431
|
+
step_description: str,
|
|
432
|
+
executed_code: str,
|
|
433
|
+
execution_status: str,
|
|
434
|
+
execution_output: str,
|
|
435
|
+
error_message: Optional[str] = None,
|
|
436
|
+
expected_outcome: Optional[str] = None,
|
|
437
|
+
validation_criteria: Optional[List[str]] = None,
|
|
438
|
+
remaining_steps: Optional[List[Dict[str, Any]]] = None,
|
|
439
|
+
) -> ReflectionResult:
|
|
440
|
+
"""
|
|
441
|
+
전체 Reflection 수행
|
|
442
|
+
|
|
443
|
+
Args:
|
|
444
|
+
step_number: 단계 번호
|
|
445
|
+
step_description: 단계 설명
|
|
446
|
+
executed_code: 실행된 코드
|
|
447
|
+
execution_status: 실행 상태 ('ok' 또는 'error')
|
|
448
|
+
execution_output: 실행 출력
|
|
449
|
+
error_message: 오류 메시지 (있는 경우)
|
|
450
|
+
expected_outcome: 예상 결과
|
|
451
|
+
validation_criteria: 검증 기준 목록
|
|
452
|
+
remaining_steps: 남은 단계 목록
|
|
453
|
+
|
|
454
|
+
Returns:
|
|
455
|
+
ReflectionResult: Reflection 결과
|
|
456
|
+
"""
|
|
457
|
+
# 1. Checkpoint 평가
|
|
458
|
+
evaluation = self.evaluate_checkpoint(
|
|
459
|
+
execution_status=execution_status,
|
|
460
|
+
execution_output=execution_output,
|
|
461
|
+
expected_outcome=expected_outcome,
|
|
462
|
+
validation_criteria=validation_criteria,
|
|
463
|
+
error_message=error_message,
|
|
464
|
+
)
|
|
465
|
+
|
|
466
|
+
# 2. 실행 분석
|
|
467
|
+
analysis = self.analyze_execution(
|
|
468
|
+
execution_status=execution_status,
|
|
469
|
+
execution_output=execution_output,
|
|
470
|
+
error_message=error_message,
|
|
471
|
+
executed_code=executed_code,
|
|
472
|
+
)
|
|
473
|
+
|
|
474
|
+
# 3. 영향 평가
|
|
475
|
+
impact = self.assess_impact(
|
|
476
|
+
evaluation=evaluation, analysis=analysis, remaining_steps=remaining_steps
|
|
477
|
+
)
|
|
478
|
+
|
|
479
|
+
# 4. 권장사항 생성
|
|
480
|
+
recommendations = self.generate_recommendations(
|
|
481
|
+
evaluation=evaluation, analysis=analysis, impact=impact
|
|
482
|
+
)
|
|
483
|
+
|
|
484
|
+
return ReflectionResult(
|
|
485
|
+
evaluation=evaluation,
|
|
486
|
+
analysis=analysis,
|
|
487
|
+
impact_on_remaining=impact,
|
|
488
|
+
recommendations=recommendations,
|
|
489
|
+
)
|