hanzo-mcp 0.5.2__py3-none-any.whl → 0.6.1__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of hanzo-mcp might be problematic. Click here for more details.
- hanzo_mcp/__init__.py +1 -1
- hanzo_mcp/cli.py +32 -0
- hanzo_mcp/dev_server.py +246 -0
- hanzo_mcp/prompts/__init__.py +1 -1
- hanzo_mcp/prompts/project_system.py +43 -7
- hanzo_mcp/server.py +5 -1
- hanzo_mcp/tools/__init__.py +66 -35
- hanzo_mcp/tools/agent/__init__.py +1 -1
- hanzo_mcp/tools/agent/agent.py +401 -0
- hanzo_mcp/tools/agent/agent_tool.py +3 -4
- hanzo_mcp/tools/common/__init__.py +1 -1
- hanzo_mcp/tools/common/base.py +2 -2
- hanzo_mcp/tools/common/batch_tool.py +3 -5
- hanzo_mcp/tools/common/config_tool.py +1 -1
- hanzo_mcp/tools/common/context.py +1 -1
- hanzo_mcp/tools/common/palette.py +344 -0
- hanzo_mcp/tools/common/palette_loader.py +108 -0
- hanzo_mcp/tools/common/stats.py +1 -1
- hanzo_mcp/tools/common/thinking_tool.py +3 -5
- hanzo_mcp/tools/common/tool_disable.py +1 -1
- hanzo_mcp/tools/common/tool_enable.py +1 -1
- hanzo_mcp/tools/common/tool_list.py +49 -52
- hanzo_mcp/tools/config/__init__.py +10 -0
- hanzo_mcp/tools/config/config_tool.py +212 -0
- hanzo_mcp/tools/config/index_config.py +176 -0
- hanzo_mcp/tools/config/palette_tool.py +166 -0
- hanzo_mcp/tools/database/__init__.py +1 -1
- hanzo_mcp/tools/database/graph.py +482 -0
- hanzo_mcp/tools/database/graph_add.py +1 -1
- hanzo_mcp/tools/database/graph_query.py +1 -1
- hanzo_mcp/tools/database/graph_remove.py +1 -1
- hanzo_mcp/tools/database/graph_search.py +1 -1
- hanzo_mcp/tools/database/graph_stats.py +1 -1
- hanzo_mcp/tools/database/sql.py +411 -0
- hanzo_mcp/tools/database/sql_query.py +1 -1
- hanzo_mcp/tools/database/sql_search.py +1 -1
- hanzo_mcp/tools/database/sql_stats.py +1 -1
- hanzo_mcp/tools/editor/neovim_command.py +1 -1
- hanzo_mcp/tools/editor/neovim_edit.py +1 -1
- hanzo_mcp/tools/editor/neovim_session.py +1 -1
- hanzo_mcp/tools/filesystem/__init__.py +42 -13
- hanzo_mcp/tools/filesystem/base.py +1 -1
- hanzo_mcp/tools/filesystem/batch_search.py +4 -4
- hanzo_mcp/tools/filesystem/content_replace.py +3 -5
- hanzo_mcp/tools/filesystem/diff.py +193 -0
- hanzo_mcp/tools/filesystem/directory_tree.py +3 -5
- hanzo_mcp/tools/filesystem/edit.py +3 -5
- hanzo_mcp/tools/filesystem/find.py +443 -0
- hanzo_mcp/tools/filesystem/find_files.py +1 -1
- hanzo_mcp/tools/filesystem/git_search.py +1 -1
- hanzo_mcp/tools/filesystem/grep.py +2 -2
- hanzo_mcp/tools/filesystem/multi_edit.py +3 -5
- hanzo_mcp/tools/filesystem/read.py +17 -5
- hanzo_mcp/tools/filesystem/{grep_ast_tool.py → symbols.py} +17 -27
- hanzo_mcp/tools/filesystem/symbols_unified.py +376 -0
- hanzo_mcp/tools/filesystem/tree.py +268 -0
- hanzo_mcp/tools/filesystem/unified_search.py +711 -0
- hanzo_mcp/tools/filesystem/unix_aliases.py +99 -0
- hanzo_mcp/tools/filesystem/watch.py +174 -0
- hanzo_mcp/tools/filesystem/write.py +3 -5
- hanzo_mcp/tools/jupyter/__init__.py +9 -12
- hanzo_mcp/tools/jupyter/base.py +1 -1
- hanzo_mcp/tools/jupyter/jupyter.py +326 -0
- hanzo_mcp/tools/jupyter/notebook_edit.py +3 -4
- hanzo_mcp/tools/jupyter/notebook_read.py +3 -5
- hanzo_mcp/tools/llm/__init__.py +4 -0
- hanzo_mcp/tools/llm/consensus_tool.py +1 -1
- hanzo_mcp/tools/llm/llm_manage.py +1 -1
- hanzo_mcp/tools/llm/llm_tool.py +1 -1
- hanzo_mcp/tools/llm/llm_unified.py +851 -0
- hanzo_mcp/tools/llm/provider_tools.py +1 -1
- hanzo_mcp/tools/mcp/__init__.py +4 -0
- hanzo_mcp/tools/mcp/mcp_add.py +1 -1
- hanzo_mcp/tools/mcp/mcp_remove.py +1 -1
- hanzo_mcp/tools/mcp/mcp_stats.py +1 -1
- hanzo_mcp/tools/mcp/mcp_unified.py +503 -0
- hanzo_mcp/tools/shell/__init__.py +20 -42
- hanzo_mcp/tools/shell/base.py +1 -1
- hanzo_mcp/tools/shell/base_process.py +303 -0
- hanzo_mcp/tools/shell/bash_unified.py +134 -0
- hanzo_mcp/tools/shell/logs.py +1 -1
- hanzo_mcp/tools/shell/npx.py +1 -1
- hanzo_mcp/tools/shell/npx_background.py +1 -1
- hanzo_mcp/tools/shell/npx_unified.py +101 -0
- hanzo_mcp/tools/shell/open.py +107 -0
- hanzo_mcp/tools/shell/pkill.py +1 -1
- hanzo_mcp/tools/shell/process_unified.py +131 -0
- hanzo_mcp/tools/shell/processes.py +1 -1
- hanzo_mcp/tools/shell/run_background.py +1 -1
- hanzo_mcp/tools/shell/run_command.py +3 -4
- hanzo_mcp/tools/shell/run_command_windows.py +3 -4
- hanzo_mcp/tools/shell/uvx.py +1 -1
- hanzo_mcp/tools/shell/uvx_background.py +1 -1
- hanzo_mcp/tools/shell/uvx_unified.py +101 -0
- hanzo_mcp/tools/todo/__init__.py +1 -1
- hanzo_mcp/tools/todo/base.py +1 -1
- hanzo_mcp/tools/todo/todo.py +265 -0
- hanzo_mcp/tools/todo/todo_read.py +3 -5
- hanzo_mcp/tools/todo/todo_write.py +3 -5
- hanzo_mcp/tools/vector/__init__.py +1 -1
- hanzo_mcp/tools/vector/index_tool.py +1 -1
- hanzo_mcp/tools/vector/project_manager.py +27 -5
- hanzo_mcp/tools/vector/vector.py +311 -0
- hanzo_mcp/tools/vector/vector_index.py +1 -1
- hanzo_mcp/tools/vector/vector_search.py +1 -1
- hanzo_mcp-0.6.1.dist-info/METADATA +336 -0
- hanzo_mcp-0.6.1.dist-info/RECORD +134 -0
- hanzo_mcp-0.6.1.dist-info/entry_points.txt +3 -0
- hanzo_mcp-0.5.2.dist-info/METADATA +0 -276
- hanzo_mcp-0.5.2.dist-info/RECORD +0 -106
- hanzo_mcp-0.5.2.dist-info/entry_points.txt +0 -2
- {hanzo_mcp-0.5.2.dist-info → hanzo_mcp-0.6.1.dist-info}/WHEEL +0 -0
- {hanzo_mcp-0.5.2.dist-info → hanzo_mcp-0.6.1.dist-info}/licenses/LICENSE +0 -0
- {hanzo_mcp-0.5.2.dist-info → hanzo_mcp-0.6.1.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,851 @@
|
|
|
1
|
+
"""Unified LLM tool with multiple actions including consensus mode."""
|
|
2
|
+
|
|
3
|
+
from typing import Annotated, TypedDict, Unpack, final, override, Optional, List, Dict, Any
|
|
4
|
+
import asyncio
|
|
5
|
+
import os
|
|
6
|
+
import json
|
|
7
|
+
from pathlib import Path
|
|
8
|
+
|
|
9
|
+
from mcp.server.fastmcp import Context as MCPContext
|
|
10
|
+
from pydantic import Field
|
|
11
|
+
|
|
12
|
+
from hanzo_mcp.tools.common.base import BaseTool
|
|
13
|
+
from hanzo_mcp.tools.common.context import create_tool_context
|
|
14
|
+
|
|
15
|
+
# Check if litellm is available
|
|
16
|
+
try:
|
|
17
|
+
import litellm
|
|
18
|
+
LITELLM_AVAILABLE = True
|
|
19
|
+
except ImportError:
|
|
20
|
+
LITELLM_AVAILABLE = False
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
# Parameter types
|
|
24
|
+
Action = Annotated[
|
|
25
|
+
str,
|
|
26
|
+
Field(
|
|
27
|
+
description="Action to perform: query, consensus, list, models, enable, disable, test",
|
|
28
|
+
default="query",
|
|
29
|
+
),
|
|
30
|
+
]
|
|
31
|
+
|
|
32
|
+
Model = Annotated[
|
|
33
|
+
Optional[str],
|
|
34
|
+
Field(
|
|
35
|
+
description="Model name (e.g., gpt-4, claude-3-opus-20240229)",
|
|
36
|
+
default=None,
|
|
37
|
+
),
|
|
38
|
+
]
|
|
39
|
+
|
|
40
|
+
Models = Annotated[
|
|
41
|
+
Optional[List[str]],
|
|
42
|
+
Field(
|
|
43
|
+
description="List of models for consensus mode",
|
|
44
|
+
default=None,
|
|
45
|
+
),
|
|
46
|
+
]
|
|
47
|
+
|
|
48
|
+
Prompt = Annotated[
|
|
49
|
+
Optional[str],
|
|
50
|
+
Field(
|
|
51
|
+
description="The prompt to send to the LLM",
|
|
52
|
+
default=None,
|
|
53
|
+
),
|
|
54
|
+
]
|
|
55
|
+
|
|
56
|
+
SystemPrompt = Annotated[
|
|
57
|
+
Optional[str],
|
|
58
|
+
Field(
|
|
59
|
+
description="System prompt to set context",
|
|
60
|
+
default=None,
|
|
61
|
+
),
|
|
62
|
+
]
|
|
63
|
+
|
|
64
|
+
Temperature = Annotated[
|
|
65
|
+
float,
|
|
66
|
+
Field(
|
|
67
|
+
description="Temperature for response randomness (0-2)",
|
|
68
|
+
default=0.7,
|
|
69
|
+
),
|
|
70
|
+
]
|
|
71
|
+
|
|
72
|
+
MaxTokens = Annotated[
|
|
73
|
+
Optional[int],
|
|
74
|
+
Field(
|
|
75
|
+
description="Maximum tokens in response",
|
|
76
|
+
default=None,
|
|
77
|
+
),
|
|
78
|
+
]
|
|
79
|
+
|
|
80
|
+
JsonMode = Annotated[
|
|
81
|
+
bool,
|
|
82
|
+
Field(
|
|
83
|
+
description="Request JSON formatted response",
|
|
84
|
+
default=False,
|
|
85
|
+
),
|
|
86
|
+
]
|
|
87
|
+
|
|
88
|
+
Stream = Annotated[
|
|
89
|
+
bool,
|
|
90
|
+
Field(
|
|
91
|
+
description="Stream the response",
|
|
92
|
+
default=False,
|
|
93
|
+
),
|
|
94
|
+
]
|
|
95
|
+
|
|
96
|
+
Provider = Annotated[
|
|
97
|
+
Optional[str],
|
|
98
|
+
Field(
|
|
99
|
+
description="Provider name for list/enable/disable actions",
|
|
100
|
+
default=None,
|
|
101
|
+
),
|
|
102
|
+
]
|
|
103
|
+
|
|
104
|
+
IncludeRaw = Annotated[
|
|
105
|
+
bool,
|
|
106
|
+
Field(
|
|
107
|
+
description="Include raw responses in consensus mode",
|
|
108
|
+
default=False,
|
|
109
|
+
),
|
|
110
|
+
]
|
|
111
|
+
|
|
112
|
+
JudgeModel = Annotated[
|
|
113
|
+
Optional[str],
|
|
114
|
+
Field(
|
|
115
|
+
description="Model to use as judge/aggregator in consensus",
|
|
116
|
+
default=None,
|
|
117
|
+
),
|
|
118
|
+
]
|
|
119
|
+
|
|
120
|
+
DevilsAdvocate = Annotated[
|
|
121
|
+
bool,
|
|
122
|
+
Field(
|
|
123
|
+
description="Enable devil's advocate mode (10th model critiques others)",
|
|
124
|
+
default=False,
|
|
125
|
+
),
|
|
126
|
+
]
|
|
127
|
+
|
|
128
|
+
ConsensusSize = Annotated[
|
|
129
|
+
Optional[int],
|
|
130
|
+
Field(
|
|
131
|
+
description="Number of models to use in consensus (default: 3)",
|
|
132
|
+
default=None,
|
|
133
|
+
),
|
|
134
|
+
]
|
|
135
|
+
|
|
136
|
+
|
|
137
|
+
class LLMParams(TypedDict, total=False):
|
|
138
|
+
"""Parameters for LLM tool."""
|
|
139
|
+
action: str
|
|
140
|
+
model: Optional[str]
|
|
141
|
+
models: Optional[List[str]]
|
|
142
|
+
prompt: Optional[str]
|
|
143
|
+
system_prompt: Optional[str]
|
|
144
|
+
temperature: float
|
|
145
|
+
max_tokens: Optional[int]
|
|
146
|
+
json_mode: bool
|
|
147
|
+
stream: bool
|
|
148
|
+
provider: Optional[str]
|
|
149
|
+
include_raw: bool
|
|
150
|
+
judge_model: Optional[str]
|
|
151
|
+
devils_advocate: bool
|
|
152
|
+
consensus_size: Optional[int]
|
|
153
|
+
|
|
154
|
+
|
|
155
|
+
@final
|
|
156
|
+
class UnifiedLLMTool(BaseTool):
|
|
157
|
+
"""Unified LLM tool with multiple actions."""
|
|
158
|
+
|
|
159
|
+
# Config file for settings
|
|
160
|
+
CONFIG_FILE = Path.home() / ".hanzo" / "mcp" / "llm_config.json"
|
|
161
|
+
|
|
162
|
+
# Default consensus models in order of preference
|
|
163
|
+
DEFAULT_CONSENSUS_MODELS = [
|
|
164
|
+
"gpt-4o", # OpenAI's latest
|
|
165
|
+
"claude-3-opus-20240229", # Claude's most capable
|
|
166
|
+
"gemini/gemini-1.5-pro", # Google's best
|
|
167
|
+
"groq/llama3-70b-8192", # Fast Groq
|
|
168
|
+
"mistral/mistral-large-latest", # Mistral's best
|
|
169
|
+
"perplexity/llama-3.1-sonar-large-128k-chat", # Perplexity with search
|
|
170
|
+
]
|
|
171
|
+
|
|
172
|
+
# API key environment variables
|
|
173
|
+
API_KEY_ENV_VARS = {
|
|
174
|
+
"openai": ["OPENAI_API_KEY"],
|
|
175
|
+
"anthropic": ["ANTHROPIC_API_KEY", "CLAUDE_API_KEY"],
|
|
176
|
+
"google": ["GOOGLE_API_KEY", "GEMINI_API_KEY"],
|
|
177
|
+
"groq": ["GROQ_API_KEY"],
|
|
178
|
+
"mistral": ["MISTRAL_API_KEY"],
|
|
179
|
+
"perplexity": ["PERPLEXITY_API_KEY", "PERPLEXITYAI_API_KEY"],
|
|
180
|
+
"together": ["TOGETHER_API_KEY", "TOGETHERAI_API_KEY"],
|
|
181
|
+
"cohere": ["COHERE_API_KEY"],
|
|
182
|
+
"replicate": ["REPLICATE_API_KEY"],
|
|
183
|
+
"huggingface": ["HUGGINGFACE_API_KEY", "HF_TOKEN"],
|
|
184
|
+
"bedrock": ["AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY"],
|
|
185
|
+
"vertex": ["GOOGLE_APPLICATION_CREDENTIALS"],
|
|
186
|
+
"azure": ["AZURE_API_KEY"],
|
|
187
|
+
"voyage": ["VOYAGE_API_KEY"],
|
|
188
|
+
"deepseek": ["DEEPSEEK_API_KEY"],
|
|
189
|
+
}
|
|
190
|
+
|
|
191
|
+
def __init__(self):
|
|
192
|
+
"""Initialize the unified LLM tool."""
|
|
193
|
+
self.available_providers = self._detect_available_providers()
|
|
194
|
+
self.config = self._load_config()
|
|
195
|
+
|
|
196
|
+
def _detect_available_providers(self) -> Dict[str, List[str]]:
|
|
197
|
+
"""Detect which providers have API keys configured."""
|
|
198
|
+
available = {}
|
|
199
|
+
|
|
200
|
+
for provider, env_vars in self.API_KEY_ENV_VARS.items():
|
|
201
|
+
for var in env_vars:
|
|
202
|
+
if os.getenv(var):
|
|
203
|
+
available[provider] = env_vars
|
|
204
|
+
break
|
|
205
|
+
|
|
206
|
+
return available
|
|
207
|
+
|
|
208
|
+
def _load_config(self) -> Dict[str, Any]:
|
|
209
|
+
"""Load configuration from file."""
|
|
210
|
+
if self.CONFIG_FILE.exists():
|
|
211
|
+
try:
|
|
212
|
+
with open(self.CONFIG_FILE, 'r') as f:
|
|
213
|
+
return json.load(f)
|
|
214
|
+
except:
|
|
215
|
+
pass
|
|
216
|
+
|
|
217
|
+
# Default config
|
|
218
|
+
return {
|
|
219
|
+
"disabled_providers": [],
|
|
220
|
+
"consensus_models": None, # Use defaults if None
|
|
221
|
+
"default_judge_model": "gpt-4o",
|
|
222
|
+
"consensus_size": 3,
|
|
223
|
+
}
|
|
224
|
+
|
|
225
|
+
def _save_config(self):
|
|
226
|
+
"""Save configuration to file."""
|
|
227
|
+
self.CONFIG_FILE.parent.mkdir(parents=True, exist_ok=True)
|
|
228
|
+
with open(self.CONFIG_FILE, 'w') as f:
|
|
229
|
+
json.dump(self.config, f, indent=2)
|
|
230
|
+
|
|
231
|
+
@property
|
|
232
|
+
@override
|
|
233
|
+
def name(self) -> str:
|
|
234
|
+
"""Get the tool name."""
|
|
235
|
+
return "llm"
|
|
236
|
+
|
|
237
|
+
@property
|
|
238
|
+
@override
|
|
239
|
+
def description(self) -> str:
|
|
240
|
+
"""Get the tool description."""
|
|
241
|
+
available = list(self.available_providers.keys())
|
|
242
|
+
|
|
243
|
+
return f"""Query LLMs. Default: single query. Actions: consensus, list, models, test.
|
|
244
|
+
|
|
245
|
+
Usage:
|
|
246
|
+
llm "What is the capital of France?"
|
|
247
|
+
llm "Explain this code" --model gpt-4o
|
|
248
|
+
llm --action consensus "Is this approach correct?" --devils-advocate
|
|
249
|
+
llm --action models --provider openai
|
|
250
|
+
|
|
251
|
+
Available: {', '.join(available) if available else 'None'}"""
|
|
252
|
+
|
|
253
|
+
@override
|
|
254
|
+
async def call(
|
|
255
|
+
self,
|
|
256
|
+
ctx: MCPContext,
|
|
257
|
+
**params: Unpack[LLMParams],
|
|
258
|
+
) -> str:
|
|
259
|
+
"""Execute LLM action."""
|
|
260
|
+
# Create tool context only if we have a proper MCP context
|
|
261
|
+
tool_ctx = None
|
|
262
|
+
try:
|
|
263
|
+
if hasattr(ctx, 'client') and ctx.client and hasattr(ctx.client, 'server'):
|
|
264
|
+
tool_ctx = create_tool_context(ctx)
|
|
265
|
+
if tool_ctx:
|
|
266
|
+
await tool_ctx.set_tool_info(self.name)
|
|
267
|
+
except:
|
|
268
|
+
# Running in test mode without MCP context
|
|
269
|
+
pass
|
|
270
|
+
|
|
271
|
+
if not LITELLM_AVAILABLE:
|
|
272
|
+
return "Error: LiteLLM is not installed. Install it with: pip install litellm"
|
|
273
|
+
|
|
274
|
+
# Extract action
|
|
275
|
+
action = params.get("action", "query")
|
|
276
|
+
|
|
277
|
+
# Route to appropriate handler
|
|
278
|
+
if action == "query":
|
|
279
|
+
return await self._handle_query(tool_ctx, params)
|
|
280
|
+
elif action == "consensus":
|
|
281
|
+
return await self._handle_consensus(tool_ctx, params)
|
|
282
|
+
elif action == "list":
|
|
283
|
+
return self._handle_list()
|
|
284
|
+
elif action == "models":
|
|
285
|
+
return self._handle_models(params.get("provider"))
|
|
286
|
+
elif action == "enable":
|
|
287
|
+
return self._handle_enable(params.get("provider"))
|
|
288
|
+
elif action == "disable":
|
|
289
|
+
return self._handle_disable(params.get("provider"))
|
|
290
|
+
elif action == "test":
|
|
291
|
+
return await self._handle_test(tool_ctx, params.get("model"), params.get("provider"))
|
|
292
|
+
else:
|
|
293
|
+
return f"Error: Unknown action '{action}'. Valid actions: query, consensus, list, models, enable, disable, test"
|
|
294
|
+
|
|
295
|
+
async def _handle_query(self, tool_ctx, params: Dict[str, Any]) -> str:
|
|
296
|
+
"""Handle single model query."""
|
|
297
|
+
model = params.get("model")
|
|
298
|
+
prompt = params.get("prompt")
|
|
299
|
+
|
|
300
|
+
if not prompt:
|
|
301
|
+
return "Error: prompt is required for query action"
|
|
302
|
+
|
|
303
|
+
# Auto-select model if not specified
|
|
304
|
+
if not model:
|
|
305
|
+
if self.available_providers:
|
|
306
|
+
# Use first available model
|
|
307
|
+
if "openai" in self.available_providers:
|
|
308
|
+
model = "gpt-4o-mini"
|
|
309
|
+
elif "anthropic" in self.available_providers:
|
|
310
|
+
model = "claude-3-haiku-20240307"
|
|
311
|
+
elif "google" in self.available_providers:
|
|
312
|
+
model = "gemini/gemini-1.5-flash"
|
|
313
|
+
else:
|
|
314
|
+
# Use first provider's default
|
|
315
|
+
provider = list(self.available_providers.keys())[0]
|
|
316
|
+
model = f"{provider}/default"
|
|
317
|
+
else:
|
|
318
|
+
return "Error: No model specified and no API keys found"
|
|
319
|
+
|
|
320
|
+
# Check if we have API key for this model
|
|
321
|
+
provider = self._get_provider_for_model(model)
|
|
322
|
+
if provider and provider not in self.available_providers:
|
|
323
|
+
env_vars = self.API_KEY_ENV_VARS.get(provider, [])
|
|
324
|
+
return f"Error: No API key found for {provider}. Set one of: {', '.join(env_vars)}"
|
|
325
|
+
|
|
326
|
+
# Build messages
|
|
327
|
+
messages = []
|
|
328
|
+
if params.get("system_prompt"):
|
|
329
|
+
messages.append({"role": "system", "content": params["system_prompt"]})
|
|
330
|
+
messages.append({"role": "user", "content": prompt})
|
|
331
|
+
|
|
332
|
+
# Build kwargs
|
|
333
|
+
kwargs = {
|
|
334
|
+
"model": model,
|
|
335
|
+
"messages": messages,
|
|
336
|
+
"temperature": params.get("temperature", 0.7),
|
|
337
|
+
}
|
|
338
|
+
|
|
339
|
+
if params.get("max_tokens"):
|
|
340
|
+
kwargs["max_tokens"] = params["max_tokens"]
|
|
341
|
+
|
|
342
|
+
if params.get("json_mode"):
|
|
343
|
+
kwargs["response_format"] = {"type": "json_object"}
|
|
344
|
+
|
|
345
|
+
if params.get("stream"):
|
|
346
|
+
kwargs["stream"] = True
|
|
347
|
+
|
|
348
|
+
try:
|
|
349
|
+
if tool_ctx:
|
|
350
|
+
await tool_ctx.info(f"Querying {model}...")
|
|
351
|
+
|
|
352
|
+
if kwargs.get("stream"):
|
|
353
|
+
# Handle streaming response
|
|
354
|
+
response_text = ""
|
|
355
|
+
async for chunk in await litellm.acompletion(**kwargs):
|
|
356
|
+
if chunk.choices[0].delta.content:
|
|
357
|
+
response_text += chunk.choices[0].delta.content
|
|
358
|
+
return response_text
|
|
359
|
+
else:
|
|
360
|
+
# Regular response
|
|
361
|
+
response = await litellm.acompletion(**kwargs)
|
|
362
|
+
return response.choices[0].message.content
|
|
363
|
+
|
|
364
|
+
except Exception as e:
|
|
365
|
+
error_msg = str(e)
|
|
366
|
+
if "model_not_found" in error_msg or "does not exist" in error_msg:
|
|
367
|
+
return f"Error: Model '{model}' not found. Use 'llm --action models' to see available models."
|
|
368
|
+
else:
|
|
369
|
+
return f"Error calling LLM: {error_msg}"
|
|
370
|
+
|
|
371
|
+
async def _handle_consensus(self, tool_ctx, params: Dict[str, Any]) -> str:
|
|
372
|
+
"""Handle consensus mode with multiple models."""
|
|
373
|
+
prompt = params.get("prompt")
|
|
374
|
+
if not prompt:
|
|
375
|
+
return "Error: prompt is required for consensus action"
|
|
376
|
+
|
|
377
|
+
# Determine models to use
|
|
378
|
+
models = params.get("models")
|
|
379
|
+
if not models:
|
|
380
|
+
# Use configured or default models
|
|
381
|
+
consensus_size = params.get("consensus_size") or self.config.get("consensus_size", 3)
|
|
382
|
+
models = self._get_consensus_models(consensus_size)
|
|
383
|
+
|
|
384
|
+
if not models:
|
|
385
|
+
return "Error: No models available for consensus. Set API keys for at least 2 providers."
|
|
386
|
+
|
|
387
|
+
if len(models) < 2:
|
|
388
|
+
return "Error: Consensus requires at least 2 models"
|
|
389
|
+
|
|
390
|
+
# Check for devil's advocate mode
|
|
391
|
+
devils_advocate = params.get("devils_advocate", False)
|
|
392
|
+
if devils_advocate and len(models) < 3:
|
|
393
|
+
return "Error: Devil's advocate mode requires at least 3 models"
|
|
394
|
+
|
|
395
|
+
if tool_ctx:
|
|
396
|
+
await tool_ctx.info(f"Running consensus with {len(models)} models...")
|
|
397
|
+
|
|
398
|
+
# Query models in parallel
|
|
399
|
+
system_prompt = params.get("system_prompt")
|
|
400
|
+
temperature = params.get("temperature", 0.7)
|
|
401
|
+
max_tokens = params.get("max_tokens")
|
|
402
|
+
|
|
403
|
+
# Split models if using devil's advocate
|
|
404
|
+
if devils_advocate:
|
|
405
|
+
consensus_models = models[:-1]
|
|
406
|
+
devil_model = models[-1]
|
|
407
|
+
else:
|
|
408
|
+
consensus_models = models
|
|
409
|
+
devil_model = None
|
|
410
|
+
|
|
411
|
+
# Query consensus models
|
|
412
|
+
responses = await self._query_models_parallel(
|
|
413
|
+
consensus_models, prompt, system_prompt, temperature, max_tokens, tool_ctx
|
|
414
|
+
)
|
|
415
|
+
|
|
416
|
+
# Get devil's advocate response if enabled
|
|
417
|
+
devil_response = None
|
|
418
|
+
if devil_model:
|
|
419
|
+
# Create devil's advocate prompt
|
|
420
|
+
responses_text = "\n\n".join([
|
|
421
|
+
f"Model {i+1}: {resp['response']}"
|
|
422
|
+
for i, resp in enumerate(responses) if resp['response']
|
|
423
|
+
])
|
|
424
|
+
|
|
425
|
+
devil_prompt = f"""You are a critical analyst. Review these responses to the question below and provide a devil's advocate perspective. Challenge assumptions, point out weaknesses, and suggest alternative viewpoints.
|
|
426
|
+
|
|
427
|
+
Original Question: {prompt}
|
|
428
|
+
|
|
429
|
+
Responses from other models:
|
|
430
|
+
{responses_text}
|
|
431
|
+
|
|
432
|
+
Provide your critical analysis:"""
|
|
433
|
+
|
|
434
|
+
devil_result = await self._query_single_model(
|
|
435
|
+
devil_model, devil_prompt, system_prompt, temperature, max_tokens
|
|
436
|
+
)
|
|
437
|
+
|
|
438
|
+
if devil_result['success']:
|
|
439
|
+
devil_response = {
|
|
440
|
+
'model': devil_model,
|
|
441
|
+
'response': devil_result['response'],
|
|
442
|
+
'time_ms': devil_result['time_ms']
|
|
443
|
+
}
|
|
444
|
+
|
|
445
|
+
# Aggregate responses
|
|
446
|
+
judge_model = params.get("judge_model") or self.config.get("default_judge_model", "gpt-4o")
|
|
447
|
+
include_raw = params.get("include_raw", False)
|
|
448
|
+
|
|
449
|
+
return await self._aggregate_consensus(
|
|
450
|
+
responses, prompt, judge_model, include_raw, devil_response, tool_ctx
|
|
451
|
+
)
|
|
452
|
+
|
|
453
|
+
def _handle_list(self) -> str:
|
|
454
|
+
"""List available providers."""
|
|
455
|
+
output = ["=== LLM Providers ==="]
|
|
456
|
+
|
|
457
|
+
# Get all possible providers
|
|
458
|
+
all_providers = sorted(self.API_KEY_ENV_VARS.keys())
|
|
459
|
+
disabled = self.config.get("disabled_providers", [])
|
|
460
|
+
|
|
461
|
+
output.append(f"Total providers: {len(all_providers)}")
|
|
462
|
+
output.append(f"Available: {len(self.available_providers)}")
|
|
463
|
+
output.append(f"Disabled: {len(disabled)}\n")
|
|
464
|
+
|
|
465
|
+
for provider in all_providers:
|
|
466
|
+
status_parts = []
|
|
467
|
+
|
|
468
|
+
# Check if API key exists
|
|
469
|
+
if provider in self.available_providers:
|
|
470
|
+
status_parts.append("✅ API key found")
|
|
471
|
+
else:
|
|
472
|
+
status_parts.append("❌ No API key")
|
|
473
|
+
|
|
474
|
+
# Check if disabled
|
|
475
|
+
if provider in disabled:
|
|
476
|
+
status_parts.append("🚫 Disabled")
|
|
477
|
+
|
|
478
|
+
# Show environment variables
|
|
479
|
+
env_vars = self.API_KEY_ENV_VARS.get(provider, [])
|
|
480
|
+
status = " | ".join(status_parts)
|
|
481
|
+
|
|
482
|
+
output.append(f"{provider}: {status}")
|
|
483
|
+
output.append(f" Environment variables: {', '.join(env_vars)}")
|
|
484
|
+
|
|
485
|
+
output.append("\nUse 'llm --action enable/disable --provider <name>' to manage providers")
|
|
486
|
+
|
|
487
|
+
return "\n".join(output)
|
|
488
|
+
|
|
489
|
+
def _handle_models(self, provider: Optional[str] = None) -> str:
|
|
490
|
+
"""List available models."""
|
|
491
|
+
try:
|
|
492
|
+
all_models = self._get_all_models()
|
|
493
|
+
|
|
494
|
+
if not all_models:
|
|
495
|
+
return "No models available or LiteLLM not properly initialized"
|
|
496
|
+
|
|
497
|
+
output = ["=== Available LLM Models ==="]
|
|
498
|
+
|
|
499
|
+
if provider:
|
|
500
|
+
# Show models for specific provider
|
|
501
|
+
provider_lower = provider.lower()
|
|
502
|
+
models = all_models.get(provider_lower, [])
|
|
503
|
+
|
|
504
|
+
if not models:
|
|
505
|
+
return f"No models found for provider '{provider}'"
|
|
506
|
+
|
|
507
|
+
output.append(f"\n{provider.upper()} ({len(models)} models):")
|
|
508
|
+
output.append("-" * 40)
|
|
509
|
+
|
|
510
|
+
# Show first 50 models
|
|
511
|
+
for model in models[:50]:
|
|
512
|
+
output.append(f" {model}")
|
|
513
|
+
|
|
514
|
+
if len(models) > 50:
|
|
515
|
+
output.append(f" ... and {len(models) - 50} more")
|
|
516
|
+
else:
|
|
517
|
+
# Show summary of all providers
|
|
518
|
+
total_models = sum(len(models) for models in all_models.values())
|
|
519
|
+
output.append(f"Total models available: {total_models}")
|
|
520
|
+
output.append("")
|
|
521
|
+
|
|
522
|
+
# Show providers with counts
|
|
523
|
+
for provider_name, models in sorted(all_models.items()):
|
|
524
|
+
if models:
|
|
525
|
+
available = "✅" if provider_name in self.available_providers else "❌"
|
|
526
|
+
output.append(f"{available} {provider_name}: {len(models)} models")
|
|
527
|
+
|
|
528
|
+
output.append("\nUse 'llm --action models --provider <name>' to see specific models")
|
|
529
|
+
|
|
530
|
+
return "\n".join(output)
|
|
531
|
+
|
|
532
|
+
except Exception as e:
|
|
533
|
+
return f"Error listing models: {str(e)}"
|
|
534
|
+
|
|
535
|
+
def _handle_enable(self, provider: Optional[str]) -> str:
|
|
536
|
+
"""Enable a provider."""
|
|
537
|
+
if not provider:
|
|
538
|
+
return "Error: provider is required for enable action"
|
|
539
|
+
|
|
540
|
+
provider = provider.lower()
|
|
541
|
+
disabled = self.config.get("disabled_providers", [])
|
|
542
|
+
|
|
543
|
+
if provider in disabled:
|
|
544
|
+
disabled.remove(provider)
|
|
545
|
+
self.config["disabled_providers"] = disabled
|
|
546
|
+
self._save_config()
|
|
547
|
+
return f"Successfully enabled {provider}"
|
|
548
|
+
else:
|
|
549
|
+
return f"{provider} is already enabled"
|
|
550
|
+
|
|
551
|
+
def _handle_disable(self, provider: Optional[str]) -> str:
|
|
552
|
+
"""Disable a provider."""
|
|
553
|
+
if not provider:
|
|
554
|
+
return "Error: provider is required for disable action"
|
|
555
|
+
|
|
556
|
+
provider = provider.lower()
|
|
557
|
+
disabled = self.config.get("disabled_providers", [])
|
|
558
|
+
|
|
559
|
+
if provider not in disabled:
|
|
560
|
+
disabled.append(provider)
|
|
561
|
+
self.config["disabled_providers"] = disabled
|
|
562
|
+
self._save_config()
|
|
563
|
+
return f"Successfully disabled {provider}"
|
|
564
|
+
else:
|
|
565
|
+
return f"{provider} is already disabled"
|
|
566
|
+
|
|
567
|
+
async def _handle_test(self, tool_ctx, model: Optional[str], provider: Optional[str]) -> str:
|
|
568
|
+
"""Test a model or provider."""
|
|
569
|
+
if not model and not provider:
|
|
570
|
+
return "Error: Either model or provider is required for test action"
|
|
571
|
+
|
|
572
|
+
# If provider specified, test its default model
|
|
573
|
+
if provider and not model:
|
|
574
|
+
provider = provider.lower()
|
|
575
|
+
if provider == "openai":
|
|
576
|
+
model = "gpt-3.5-turbo"
|
|
577
|
+
elif provider == "anthropic":
|
|
578
|
+
model = "claude-3-haiku-20240307"
|
|
579
|
+
elif provider == "google":
|
|
580
|
+
model = "gemini/gemini-1.5-flash"
|
|
581
|
+
elif provider == "groq":
|
|
582
|
+
model = "groq/llama3-8b-8192"
|
|
583
|
+
else:
|
|
584
|
+
model = f"{provider}/default"
|
|
585
|
+
|
|
586
|
+
# Test the model
|
|
587
|
+
test_prompt = "Say 'Hello from Hanzo MCP!' in exactly 5 words."
|
|
588
|
+
|
|
589
|
+
try:
|
|
590
|
+
if tool_ctx:
|
|
591
|
+
await tool_ctx.info(f"Testing {model}...")
|
|
592
|
+
|
|
593
|
+
response = await litellm.acompletion(
|
|
594
|
+
model=model,
|
|
595
|
+
messages=[{"role": "user", "content": test_prompt}],
|
|
596
|
+
temperature=0,
|
|
597
|
+
max_tokens=20
|
|
598
|
+
)
|
|
599
|
+
|
|
600
|
+
result = response.choices[0].message.content
|
|
601
|
+
return f"✅ {model} is working!\nResponse: {result}"
|
|
602
|
+
|
|
603
|
+
except Exception as e:
|
|
604
|
+
return f"❌ {model} failed: {str(e)}"
|
|
605
|
+
|
|
606
|
+
def _get_consensus_models(self, size: int) -> List[str]:
|
|
607
|
+
"""Get models for consensus based on availability."""
|
|
608
|
+
# Use configured models if set
|
|
609
|
+
configured = self.config.get("consensus_models")
|
|
610
|
+
if configured:
|
|
611
|
+
return configured[:size]
|
|
612
|
+
|
|
613
|
+
# Otherwise, build list from available providers
|
|
614
|
+
models = []
|
|
615
|
+
disabled = self.config.get("disabled_providers", [])
|
|
616
|
+
|
|
617
|
+
# Try default models first
|
|
618
|
+
for model in self.DEFAULT_CONSENSUS_MODELS:
|
|
619
|
+
if len(models) >= size:
|
|
620
|
+
break
|
|
621
|
+
|
|
622
|
+
provider = self._get_provider_for_model(model)
|
|
623
|
+
if provider and provider in self.available_providers and provider not in disabled:
|
|
624
|
+
models.append(model)
|
|
625
|
+
|
|
626
|
+
# If still need more, add from available providers
|
|
627
|
+
if len(models) < size:
|
|
628
|
+
for provider in self.available_providers:
|
|
629
|
+
if provider in disabled:
|
|
630
|
+
continue
|
|
631
|
+
|
|
632
|
+
if provider == "openai" and "gpt-4o" not in models:
|
|
633
|
+
models.append("gpt-4o")
|
|
634
|
+
elif provider == "anthropic" and "claude-3-opus-20240229" not in models:
|
|
635
|
+
models.append("claude-3-opus-20240229")
|
|
636
|
+
elif provider == "google" and "gemini/gemini-1.5-pro" not in models:
|
|
637
|
+
models.append("gemini/gemini-1.5-pro")
|
|
638
|
+
|
|
639
|
+
if len(models) >= size:
|
|
640
|
+
break
|
|
641
|
+
|
|
642
|
+
return models
|
|
643
|
+
|
|
644
|
+
async def _query_models_parallel(
|
|
645
|
+
self, models: List[str], prompt: str, system_prompt: Optional[str],
|
|
646
|
+
temperature: float, max_tokens: Optional[int], tool_ctx
|
|
647
|
+
) -> List[Dict[str, Any]]:
|
|
648
|
+
"""Query multiple models in parallel."""
|
|
649
|
+
async def query_with_info(model: str) -> Dict[str, Any]:
|
|
650
|
+
result = await self._query_single_model(model, prompt, system_prompt, temperature, max_tokens)
|
|
651
|
+
return {
|
|
652
|
+
'model': model,
|
|
653
|
+
'response': result.get('response'),
|
|
654
|
+
'success': result.get('success', False),
|
|
655
|
+
'error': result.get('error'),
|
|
656
|
+
'time_ms': result.get('time_ms', 0)
|
|
657
|
+
}
|
|
658
|
+
|
|
659
|
+
# Run all queries in parallel
|
|
660
|
+
tasks = [query_with_info(model) for model in models]
|
|
661
|
+
results = await asyncio.gather(*tasks)
|
|
662
|
+
|
|
663
|
+
# Report results
|
|
664
|
+
successful = sum(1 for r in results if r['success'])
|
|
665
|
+
if tool_ctx:
|
|
666
|
+
await tool_ctx.info(f"Completed {successful}/{len(models)} model queries")
|
|
667
|
+
|
|
668
|
+
return results
|
|
669
|
+
|
|
670
|
+
async def _query_single_model(
|
|
671
|
+
self, model: str, prompt: str, system_prompt: Optional[str],
|
|
672
|
+
temperature: float, max_tokens: Optional[int]
|
|
673
|
+
) -> Dict[str, Any]:
|
|
674
|
+
"""Query a single model and return result with metadata."""
|
|
675
|
+
import time
|
|
676
|
+
start_time = time.time()
|
|
677
|
+
|
|
678
|
+
try:
|
|
679
|
+
messages = []
|
|
680
|
+
if system_prompt:
|
|
681
|
+
messages.append({"role": "system", "content": system_prompt})
|
|
682
|
+
messages.append({"role": "user", "content": prompt})
|
|
683
|
+
|
|
684
|
+
kwargs = {
|
|
685
|
+
"model": model,
|
|
686
|
+
"messages": messages,
|
|
687
|
+
"temperature": temperature,
|
|
688
|
+
}
|
|
689
|
+
if max_tokens:
|
|
690
|
+
kwargs["max_tokens"] = max_tokens
|
|
691
|
+
|
|
692
|
+
response = await litellm.acompletion(**kwargs)
|
|
693
|
+
|
|
694
|
+
return {
|
|
695
|
+
'success': True,
|
|
696
|
+
'response': response.choices[0].message.content,
|
|
697
|
+
'time_ms': int((time.time() - start_time) * 1000)
|
|
698
|
+
}
|
|
699
|
+
|
|
700
|
+
except Exception as e:
|
|
701
|
+
return {
|
|
702
|
+
'success': False,
|
|
703
|
+
'error': str(e),
|
|
704
|
+
'time_ms': int((time.time() - start_time) * 1000)
|
|
705
|
+
}
|
|
706
|
+
|
|
707
|
+
async def _aggregate_consensus(
|
|
708
|
+
self, responses: List[Dict[str, Any]], original_prompt: str,
|
|
709
|
+
judge_model: str, include_raw: bool, devil_response: Optional[Dict[str, Any]],
|
|
710
|
+
tool_ctx
|
|
711
|
+
) -> str:
|
|
712
|
+
"""Aggregate consensus responses using a judge model."""
|
|
713
|
+
# Prepare response data
|
|
714
|
+
successful_responses = [r for r in responses if r['success']]
|
|
715
|
+
|
|
716
|
+
if not successful_responses:
|
|
717
|
+
return "Error: All models failed to respond"
|
|
718
|
+
|
|
719
|
+
# Format responses for aggregation
|
|
720
|
+
responses_text = "\n\n".join([
|
|
721
|
+
f"Model: {r['model']}\nResponse: {r['response']}"
|
|
722
|
+
for r in successful_responses
|
|
723
|
+
])
|
|
724
|
+
|
|
725
|
+
if devil_response:
|
|
726
|
+
responses_text += f"\n\nDevil's Advocate ({devil_response['model']}):\n{devil_response['response']}"
|
|
727
|
+
|
|
728
|
+
# Create aggregation prompt
|
|
729
|
+
aggregation_prompt = f"""Analyze the following responses from multiple AI models to this question:
|
|
730
|
+
|
|
731
|
+
<original_question>
|
|
732
|
+
{original_prompt}
|
|
733
|
+
</original_question>
|
|
734
|
+
|
|
735
|
+
<model_responses>
|
|
736
|
+
{responses_text}
|
|
737
|
+
</model_responses>
|
|
738
|
+
|
|
739
|
+
Please provide:
|
|
740
|
+
1. A synthesis of the key points where models agree
|
|
741
|
+
2. Notable differences or disagreements between responses
|
|
742
|
+
3. A balanced conclusion incorporating the best insights
|
|
743
|
+
{f"4. Evaluation of the devil's advocate critique" if devil_response else ""}
|
|
744
|
+
|
|
745
|
+
Be concise and highlight the most important findings."""
|
|
746
|
+
|
|
747
|
+
# Get aggregation
|
|
748
|
+
try:
|
|
749
|
+
if tool_ctx:
|
|
750
|
+
await tool_ctx.info(f"Aggregating responses with {judge_model}...")
|
|
751
|
+
|
|
752
|
+
judge_result = await self._query_single_model(
|
|
753
|
+
judge_model, aggregation_prompt, None, 0.3, None
|
|
754
|
+
)
|
|
755
|
+
|
|
756
|
+
if not judge_result['success']:
|
|
757
|
+
return f"Error: Judge model failed: {judge_result.get('error', 'Unknown error')}"
|
|
758
|
+
|
|
759
|
+
# Format output
|
|
760
|
+
output = [f"=== Consensus Analysis ({len(successful_responses)} models) ===\n"]
|
|
761
|
+
output.append(judge_result['response'])
|
|
762
|
+
|
|
763
|
+
# Add model list
|
|
764
|
+
output.append(f"\nModels consulted: {', '.join([r['model'] for r in successful_responses])}")
|
|
765
|
+
if devil_response:
|
|
766
|
+
output.append(f"Devil's Advocate: {devil_response['model']}")
|
|
767
|
+
|
|
768
|
+
# Add timing info
|
|
769
|
+
avg_time = sum(r['time_ms'] for r in responses) / len(responses)
|
|
770
|
+
output.append(f"\nAverage response time: {avg_time:.0f}ms")
|
|
771
|
+
|
|
772
|
+
# Include raw responses if requested
|
|
773
|
+
if include_raw:
|
|
774
|
+
output.append("\n\n=== Raw Responses ===")
|
|
775
|
+
for r in successful_responses:
|
|
776
|
+
output.append(f"\n{r['model']}:")
|
|
777
|
+
output.append("-" * 40)
|
|
778
|
+
output.append(r['response'])
|
|
779
|
+
|
|
780
|
+
if devil_response:
|
|
781
|
+
output.append(f"\nDevil's Advocate ({devil_response['model']}):")
|
|
782
|
+
output.append("-" * 40)
|
|
783
|
+
output.append(devil_response['response'])
|
|
784
|
+
|
|
785
|
+
return "\n".join(output)
|
|
786
|
+
|
|
787
|
+
except Exception as e:
|
|
788
|
+
return f"Error during aggregation: {str(e)}"
|
|
789
|
+
|
|
790
|
+
def _get_provider_for_model(self, model: str) -> Optional[str]:
|
|
791
|
+
"""Determine the provider for a given model."""
|
|
792
|
+
model_lower = model.lower()
|
|
793
|
+
|
|
794
|
+
# Check explicit provider prefix
|
|
795
|
+
if "/" in model:
|
|
796
|
+
return model.split("/")[0]
|
|
797
|
+
|
|
798
|
+
# Check model prefixes
|
|
799
|
+
if model_lower.startswith("gpt"):
|
|
800
|
+
return "openai"
|
|
801
|
+
elif model_lower.startswith("claude"):
|
|
802
|
+
return "anthropic"
|
|
803
|
+
elif model_lower.startswith("gemini"):
|
|
804
|
+
return "google"
|
|
805
|
+
elif model_lower.startswith("command"):
|
|
806
|
+
return "cohere"
|
|
807
|
+
|
|
808
|
+
# Default to OpenAI
|
|
809
|
+
return "openai"
|
|
810
|
+
|
|
811
|
+
def _get_all_models(self) -> Dict[str, List[str]]:
|
|
812
|
+
"""Get all available models from LiteLLM."""
|
|
813
|
+
try:
|
|
814
|
+
import litellm
|
|
815
|
+
|
|
816
|
+
# Get all models
|
|
817
|
+
all_models = litellm.model_list
|
|
818
|
+
|
|
819
|
+
# Organize by provider
|
|
820
|
+
providers = {}
|
|
821
|
+
|
|
822
|
+
for model in all_models:
|
|
823
|
+
# Extract provider
|
|
824
|
+
if "/" in model:
|
|
825
|
+
provider = model.split("/")[0]
|
|
826
|
+
elif model.startswith("gpt"):
|
|
827
|
+
provider = "openai"
|
|
828
|
+
elif model.startswith("claude"):
|
|
829
|
+
provider = "anthropic"
|
|
830
|
+
elif model.startswith("gemini"):
|
|
831
|
+
provider = "google"
|
|
832
|
+
elif model.startswith("command"):
|
|
833
|
+
provider = "cohere"
|
|
834
|
+
else:
|
|
835
|
+
provider = "other"
|
|
836
|
+
|
|
837
|
+
if provider not in providers:
|
|
838
|
+
providers[provider] = []
|
|
839
|
+
providers[provider].append(model)
|
|
840
|
+
|
|
841
|
+
# Sort models within each provider
|
|
842
|
+
for provider in providers:
|
|
843
|
+
providers[provider] = sorted(providers[provider])
|
|
844
|
+
|
|
845
|
+
return providers
|
|
846
|
+
except Exception:
|
|
847
|
+
return {}
|
|
848
|
+
|
|
849
|
+
def register(self, mcp_server) -> None:
|
|
850
|
+
"""Register this tool with the MCP server."""
|
|
851
|
+
pass
|