hamtaa-texttools 2.1.0__py3-none-any.whl → 2.3.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: hamtaa-texttools
3
- Version: 2.1.0
3
+ Version: 2.3.0
4
4
  Summary: A high-level NLP toolkit built on top of modern LLMs.
5
5
  Author-email: Tohidi <the.mohammad.tohidi@gmail.com>, Erfan Moosavi <erfanmoosavi84@gmail.com>, Montazer <montazerh82@gmail.com>, Givechi <mohamad.m.givechi@gmail.com>, Zareshahi <a.zareshahi1377@gmail.com>
6
6
  Maintainer-email: Erfan Moosavi <erfanmoosavi84@gmail.com>, Tohidi <the.mohammad.tohidi@gmail.com>
@@ -17,6 +17,7 @@ License-File: LICENSE
17
17
  Requires-Dist: dotenv>=0.9.9
18
18
  Requires-Dist: openai>=1.97.1
19
19
  Requires-Dist: pydantic>=2.0.0
20
+ Requires-Dist: pytest>=9.0.2
20
21
  Requires-Dist: pyyaml>=6.0
21
22
  Dynamic: license-file
22
23
 
@@ -29,7 +30,10 @@ Dynamic: license-file
29
30
 
30
31
  **TextTools** is a high-level **NLP toolkit** built on top of **LLMs**.
31
32
 
32
- It provides both **sync (`TheTool`)** and **async (`AsyncTheTool`)** APIs for maximum flexibility.
33
+ It provides three API styles for maximum flexibility:
34
+ - Sync API (`TheTool`) - Simple, sequential operations
35
+ - Async API (`AsyncTheTool`) - High-performance async operations
36
+ - Batch API (`BatchTheTool`) - Process multiple texts in parallel with built-in concurrency control
33
37
 
34
38
  It provides ready-to-use utilities for **translation, question detection, categorization, NER extraction, and more** - designed to help you integrate AI-powered text processing into your applications with minimal effort.
35
39
 
@@ -76,8 +80,6 @@ pip install -U hamtaa-texttools
76
80
 
77
81
  ## ⚙️ Additional Parameters
78
82
 
79
- - **`raise_on_error: bool`** → (`TheTool/AsyncTheTool` parameter) Raise errors (True) or return them in output (False). Default is True.
80
-
81
83
  - **`with_analysis: bool`** → Adds a reasoning step before generating the final output.
82
84
  **Note:** This doubles token usage per call.
83
85
 
@@ -98,32 +100,49 @@ pip install -U hamtaa-texttools
98
100
  - **`timeout: float`** → Maximum time in seconds to wait for the response before raising a timeout error.
99
101
  **Note:** This feature is only available in `AsyncTheTool`.
100
102
 
103
+ - **`raise_on_error: bool`** → (`TheTool/AsyncTheTool`) Raise errors (True) or return them in output (False). Default is True.
104
+
105
+ - **`max_concurrency: int`** → (`BatchTheTool` only) Maximum number of concurrent API calls. Default is 5.
101
106
 
102
107
  ---
103
108
 
104
109
  ## 🧩 ToolOutput
105
110
 
106
111
  Every tool of `TextTools` returns a `ToolOutput` object which is a BaseModel with attributes:
112
+
107
113
  - **`result: Any`**
108
114
  - **`analysis: str`**
109
115
  - **`logprobs: list`**
110
116
  - **`errors: list[str]`**
111
- - **`ToolOutputMetadata`**
117
+ - **`ToolOutputMetadata`**
112
118
  - **`tool_name: str`**
119
+ - **`processed_by: str`**
113
120
  - **`processed_at: datetime`**
114
121
  - **`execution_time: float`**
122
+ - **`token_usage: TokenUsage`**
123
+ - **`completion_usage: CompletionUsage`**
124
+ - **`prompt_tokens: int`**
125
+ - **`completion_tokens: int`**
126
+ - **`total_tokens: int`**
127
+ - **`analyze_usage: AnalyzeUsage`**
128
+ - **`prompt_tokens: int`**
129
+ - **`completion_tokens: int`**
130
+ - **`total_tokens: int`**
115
131
 
116
132
  - Serialize output to JSON using the `to_json()` method.
117
133
  - Verify operation success with the `is_successful()` method.
118
134
  - Convert output to a dictionary with the `to_dict()` method.
119
135
 
136
+ **Note:** For BatchTheTool: Each method returns a `list[ToolOutput]` containing results for all input texts.
137
+
120
138
  ---
121
139
 
122
- ## 🧨 Sync vs Async
123
- | Tool | Style | Use case |
124
- |--------------|---------|---------------------------------------------|
125
- | `TheTool` | Sync | Simple scripts, sequential workflows |
126
- | `AsyncTheTool` | Async | High-throughput apps, APIs, concurrent tasks |
140
+ ## 🧨 Sync vs Async vs Batch
141
+ | Tool | Style | Use Case | Best For |
142
+ |------|-------|----------|----------|
143
+ | `TheTool` | **Sync** | Simple scripts, sequential workflows | • Quick prototyping<br>• Simple scripts<br>• Sequential processing<br>• Debugging |
144
+ | `AsyncTheTool` | **Async** | High-throughput applications, APIs, concurrent tasks | • Web APIs<br>• Concurrent operations<br>• High-performance apps<br>• Real-time processing |
145
+ | `BatchTheTool` | **Batch** | Process multiple texts efficiently with controlled concurrency | • Bulk processing<br>• Large datasets<br>• Parallel execution<br>• Resource optimization |
127
146
 
128
147
  ---
129
148
 
@@ -168,6 +187,35 @@ async def main():
168
187
  asyncio.run(main())
169
188
  ```
170
189
 
190
+ ## ⚡ Quick Start (Batch)
191
+
192
+ ```python
193
+ import asyncio
194
+ from openai import AsyncOpenAI
195
+ from texttools import BatchTheTool
196
+
197
+ async def main():
198
+ async_client = AsyncOpenAI(base_url="your_url", api_key="your_api_key")
199
+ model = "model_name"
200
+
201
+ batch_the_tool = BatchTheTool(client=async_client, model=model, max_concurrency=3)
202
+
203
+ categories = await batch_tool.categorize(
204
+ texts=[
205
+ "Climate change impacts on agriculture",
206
+ "Artificial intelligence in healthcare",
207
+ "Economic effects of remote work",
208
+ "Advancements in quantum computing",
209
+ ],
210
+ categories=["Science", "Technology", "Economics", "Environment"],
211
+ )
212
+
213
+ for i, result in enumerate(categories):
214
+ print(f"Text {i+1}: {result.result}")
215
+
216
+ asyncio.run(main())
217
+ ```
218
+
171
219
  ---
172
220
 
173
221
  ## ✅ Use Cases
@@ -176,4 +224,20 @@ Use **TextTools** when you need to:
176
224
 
177
225
  - 🔍 **Classify** large datasets quickly without model training
178
226
  - 🧩 **Integrate** LLMs into production pipelines (structured outputs)
179
- - 📊 **Analyze** large text collections using embeddings and categorization
227
+ - 📊 **Analyze** large text collections using embeddings and categorization
228
+
229
+ ---
230
+
231
+ ## 📄 License
232
+
233
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
234
+
235
+ ---
236
+
237
+ ## 🤝 Contributing
238
+
239
+ We welcome contributions from the community! - see the [CONTRIBUTING](CONTRIBUTING.md) file for details.
240
+
241
+ ## 📚 Documentation
242
+
243
+ For detailed documentation, architecture overview, and implementation details, please visit the [docs](docs) directory.
@@ -0,0 +1,31 @@
1
+ hamtaa_texttools-2.3.0.dist-info/licenses/LICENSE,sha256=gqxbR8wqI3utd__l3Yn6_dQ3Pou1a17W4KmydbvZGok,1084
2
+ texttools/__init__.py,sha256=c7L4bv0vxwpkZW2XHAnhlK_aVdM6CVZLAA0rmkSfIao,163
3
+ texttools/models.py,sha256=_CLKOij2XvKPzQK2wyfNoBaZo0FEkF584Hdv2BHznLU,4746
4
+ texttools/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ texttools/core/__init__.py,sha256=9ymBg2lGljm6wriYt4_-T5HOK8-2hHUwsC_bGdlOCsk,720
6
+ texttools/core/exceptions.py,sha256=6SDjUL1rmd3ngzD3ytF4LyTRj3bQMSFR9ECrLoqXXHw,395
7
+ texttools/core/internal_models.py,sha256=ZauSJWWILnpDEPtAPLvrq49TMKs1BS2znZHD3FeKsRM,3774
8
+ texttools/core/utils.py,sha256=sQTOJmW_6EISEaUI-NWLRymAP1fvA7pZ-RzJRyQveu8,11169
9
+ texttools/core/operators/__init__.py,sha256=PFYEVwqT1mgVc5wok9d_jj_A-3EyOg3-Ssyi7kwkuPk,123
10
+ texttools/core/operators/async_operator.py,sha256=kBiQgu8TEG46AhjlEPysG7EBm4F3xanbBpYIyZqtdC8,6501
11
+ texttools/core/operators/sync_operator.py,sha256=5puFQrBErk4biZ2sG2ivq2AYCqP4tSdppTJUEKEOwUo,6366
12
+ texttools/prompts/augment.yaml,sha256=uJnnP-uEafiATdBx74LiOQWX6spvwcC0J-yfhySfoAM,5423
13
+ texttools/prompts/categorize.yaml,sha256=kN4uRPOC7q6A13bdCIox60vZZ8sgRiTtquv-kqIvTsk,1133
14
+ texttools/prompts/extract_entities.yaml,sha256=-qe1eEvN-8nJ2_GLjeoFAPVORCPYUzsIt7UGXD485bE,648
15
+ texttools/prompts/extract_keywords.yaml,sha256=jP74HFa4Dka01d1COStEBbdzW5onqwocwyyVsmNpECs,3276
16
+ texttools/prompts/is_fact.yaml,sha256=kqF527DEdnlL3MG5tF1Z3ci_sRxmGv7dgNR2SuElq4Y,719
17
+ texttools/prompts/is_question.yaml,sha256=C-ynlt0qHpUM4BAIh0oI7UJ5BxCNU9-GR9T5864jeto,496
18
+ texttools/prompts/merge_questions.yaml,sha256=zgZs8BcwseZy1GsD_DvVGtw0yuCCc6xsK8VDmuHI2V0,1844
19
+ texttools/prompts/propositionize.yaml,sha256=xTw3HQrxtxoMpkf8a9is0uZZ0AG4IDNfh7XE0aVlNso,1441
20
+ texttools/prompts/run_custom.yaml,sha256=hSfR4BMJNUo9nP_AodPU7YTnhR-X_G-W7Pz0ROQzoI0,133
21
+ texttools/prompts/summarize.yaml,sha256=0aKYFRDxODqOOEhSexi-hn3twLwkMFVmi7rtAifnCuA,464
22
+ texttools/prompts/to_question.yaml,sha256=lv4YouHE6yv594-RbO8fysH9aAz_mSms3PpbHzYzQmc,2118
23
+ texttools/prompts/translate.yaml,sha256=FVYhx9GamYyCf7QGDmmhRi_N-H0SwIma8jx_yT6TKNY,659
24
+ texttools/tools/__init__.py,sha256=xsFiKJq66HrgPebssYm5fxV2AyEjbz5urfAuNUsz8oE,168
25
+ texttools/tools/async_tools.py,sha256=2xKlzs--V01JguNNYY9GDcuc43oCJHUNYXTkuEOzo1M,47941
26
+ texttools/tools/batch_tools.py,sha256=hwWutcSWc2k79vZX5Urft1arTgHpDnnxztHZba54xtg,29899
27
+ texttools/tools/sync_tools.py,sha256=tyD-aq7x1yHvfLDnClNUiwqT_ZxHHeq2SNnfv5zVoBo,43688
28
+ hamtaa_texttools-2.3.0.dist-info/METADATA,sha256=ghPfIzci1KJpjKnOcTNQTKo5YvmU65a0bTLHXAhHmYw,9370
29
+ hamtaa_texttools-2.3.0.dist-info/WHEEL,sha256=wUyA8OaulRlbfwMtmQsvNngGrxQHAvkKcvRmdizlJi0,92
30
+ hamtaa_texttools-2.3.0.dist-info/top_level.txt,sha256=5Mh0jIxxZ5rOXHGJ6Mp-JPKviywwN0MYuH0xk5bEWqE,10
31
+ hamtaa_texttools-2.3.0.dist-info/RECORD,,
texttools/__init__.py CHANGED
@@ -1,5 +1,4 @@
1
1
  from .models import CategoryTree
2
- from .tools.async_tools import AsyncTheTool
3
- from .tools.sync_tools import TheTool
2
+ from .tools import AsyncTheTool, BatchTheTool, TheTool
4
3
 
5
- __all__ = ["CategoryTree", "AsyncTheTool", "TheTool"]
4
+ __all__ = ["CategoryTree", "AsyncTheTool", "BatchTheTool", "TheTool"]
@@ -0,0 +1,34 @@
1
+ from .exceptions import LLMError, PromptError, TextToolsError, ValidationError
2
+ from .internal_models import (
3
+ Bool,
4
+ ListDictStrStr,
5
+ ListStr,
6
+ ReasonListStr,
7
+ Str,
8
+ TokenUsage,
9
+ create_dynamic_model,
10
+ )
11
+ from .operators import AsyncOperator, Operator
12
+ from .utils import OperatorUtils, TheToolUtils
13
+
14
+ __all__ = [
15
+ # Exceptions
16
+ "LLMError",
17
+ "PromptError",
18
+ "TextToolsError",
19
+ "ValidationError",
20
+ # Internal models
21
+ "Bool",
22
+ "ListDictStrStr",
23
+ "ListStr",
24
+ "ReasonListStr",
25
+ "Str",
26
+ "TokenUsage",
27
+ "create_dynamic_model",
28
+ # Operators
29
+ "AsyncOperator",
30
+ "Operator",
31
+ # Utils
32
+ "OperatorUtils",
33
+ "TheToolUtils",
34
+ ]
@@ -1,12 +1,64 @@
1
+ from __future__ import annotations
2
+
1
3
  from typing import Any, Literal
2
4
 
3
5
  from pydantic import BaseModel, Field, create_model
4
6
 
5
7
 
8
+ class CompletionUsage(BaseModel):
9
+ prompt_tokens: int = 0
10
+ completion_tokens: int = 0
11
+ total_tokens: int = 0
12
+
13
+
14
+ class AnalyzeUsage(BaseModel):
15
+ prompt_tokens: int = 0
16
+ completion_tokens: int = 0
17
+ total_tokens: int = 0
18
+
19
+
20
+ class TokenUsage(BaseModel):
21
+ completion_usage: CompletionUsage = CompletionUsage()
22
+ analyze_usage: AnalyzeUsage = AnalyzeUsage()
23
+ total_tokens: int = 0
24
+
25
+ def __add__(self, other: TokenUsage) -> TokenUsage:
26
+ new_completion_usage = CompletionUsage(
27
+ prompt_tokens=self.completion_usage.prompt_tokens
28
+ + other.completion_usage.prompt_tokens,
29
+ completion_tokens=self.completion_usage.completion_tokens
30
+ + other.completion_usage.completion_tokens,
31
+ total_tokens=self.completion_usage.total_tokens
32
+ + other.completion_usage.total_tokens,
33
+ )
34
+ new_analyze_usage = AnalyzeUsage(
35
+ prompt_tokens=self.analyze_usage.prompt_tokens
36
+ + other.analyze_usage.prompt_tokens,
37
+ completion_tokens=self.analyze_usage.completion_tokens
38
+ + other.analyze_usage.completion_tokens,
39
+ total_tokens=self.analyze_usage.total_tokens
40
+ + other.analyze_usage.total_tokens,
41
+ )
42
+ total_tokens = (
43
+ new_completion_usage.total_tokens + new_analyze_usage.total_tokens
44
+ )
45
+
46
+ return TokenUsage(
47
+ completion_usage=new_completion_usage,
48
+ analyze_usage=new_analyze_usage,
49
+ total_tokens=total_tokens,
50
+ )
51
+
52
+
6
53
  class OperatorOutput(BaseModel):
7
54
  result: Any
8
55
  analysis: str | None
9
56
  logprobs: list[dict[str, Any]] | None
57
+ token_usage: TokenUsage | None = None
58
+ prompt_tokens: int | None = None
59
+ completion_tokens: int | None = None
60
+ analysis_tokens: int | None = None
61
+ total_tokens: int | None = None
10
62
 
11
63
 
12
64
  class Str(BaseModel):
@@ -0,0 +1,4 @@
1
+ from .async_operator import AsyncOperator
2
+ from .sync_operator import Operator
3
+
4
+ __all__ = ["AsyncOperator", "Operator"]
@@ -18,7 +18,9 @@ class AsyncOperator:
18
18
  self._client = client
19
19
  self._model = model
20
20
 
21
- async def _analyze_completion(self, analyze_message: list[dict[str, str]]) -> str:
21
+ async def _analyze_completion(
22
+ self, analyze_message: list[dict[str, str]]
23
+ ) -> tuple[str, Any]:
22
24
  try:
23
25
  completion = await self._client.chat.completions.create(
24
26
  model=self._model,
@@ -33,7 +35,7 @@ class AsyncOperator:
33
35
  if not analysis:
34
36
  raise LLMError("Empty analysis response")
35
37
 
36
- return analysis
38
+ return analysis, completion
37
39
 
38
40
  except Exception as e:
39
41
  if isinstance(e, (PromptError, LLMError)):
@@ -116,12 +118,15 @@ class AsyncOperator:
116
118
  )
117
119
 
118
120
  analysis: str | None = None
121
+ analyze_completion: Any = None
119
122
 
120
123
  if with_analysis:
121
124
  analyze_message = OperatorUtils.build_message(
122
125
  prompt_configs["analyze_template"]
123
126
  )
124
- analysis = await self._analyze_completion(analyze_message)
127
+ analysis, analyze_completion = await self._analyze_completion(
128
+ analyze_message
129
+ )
125
130
 
126
131
  main_prompt = OperatorUtils.build_main_prompt(
127
132
  prompt_configs["main_template"], analysis, output_lang, user_prompt
@@ -176,6 +181,9 @@ class AsyncOperator:
176
181
  logprobs=OperatorUtils.extract_logprobs(completion)
177
182
  if logprobs
178
183
  else None,
184
+ token_usage=OperatorUtils.extract_token_usage(
185
+ completion, analyze_completion
186
+ ),
179
187
  )
180
188
 
181
189
  return operator_output
@@ -18,7 +18,9 @@ class Operator:
18
18
  self._client = client
19
19
  self._model = model
20
20
 
21
- def _analyze_completion(self, analyze_message: list[dict[str, str]]) -> str:
21
+ def _analyze_completion(
22
+ self, analyze_message: list[dict[str, str]]
23
+ ) -> tuple[str, Any]:
22
24
  try:
23
25
  completion = self._client.chat.completions.create(
24
26
  model=self._model,
@@ -33,7 +35,7 @@ class Operator:
33
35
  if not analysis:
34
36
  raise LLMError("Empty analysis response")
35
37
 
36
- return analysis
38
+ return analysis, completion
37
39
 
38
40
  except Exception as e:
39
41
  if isinstance(e, (PromptError, LLMError)):
@@ -114,12 +116,13 @@ class Operator:
114
116
  )
115
117
 
116
118
  analysis: str | None = None
119
+ analyze_completion: Any = None
117
120
 
118
121
  if with_analysis:
119
122
  analyze_message = OperatorUtils.build_message(
120
123
  prompt_configs["analyze_template"]
121
124
  )
122
- analysis = self._analyze_completion(analyze_message)
125
+ analysis, analyze_completion = self._analyze_completion(analyze_message)
123
126
 
124
127
  main_prompt = OperatorUtils.build_main_prompt(
125
128
  prompt_configs["main_template"], analysis, output_lang, user_prompt
@@ -174,6 +177,9 @@ class Operator:
174
177
  logprobs=OperatorUtils.extract_logprobs(completion)
175
178
  if logprobs
176
179
  else None,
180
+ token_usage=OperatorUtils.extract_token_usage(
181
+ completion, analyze_completion
182
+ ),
177
183
  )
178
184
 
179
185
  return operator_output
texttools/core/utils.py CHANGED
@@ -9,6 +9,7 @@ from typing import Any
9
9
  import yaml
10
10
 
11
11
  from .exceptions import PromptError
12
+ from .internal_models import AnalyzeUsage, CompletionUsage, TokenUsage
12
13
 
13
14
 
14
15
  class OperatorUtils:
@@ -148,6 +149,38 @@ class OperatorUtils:
148
149
  new_temp = base_temp + random.choice([-1, 1]) * random.uniform(0.1, 0.9)
149
150
  return max(0.0, min(new_temp, 1.5))
150
151
 
152
+ @staticmethod
153
+ def extract_token_usage(completion: Any, analyze_completion: Any) -> TokenUsage:
154
+ completion_usage = completion.usage
155
+ analyze_usage = analyze_completion.usage if analyze_completion else None
156
+
157
+ completion_usage_model = CompletionUsage(
158
+ prompt_tokens=getattr(completion_usage, "prompt_tokens", 00),
159
+ completion_tokens=getattr(completion_usage, "completion_tokens", 00),
160
+ total_tokens=getattr(completion_usage, "total_tokens", 00),
161
+ )
162
+ analyze_usage_model = AnalyzeUsage(
163
+ prompt_tokens=getattr(analyze_usage, "prompt_tokens", 0),
164
+ completion_tokens=getattr(analyze_usage, "completion_tokens", 0),
165
+ total_tokens=getattr(analyze_usage, "total_tokens", 0),
166
+ )
167
+ total_analyze_tokens = (
168
+ analyze_usage_model.prompt_tokens + analyze_usage_model.completion_tokens
169
+ if analyze_completion
170
+ else 0
171
+ )
172
+ total_tokens = (
173
+ completion_usage_model.prompt_tokens
174
+ + completion_usage_model.completion_tokens
175
+ + total_analyze_tokens
176
+ )
177
+
178
+ return TokenUsage(
179
+ completion_usage=completion_usage_model,
180
+ analyze_usage=analyze_usage_model,
181
+ total_tokens=total_tokens,
182
+ )
183
+
151
184
 
152
185
  class TheToolUtils:
153
186
  """
texttools/models.py CHANGED
@@ -5,11 +5,15 @@ from typing import Any
5
5
 
6
6
  from pydantic import BaseModel, Field
7
7
 
8
+ from .core import TokenUsage
9
+
8
10
 
9
11
  class ToolOutputMetadata(BaseModel):
10
12
  tool_name: str
13
+ processed_by: str | None = None
11
14
  processed_at: datetime = Field(default_factory=datetime.now)
12
15
  execution_time: float | None = None
16
+ token_usage: TokenUsage | None = None
13
17
 
14
18
 
15
19
  class ToolOutput(BaseModel):
@@ -38,25 +38,25 @@ main_template:
38
38
  "{text}"
39
39
 
40
40
  hard_negative: |
41
- You are an AI assistant designed to generate high-quality training data for semantic text embedding models.
42
- Your task is to create a hard-negative sample for a given "Anchor" text.
41
+ You are an AI assistant designed to generate high-quality training data for semantic text embedding models.
42
+ Your task is to create a hard-negative sample for a given "Anchor" text.
43
43
 
44
- A high-quality hard-negative sample is a sentence that is topically related but semantically distinct from the Anchor.
45
- It should share some context (e.g., same domain, same entities) but differ in a crucial piece of information, action, conclusion, or specific detail.
44
+ A high-quality hard-negative sample is a sentence that is topically related but semantically distinct from the Anchor.
45
+ It should share some context (e.g., same domain, same entities) but differ in a crucial piece of information, action, conclusion, or specific detail.
46
46
 
47
- Instructions:
48
- - Stay in General Domain: Remain in the same broad domain (e.g., religious topics), but choose a completely different subject matter.
49
- - Maintain Topical Overlap: Keep the same domain, subject, or entities (e.g., people, products, concepts) as the Anchor.
50
- - Alter a Key Semantic Element: Reverse a key word or condition or place or proper name that completely reverses the meaning of the sentence.
51
- - Avoid Being a Paraphrase: The sentence must NOT be semantically equivalent. The core factual claim or intent must be different.
52
- - Make it Challenging: The difference should be subtle enough that it requires a deep understanding of the text to identify, not just a simple keyword mismatch.
53
- - Maintain Similar Length: The generated sentence should be of roughly the same length and level of detail as the Anchor.
47
+ Instructions:
48
+ - Stay in General Domain: Remain in the same broad domain (e.g., religious topics), but choose a completely different subject matter.
49
+ - Maintain Topical Overlap: Keep the same domain, subject, or entities (e.g., people, products, concepts) as the Anchor.
50
+ - Alter a Key Semantic Element: Reverse a key word or condition or place or proper name that completely reverses the meaning of the sentence.
51
+ - Avoid Being a Paraphrase: The sentence must NOT be semantically equivalent. The core factual claim or intent must be different.
52
+ - Make it Challenging: The difference should be subtle enough that it requires a deep understanding of the text to identify, not just a simple keyword mismatch.
53
+ - Maintain Similar Length: The generated sentence should be of roughly the same length and level of detail as the Anchor.
54
54
 
55
- Respond only in JSON format:
56
- {{"result": "rewriteen_text"}}
55
+ Respond only in JSON format:
56
+ {{"result": "rewriteen_text"}}
57
57
 
58
- Anchor Text:
59
- "{text}"
58
+ Anchor Text:
59
+ "{text}"
60
60
 
61
61
 
62
62
  analyze_template:
@@ -7,7 +7,6 @@ main_template:
7
7
  and must not mention any verbs like this, that, he or she in the question.
8
8
 
9
9
  There is a `reason` key, fill that up with a summerized version of your thoughts.
10
- The `reason` must be less than 20 words.
11
10
  Don't forget to fill the reason.
12
11
 
13
12
  Respond only in JSON format:
@@ -23,7 +22,6 @@ main_template:
23
22
  and must not mention any verbs like this, that, he or she in the question.
24
23
 
25
24
  There is a `reason` key, fill that up with a summerized version of your thoughts.
26
- The `reason` must be less than 20 words.
27
25
  Don't forget to fill the reason.
28
26
 
29
27
  Respond only in JSON format:
@@ -3,9 +3,9 @@ main_template: |
3
3
  Output only the translated text.
4
4
 
5
5
  Respond only in JSON format:
6
- {{"result": "string"}}
6
+ {{"result": "translated_text"}}
7
7
 
8
- Don't translate proper name, only transliterate them to {target_lang}
8
+ Don't translate proper names, only transliterate them to {target_lang}
9
9
 
10
10
  Translate the following text to {target_lang}:
11
11
  {text}
@@ -0,0 +1,5 @@
1
+ from .async_tools import AsyncTheTool
2
+ from .batch_tools import BatchTheTool
3
+ from .sync_tools import TheTool
4
+
5
+ __all__ = ["AsyncTheTool", "BatchTheTool", "TheTool"]