hamtaa-texttools 1.1.20__py3-none-any.whl → 1.1.21__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (31) hide show
  1. {hamtaa_texttools-1.1.20.dist-info → hamtaa_texttools-1.1.21.dist-info}/METADATA +8 -27
  2. hamtaa_texttools-1.1.21.dist-info/RECORD +32 -0
  3. texttools/batch/batch_config.py +14 -1
  4. texttools/batch/batch_runner.py +1 -1
  5. texttools/internals/async_operator.py +45 -79
  6. texttools/internals/models.py +74 -105
  7. texttools/internals/operator_utils.py +2 -26
  8. texttools/internals/prompt_loader.py +3 -20
  9. texttools/internals/sync_operator.py +44 -78
  10. texttools/prompts/README.md +2 -2
  11. texttools/prompts/categorize.yaml +35 -77
  12. texttools/prompts/check_fact.yaml +2 -2
  13. texttools/prompts/extract_entities.yaml +2 -2
  14. texttools/prompts/extract_keywords.yaml +6 -6
  15. texttools/prompts/is_question.yaml +2 -2
  16. texttools/prompts/merge_questions.yaml +4 -4
  17. texttools/prompts/propositionize.yaml +2 -2
  18. texttools/prompts/rewrite.yaml +6 -6
  19. texttools/prompts/run_custom.yaml +1 -1
  20. texttools/prompts/subject_to_question.yaml +2 -2
  21. texttools/prompts/summarize.yaml +2 -2
  22. texttools/prompts/text_to_question.yaml +2 -2
  23. texttools/prompts/translate.yaml +2 -2
  24. texttools/tools/async_tools.py +393 -485
  25. texttools/tools/sync_tools.py +394 -486
  26. hamtaa_texttools-1.1.20.dist-info/RECORD +0 -33
  27. texttools/batch/internals/utils.py +0 -13
  28. {hamtaa_texttools-1.1.20.dist-info → hamtaa_texttools-1.1.21.dist-info}/WHEEL +0 -0
  29. {hamtaa_texttools-1.1.20.dist-info → hamtaa_texttools-1.1.21.dist-info}/licenses/LICENSE +0 -0
  30. {hamtaa_texttools-1.1.20.dist-info → hamtaa_texttools-1.1.21.dist-info}/top_level.txt +0 -0
  31. /texttools/batch/{internals/batch_manager.py → batch_manager.py} +0 -0
@@ -12,20 +12,12 @@ class PromptLoader:
12
12
  Responsibilities:
13
13
  - Load and parse YAML prompt definitions.
14
14
  - Select the right template (by mode, if applicable).
15
- - Inject variables (`{input}`, plus any extra kwargs) into the templates.
15
+ - Inject variables (`{text}`, plus any extra kwargs) into the templates.
16
16
  """
17
17
 
18
18
  MAIN_TEMPLATE = "main_template"
19
19
  ANALYZE_TEMPLATE = "analyze_template"
20
20
 
21
- @staticmethod
22
- def _build_format_args(text: str, **extra_kwargs) -> dict[str, str]:
23
- # Base formatting args
24
- format_args = {"input": text}
25
- # Merge extras
26
- format_args.update(extra_kwargs)
27
- return format_args
28
-
29
21
  # Use lru_cache to load each file once
30
22
  @lru_cache(maxsize=32)
31
23
  def _load_templates(self, prompt_file: str, mode: str | None) -> dict[str, str]:
@@ -69,16 +61,6 @@ class PromptLoader:
69
61
  + (f" for mode '{mode}'" if mode else "")
70
62
  )
71
63
 
72
- if (
73
- not analyze_template
74
- or not analyze_template.strip()
75
- or analyze_template.strip() in ["{analyze_template}", "{}"]
76
- ):
77
- raise PromptError(
78
- "analyze_template cannot be empty"
79
- + (f" for mode '{mode}'" if mode else "")
80
- )
81
-
82
64
  return {
83
65
  self.MAIN_TEMPLATE: main_template,
84
66
  self.ANALYZE_TEMPLATE: analyze_template,
@@ -94,7 +76,8 @@ class PromptLoader:
94
76
  ) -> dict[str, str]:
95
77
  try:
96
78
  template_configs = self._load_templates(prompt_file, mode)
97
- format_args = self._build_format_args(text, **extra_kwargs)
79
+ format_args = {"text": text}
80
+ format_args.update(extra_kwargs)
98
81
 
99
82
  # Inject variables inside each template
100
83
  for key in template_configs.keys():
@@ -1,11 +1,10 @@
1
1
  from typing import TypeVar, Type
2
2
  from collections.abc import Callable
3
- import logging
4
3
 
5
4
  from openai import OpenAI
6
5
  from pydantic import BaseModel
7
6
 
8
- from texttools.internals.models import ToolOutput
7
+ from texttools.internals.models import OperatorOutput
9
8
  from texttools.internals.operator_utils import OperatorUtils
10
9
  from texttools.internals.prompt_loader import PromptLoader
11
10
  from texttools.internals.exceptions import (
@@ -18,35 +17,23 @@ from texttools.internals.exceptions import (
18
17
  # Base Model type for output models
19
18
  T = TypeVar("T", bound=BaseModel)
20
19
 
21
- logger = logging.getLogger("texttools.sync_operator")
22
-
23
20
 
24
21
  class Operator:
25
22
  """
26
- Core engine for running text-processing operations with an LLM (Sync).
27
-
28
- It wires together:
29
- - `PromptLoader` → loads YAML prompt templates.
30
- - `UserMergeFormatter` → applies formatting to messages (e.g., merging).
31
- - OpenAI client → executes completions/parsed completions.
23
+ Core engine for running text-processing operations with an LLM.
32
24
  """
33
25
 
34
26
  def __init__(self, client: OpenAI, model: str):
35
27
  self._client = client
36
28
  self._model = model
37
29
 
38
- def _analyze(self, prompt_configs: dict[str, str], temperature: float) -> str:
39
- """
40
- Calls OpenAI API for analysis using the configured prompt template.
41
- Returns the analyzed content as a string.
42
- """
30
+ def _analyze_completion(self, analyze_prompt: str, temperature: float) -> str:
43
31
  try:
44
- analyze_prompt = prompt_configs["analyze_template"]
45
-
46
32
  if not analyze_prompt:
47
33
  raise PromptError("Analyze template is empty")
48
34
 
49
- analyze_message = [OperatorUtils.build_user_message(analyze_prompt)]
35
+ analyze_message = OperatorUtils.build_user_message(analyze_prompt)
36
+
50
37
  completion = self._client.chat.completions.create(
51
38
  model=self._model,
52
39
  messages=analyze_message,
@@ -61,7 +48,7 @@ class Operator:
61
48
  if not analysis:
62
49
  raise LLMError("Empty analysis response")
63
50
 
64
- return analysis.strip()
51
+ return analysis
65
52
 
66
53
  except Exception as e:
67
54
  if isinstance(e, (PromptError, LLMError)):
@@ -70,21 +57,23 @@ class Operator:
70
57
 
71
58
  def _parse_completion(
72
59
  self,
73
- message: list[dict[str, str]],
60
+ main_prompt: str,
74
61
  output_model: Type[T],
75
62
  temperature: float,
76
- logprobs: bool = False,
77
- top_logprobs: int = 3,
78
- priority: int | None = 0,
63
+ logprobs: bool,
64
+ top_logprobs: int,
65
+ priority: int,
79
66
  ) -> tuple[T, object]:
80
67
  """
81
68
  Parses a chat completion using OpenAI's structured output format.
82
69
  Returns both the parsed object and the raw completion for logprobs.
83
70
  """
84
71
  try:
72
+ main_message = OperatorUtils.build_user_message(main_prompt)
73
+
85
74
  request_kwargs = {
86
75
  "model": self._model,
87
- "messages": message,
76
+ "messages": main_message,
88
77
  "response_format": output_model,
89
78
  "temperature": temperature,
90
79
  }
@@ -92,8 +81,10 @@ class Operator:
92
81
  if logprobs:
93
82
  request_kwargs["logprobs"] = True
94
83
  request_kwargs["top_logprobs"] = top_logprobs
84
+
95
85
  if priority:
96
86
  request_kwargs["extra_body"] = {"priority": priority}
87
+
97
88
  completion = self._client.beta.chat.completions.parse(**request_kwargs)
98
89
 
99
90
  if not completion.choices:
@@ -120,24 +111,22 @@ class Operator:
120
111
  user_prompt: str | None,
121
112
  temperature: float,
122
113
  logprobs: bool,
123
- top_logprobs: int | None,
114
+ top_logprobs: int,
124
115
  validator: Callable[[object], bool] | None,
125
116
  max_validation_retries: int | None,
117
+ priority: int,
126
118
  # Internal parameters
127
119
  prompt_file: str,
128
120
  output_model: Type[T],
129
121
  mode: str | None,
130
- priority: int | None = 0,
131
122
  **extra_kwargs,
132
- ) -> ToolOutput:
123
+ ) -> OperatorOutput:
133
124
  """
134
125
  Execute the LLM pipeline with the given input text. (Sync)
135
126
  """
136
127
  try:
137
128
  prompt_loader = PromptLoader()
138
- output = ToolOutput()
139
129
 
140
- # Prompt configs contain two keys: main_template and analyze template, both are string
141
130
  prompt_configs = prompt_loader.load(
142
131
  prompt_file=prompt_file,
143
132
  text=text.strip(),
@@ -145,47 +134,32 @@ class Operator:
145
134
  **extra_kwargs,
146
135
  )
147
136
 
148
- messages = []
137
+ main_prompt = ""
138
+ analysis = ""
149
139
 
150
140
  if with_analysis:
151
- analysis = self._analyze(prompt_configs, temperature)
152
- messages.append(
153
- OperatorUtils.build_user_message(
154
- f"Based on this analysis: {analysis}"
155
- )
141
+ analysis = self._analyze_completion(
142
+ prompt_configs["analyze_template"], temperature
156
143
  )
144
+ main_prompt += f"Based on this analysis:\n{analysis}\n"
157
145
 
158
146
  if output_lang:
159
- messages.append(
160
- OperatorUtils.build_user_message(
161
- f"Respond only in the {output_lang} language."
162
- )
163
- )
147
+ main_prompt += f"Respond only in the {output_lang} language.\n"
164
148
 
165
149
  if user_prompt:
166
- messages.append(
167
- OperatorUtils.build_user_message(
168
- f"Consider this instruction {user_prompt}"
169
- )
170
- )
171
-
172
- messages.append(
173
- OperatorUtils.build_user_message(prompt_configs["main_template"])
174
- )
150
+ main_prompt += f"Consider this instruction {user_prompt}\n"
175
151
 
176
- messages = OperatorUtils.user_merge_format(messages)
152
+ main_prompt += prompt_configs["main_template"]
177
153
 
178
154
  if logprobs and (not isinstance(top_logprobs, int) or top_logprobs < 2):
179
155
  raise ValueError("top_logprobs should be an integer greater than 1")
180
156
 
181
157
  parsed, completion = self._parse_completion(
182
- messages, output_model, temperature, logprobs, top_logprobs, priority
158
+ main_prompt, output_model, temperature, logprobs, top_logprobs, priority
183
159
  )
184
160
 
185
- output.result = parsed.result
186
-
187
161
  # Retry logic if validation fails
188
- if validator and not validator(output.result):
162
+ if validator and not validator(parsed.result):
189
163
  if (
190
164
  not isinstance(max_validation_retries, int)
191
165
  or max_validation_retries < 1
@@ -195,17 +169,13 @@ class Operator:
195
169
  )
196
170
 
197
171
  succeeded = False
198
- for attempt in range(max_validation_retries):
199
- logger.warning(
200
- f"Validation failed, retrying for the {attempt + 1} time."
201
- )
202
-
203
- # Generate new temperature for retry
172
+ for _ in range(max_validation_retries):
173
+ # Generate a new temperature to retry
204
174
  retry_temperature = OperatorUtils.get_retry_temp(temperature)
205
175
 
206
176
  try:
207
177
  parsed, completion = self._parse_completion(
208
- messages,
178
+ main_prompt,
209
179
  output_model,
210
180
  retry_temperature,
211
181
  logprobs,
@@ -213,30 +183,26 @@ class Operator:
213
183
  priority=priority,
214
184
  )
215
185
 
216
- output.result = parsed.result
217
-
218
186
  # Check if retry was successful
219
- if validator(output.result):
187
+ if validator(parsed.result):
220
188
  succeeded = True
221
189
  break
222
190
 
223
- except LLMError as e:
224
- logger.error(f"Retry attempt {attempt + 1} failed: {e}")
191
+ except LLMError:
192
+ pass
225
193
 
226
194
  if not succeeded:
227
- raise ValidationError(
228
- f"Validation failed after {max_validation_retries} retries"
229
- )
230
-
231
- if logprobs:
232
- output.logprobs = OperatorUtils.extract_logprobs(completion)
233
-
234
- if with_analysis:
235
- output.analysis = analysis
236
-
237
- output.process = prompt_file[:-5]
195
+ raise ValidationError("Validation failed after all retries")
196
+
197
+ operator_output = OperatorOutput(
198
+ result=parsed.result,
199
+ analysis=analysis if with_analysis else None,
200
+ logprobs=OperatorUtils.extract_logprobs(completion)
201
+ if logprobs
202
+ else None,
203
+ )
238
204
 
239
- return output
205
+ return operator_output
240
206
 
241
207
  except (PromptError, LLMError, ValidationError):
242
208
  raise
@@ -15,7 +15,7 @@ This folder contains YAML files for all prompts used in the project. Each file r
15
15
  ```yaml
16
16
  main_template:
17
17
  mode_1: |
18
- Your main instructions here with placeholders like {input}.
18
+ Your main instructions here with placeholders like {text}.
19
19
  mode_2: |
20
20
  Optional reasoning instructions here.
21
21
 
@@ -30,6 +30,6 @@ analyze_template:
30
30
 
31
31
  ## Guidelines
32
32
  1. **Naming**: Use descriptive names for each YAML file corresponding to the tool or task it serves.
33
- 2. **Placeholders**: Use `{input}` or other relevant placeholders to dynamically inject data.
33
+ 2. **Placeholders**: Use `{text}` or other relevant placeholders to dynamically inject data.
34
34
  3. **Modes**: If using modes, ensure both `main_template` and `analyze_template` contain the corresponding keys.
35
35
  4. **Consistency**: Keep formatting consistent across files for easier parsing by scripts.
@@ -1,77 +1,35 @@
1
- main_template:
2
-
3
- category_list: |
4
- You are an expert classification agent.
5
- You receive a list of categories.
6
-
7
- Your task:
8
- - Read all provided categories carefully.
9
- - Consider the user query, intent, and task explanation.
10
- - Select exactly one category name from the list that best matches the user’s intent.
11
- - Return only the category name, nothing else.
12
-
13
- Rules:
14
- - Never invent categories that are not in the list.
15
- - If multiple categories seem possible, choose the closest match based on the description and user intent.
16
- - If descriptions are missing or empty, rely on the category name.
17
- - If the correct answer cannot be determined with certainty, choose the most likely one.
18
-
19
- Output format:
20
- {{
21
- "reason": "Explanation of why the input belongs to the category"
22
- "result": "<category_name_only>"
23
- }}
24
-
25
- Available categories with their descriptions:
26
- {category_list}
27
-
28
- The text that has to be categorized:
29
- {input}
30
-
31
- category_tree: |
32
- You are an expert classification agent.
33
- You receive a list of categories at the current level of a hierarchical category tree.
34
-
35
- Your task:
36
- - Read all provided categories carefully.
37
- - Consider the user query, intent, and task explanation.
38
- - Select exactly one category name from the list that best matches the user’s intent.
39
- - Return only the category name, nothing else.
40
-
41
- Rules:
42
- - Never invent categories that are not in the list.
43
- - If multiple categories seem possible, choose the closest match based on the description and user intent.
44
- - If descriptions are missing or empty, rely on the category name.
45
- - If the correct answer cannot be determined with certainty, choose the most likely one.
46
-
47
- Output format:
48
- {{
49
- "reason": "Explanation of why the input belongs to the category"
50
- "result": "<category_name_only>"
51
- }}
52
-
53
- Available categories with their descriptions at this level:
54
- {category_list}
55
-
56
- Do not include category descriptions at all. Only write the raw category.
57
-
58
- The text that has to be categorized:
59
- {input}
60
-
61
- analyze_template:
62
-
63
- category_list: |
64
- We want to categorize the given text.
65
- To improve categorization, we need an analysis of the text.
66
- Analyze the given text and write its main idea and a short analysis of that.
67
- Analysis should be very short.
68
- Text:
69
- {input}
70
-
71
- category_tree: |
72
- We want to categorize the given text.
73
- To improve categorization, we need an analysis of the text.
74
- Analyze the given text and write its main idea and a short analysis of that.
75
- Analysis should be very short.
76
- Text:
77
- {input}
1
+ main_template: |
2
+ You are an expert classification agent.
3
+ You receive a list of categories.
4
+
5
+ Your task:
6
+ - Read all provided categories carefully.
7
+ - Consider the user query, intent, and task explanation.
8
+ - Select exactly one category name from the list that best matches the user’s intent.
9
+ - Return only the category name, nothing else.
10
+
11
+ Rules:
12
+ - Never invent categories that are not in the list.
13
+ - If multiple categories seem possible, choose the closest match based on the description and user intent.
14
+ - If descriptions are missing or empty, rely on the category name.
15
+ - If the correct answer cannot be determined with certainty, choose the most likely one.
16
+
17
+ Output format:
18
+ {{
19
+ "reason": "Explanation of why the input belongs to the category"
20
+ "result": "<category_name_only>"
21
+ }}
22
+
23
+ Available categories with their descriptions:
24
+ {category_list}
25
+
26
+ The text that has to be categorized:
27
+ {text}
28
+
29
+ analyze_template: |
30
+ We want to categorize the given text.
31
+ To improve categorization, we need an analysis of the text.
32
+ Analyze the given text and write its main idea and a short analysis of that.
33
+ Analysis should be very short.
34
+ Text:
35
+ {text}
@@ -5,7 +5,7 @@ main_template: |
5
5
  Respond only in JSON format (Output should be a boolean):
6
6
  {{"result": True/False}}
7
7
  The statement is:
8
- {input}
8
+ {text}
9
9
  The source text is:
10
10
  {source_text}
11
11
 
@@ -14,6 +14,6 @@ analyze_template: |
14
14
  summarized analysis that could help in determining that can the statement
15
15
  be concluded from the source or not.
16
16
  The statement is:
17
- {input}
17
+ {text}
18
18
  The source text is:
19
19
  {source_text}
@@ -12,9 +12,9 @@ main_template: |
12
12
  ]
13
13
  }}
14
14
  Here is the text:
15
- {input}
15
+ {text}
16
16
 
17
17
  analyze_template: |
18
18
  Read the following text and identify any proper nouns, key concepts, or specific mentions that might represent named entities.
19
19
  Provide a brief, summarized analysis that could help in categorizing these entities.
20
- {input}
20
+ {text}
@@ -12,7 +12,7 @@ main_template:
12
12
  - Respond only in JSON format:
13
13
  {{"result": ["keyword1", "keyword2", etc.]}}
14
14
  Here is the text:
15
- {input}
15
+ {text}
16
16
 
17
17
  threshold: |
18
18
  You are an expert keyword extractor specialized in fine-grained concept identification.
@@ -32,7 +32,7 @@ main_template:
32
32
  - Respond only in JSON format:
33
33
  {{"result": ["keyword1", "keyword2", etc.]}}
34
34
  Here is the text:
35
- {input}
35
+ {text}
36
36
 
37
37
  count: |
38
38
  You are an expert keyword extractor with precise output requirements.
@@ -49,20 +49,20 @@ main_template:
49
49
  {{"result": ["keyword1", "keyword2", "keyword3", ...]}}
50
50
 
51
51
  Here is the text:
52
- {input}
52
+ {text}
53
53
 
54
54
  analyze_template:
55
55
  auto: |
56
56
  Analyze the following text to identify its main topics, concepts, and important terms.
57
57
  Provide a concise summary of your findings that will help in extracting relevant keywords.
58
- {input}
58
+ {text}
59
59
 
60
60
  threshold: |
61
61
  Analyze the following text to identify its main topics, concepts, and important terms.
62
62
  Provide a concise summary of your findings that will help in extracting relevant keywords.
63
- {input}
63
+ {text}
64
64
 
65
65
  count: |
66
66
  Analyze the following text to identify its main topics, concepts, and important terms.
67
67
  Provide a concise summary of your findings that will help in extracting relevant keywords.
68
- {input}
68
+ {text}
@@ -4,11 +4,11 @@ main_template: |
4
4
  Respond only in JSON format (Output should be a boolean):
5
5
  {{"result": True/False}}
6
6
  Here is the text:
7
- {input}
7
+ {text}
8
8
 
9
9
  analyze_template: |
10
10
  We want to analyze this text snippet to see if it contains any question or request of some kind or not.
11
11
  Read the text, and reason about it being a request or not.
12
12
  Summerized, short answer.
13
- {input}
13
+ {text}
14
14
 
@@ -12,7 +12,7 @@ main_template:
12
12
  - Respond only in JSON format:
13
13
  {{"result": "string"}}
14
14
  Here is the questions:
15
- {input}
15
+ {text}
16
16
 
17
17
  reason: |
18
18
  You are an AI assistant helping to unify semantically similar questions.
@@ -23,7 +23,7 @@ main_template:
23
23
  Respond only in JSON format:
24
24
  {{"result": "string"}}
25
25
  Here is the questions:
26
- {input}
26
+ {text}
27
27
 
28
28
  analyze_template:
29
29
 
@@ -34,7 +34,7 @@ analyze_template:
34
34
  Provide a brief, summarized understanding of the questions' meaning that
35
35
  will help in merging and rephrasing it accurately without changing its intent.
36
36
  Here is the question:
37
- {input}
37
+ {text}
38
38
 
39
39
  reason: |
40
40
  Analyze the following questions to identify their exact wording, phrasing,
@@ -42,5 +42,5 @@ analyze_template:
42
42
  Provide a brief, summarized analysis of their linguistic structure and current meaning,
43
43
  which will then be used to create a new question containing all of their contents.
44
44
  Here is the question:
45
- {input}
45
+ {text}
46
46
 
@@ -12,11 +12,11 @@ main_template: |
12
12
  4. No Redundancy: Do not extract summary statements that merely repeat facts already listed.
13
13
 
14
14
  Extract the atomic propositions from the following text:
15
- {input}
15
+ {text}
16
16
 
17
17
  analyze_template: |
18
18
  We want to analyze this text snippet and think about where we can split sentence to atomic meaningful propositions.
19
19
  An atomic proposition is a single, self-contained fact that is concise,
20
20
  verifiable, and does not rely on external context.
21
21
  You just have to think around the possible propositions in the text and how a proposition can be made.
22
- {input}
22
+ {text}
@@ -18,7 +18,7 @@ main_template:
18
18
  {{"result": "str"}}
19
19
 
20
20
  Anchor Text:
21
- "{input}"
21
+ "{text}"
22
22
 
23
23
  negative: |
24
24
  You are an AI assistant designed to generate high-quality training data for semantic text embedding models.
@@ -35,7 +35,7 @@ main_template:
35
35
  {{"result": "str"}}
36
36
 
37
37
  Anchor Text:
38
- "{input}"
38
+ "{text}"
39
39
 
40
40
  hard_negative: |
41
41
  You are an AI assistant designed to generate high-quality training data for semantic text embedding models.
@@ -57,7 +57,7 @@ main_template:
57
57
  {{"result": "str"}}
58
58
 
59
59
  Anchor Text:
60
- "{input}"
60
+ "{text}"
61
61
 
62
62
 
63
63
  analyze_template:
@@ -74,7 +74,7 @@ analyze_template:
74
74
  Your analysis should capture the ESSENTIAL MEANING that must be preserved in any paraphrase.
75
75
 
76
76
  Text:
77
- {input}
77
+ {text}
78
78
 
79
79
  negative: |
80
80
  Analyze the following text to identify its SPECIFIC TOPIC and DOMAIN for creating a high-quality NEGATIVE sample.
@@ -88,7 +88,7 @@ analyze_template:
88
88
  The goal is to find topics that are in the same domain but semantically unrelated to this specific text.
89
89
 
90
90
  Text:
91
- {input}
91
+ {text}
92
92
 
93
93
  hard_negative: |
94
94
  Analyze this text to identify EXACTLY ONE ELEMENT that can be changed to create a hard-negative sample.
@@ -107,5 +107,5 @@ analyze_template:
107
107
  - 80-90% of the vocabulary
108
108
 
109
109
  Text:
110
- {input}
110
+ {text}
111
111
 
@@ -1,5 +1,5 @@
1
1
  main_template: |
2
- {input}
2
+ {text}
3
3
  Respond only in JSON format:
4
4
  {output_model_str}
5
5
 
@@ -9,7 +9,7 @@ main_template: |
9
9
  Respond only in JSON format:
10
10
  {{"result": ["question1", "question2", ...], "reason": "string"}}
11
11
  Here is the text:
12
- {input}
12
+ {text}
13
13
 
14
14
  analyze_template: |
15
15
  Our goal is to generate questions from the given subject.
@@ -19,4 +19,4 @@ analyze_template: |
19
19
  What is the subject about?
20
20
  What point of views can we see and generate questoins from it? (Questions that real users might have.)
21
21
  Here is the subject:
22
- {input}
22
+ {text}
@@ -4,11 +4,11 @@ main_template: |
4
4
  Respond only in JSON format:
5
5
  {{"result": "string"}}
6
6
  Provide a concise summary of the following text:
7
- {input}
7
+ {text}
8
8
 
9
9
 
10
10
  analyze_template: |
11
11
  Read the following text and identify its main points, key arguments, and overall purpose.
12
12
  Provide a brief, summarized analysis that will help in generating an accurate and concise summary.
13
- {input}
13
+ {text}
14
14
 
@@ -9,7 +9,7 @@ main_template: |
9
9
  Respond only in JSON format:
10
10
  {{"result": ["question1", "question2", ...], "reason": "string"}}
11
11
  Here is the answer:
12
- {input}
12
+ {text}
13
13
 
14
14
  analyze_template: |
15
15
  Analyze the following answer to identify its key facts,
@@ -18,5 +18,5 @@ analyze_template: |
18
18
  help in formulating relevant and direct questions.
19
19
  Just mention the keypoints that was provided in the answer
20
20
  Here is the answer:
21
- {input}
21
+ {text}
22
22