hamtaa-texttools 1.1.1__py3-none-any.whl → 1.2.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (47) hide show
  1. hamtaa_texttools-1.2.0.dist-info/METADATA +212 -0
  2. hamtaa_texttools-1.2.0.dist-info/RECORD +34 -0
  3. texttools/__init__.py +6 -8
  4. texttools/batch/__init__.py +0 -4
  5. texttools/batch/config.py +40 -0
  6. texttools/batch/{batch_manager.py → manager.py} +41 -42
  7. texttools/batch/runner.py +228 -0
  8. texttools/core/__init__.py +0 -0
  9. texttools/core/engine.py +254 -0
  10. texttools/core/exceptions.py +22 -0
  11. texttools/core/internal_models.py +58 -0
  12. texttools/core/operators/async_operator.py +194 -0
  13. texttools/core/operators/sync_operator.py +192 -0
  14. texttools/models.py +88 -0
  15. texttools/prompts/categorize.yaml +36 -0
  16. texttools/prompts/check_fact.yaml +24 -0
  17. texttools/prompts/extract_entities.yaml +7 -3
  18. texttools/prompts/extract_keywords.yaml +80 -18
  19. texttools/prompts/is_question.yaml +6 -2
  20. texttools/prompts/merge_questions.yaml +12 -5
  21. texttools/prompts/propositionize.yaml +24 -0
  22. texttools/prompts/rewrite.yaml +9 -10
  23. texttools/prompts/run_custom.yaml +2 -2
  24. texttools/prompts/subject_to_question.yaml +7 -3
  25. texttools/prompts/summarize.yaml +6 -2
  26. texttools/prompts/text_to_question.yaml +12 -6
  27. texttools/prompts/translate.yaml +7 -2
  28. texttools/py.typed +0 -0
  29. texttools/tools/__init__.py +0 -4
  30. texttools/tools/async_tools.py +1093 -0
  31. texttools/tools/sync_tools.py +1092 -0
  32. hamtaa_texttools-1.1.1.dist-info/METADATA +0 -183
  33. hamtaa_texttools-1.1.1.dist-info/RECORD +0 -30
  34. texttools/batch/batch_runner.py +0 -263
  35. texttools/prompts/README.md +0 -35
  36. texttools/prompts/categorizer.yaml +0 -28
  37. texttools/tools/async_the_tool.py +0 -414
  38. texttools/tools/internals/async_operator.py +0 -179
  39. texttools/tools/internals/base_operator.py +0 -91
  40. texttools/tools/internals/formatters.py +0 -24
  41. texttools/tools/internals/operator.py +0 -179
  42. texttools/tools/internals/output_models.py +0 -59
  43. texttools/tools/internals/prompt_loader.py +0 -57
  44. texttools/tools/the_tool.py +0 -412
  45. {hamtaa_texttools-1.1.1.dist-info → hamtaa_texttools-1.2.0.dist-info}/WHEEL +0 -0
  46. {hamtaa_texttools-1.1.1.dist-info → hamtaa_texttools-1.2.0.dist-info}/licenses/LICENSE +0 -0
  47. {hamtaa_texttools-1.1.1.dist-info → hamtaa_texttools-1.2.0.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,212 @@
1
+ Metadata-Version: 2.4
2
+ Name: hamtaa-texttools
3
+ Version: 1.2.0
4
+ Summary: A high-level NLP toolkit built on top of modern LLMs.
5
+ Author-email: Tohidi <the.mohammad.tohidi@gmail.com>, Erfan Moosavi <erfanmoosavi84@gmail.com>, Montazer <montazerh82@gmail.com>, Givechi <mohamad.m.givechi@gmail.com>, Zareshahi <a.zareshahi1377@gmail.com>
6
+ Maintainer-email: Erfan Moosavi <erfanmoosavi84@gmail.com>, Tohidi <the.mohammad.tohidi@gmail.com>
7
+ License: MIT
8
+ Keywords: nlp,llm,text-processing,openai
9
+ Classifier: Development Status :: 5 - Production/Stable
10
+ Classifier: License :: OSI Approved :: MIT License
11
+ Classifier: Topic :: Scientific/Engineering :: Artificial Intelligence
12
+ Classifier: Topic :: Text Processing
13
+ Classifier: Operating System :: OS Independent
14
+ Requires-Python: >=3.9
15
+ Description-Content-Type: text/markdown
16
+ License-File: LICENSE
17
+ Requires-Dist: openai>=1.97.1
18
+ Requires-Dist: pydantic>=2.0.0
19
+ Requires-Dist: pyyaml>=6.0
20
+ Dynamic: license-file
21
+
22
+ # TextTools
23
+
24
+ ## 📌 Overview
25
+
26
+ **TextTools** is a high-level **NLP toolkit** built on top of **LLMs**.
27
+
28
+ It provides both **sync (`TheTool`)** and **async (`AsyncTheTool`)** APIs for maximum flexibility.
29
+
30
+ It provides ready-to-use utilities for **translation, question detection, keyword extraction, categorization, NER extraction, and more** - designed to help you integrate AI-powered text processing into your applications with minimal effort.
31
+
32
+ **Note:** Most features of `texttools` are reliable when you use `google/gemma-3n-e4b-it` model.
33
+
34
+ ---
35
+
36
+ ## ✨ Features
37
+
38
+ TextTools provides a rich collection of high-level NLP utilities,
39
+ Each tool is designed to work with structured outputs.
40
+
41
+ - **`categorize()`** - Classifies text into given categories
42
+ - **`extract_keywords()`** - Extracts keywords from the text
43
+ - **`extract_entities()`** - Named Entity Recognition (NER) system
44
+ - **`is_question()`** - Binary question detection
45
+ - **`text_to_question()`** - Generates questions from text
46
+ - **`merge_questions()`** - Merges multiple questions into one
47
+ - **`rewrite()`** - Rewrites text in a diffrent way
48
+ - **`subject_to_question()`** - Generates questions about a specific subject
49
+ - **`summarize()`** - Text summarization
50
+ - **`translate()`** - Text translation
51
+ - **`propositionize()`** - Convert text to atomic independence meaningful sentences
52
+ - **`check_fact()`** - Check whether a statement is relevant to the source text
53
+ - **`run_custom()`** - Allows users to define a custom tool with an arbitrary BaseModel
54
+
55
+ ---
56
+
57
+ ## 🚀 Installation
58
+
59
+ Install the latest release via PyPI:
60
+
61
+ ```bash
62
+ pip install -U hamtaa-texttools
63
+ ```
64
+
65
+ ---
66
+
67
+ ## 📊 Tool Quality Tiers
68
+
69
+ | Status | Meaning | Tools | Use in Production? |
70
+ |--------|---------|----------|-------------------|
71
+ | **✅ Production** | Evaluated, tested, stable. | `categorize()` (list mode), `extract_keywords()`, `extract_entities()`, `is_question()`, `text_to_question()`, `merge_questions()`, `rewrite()`, `subject_to_question()`, `summarize()`, `run_custom()` | **Yes** - ready for reliable use. |
72
+ | **🧪 Experimental** | Added to the package but **not fully evaluated**. Functional, but quality may vary. | `categorize()` (tree mode), `translate()`, `propositionize()`, `check_fact()` | **Use with caution** - outputs not yet validated. |
73
+
74
+ ---
75
+
76
+ ## ⚙️ `with_analysis`, `logprobs`, `output_lang`, `user_prompt`, `temperature`, `validator` and `priority` parameters
77
+
78
+ TextTools provides several optional flags to customize LLM behavior:
79
+
80
+ - **`with_analysis: bool`** → Adds a reasoning step before generating the final output.
81
+ **Note:** This doubles token usage per call.
82
+
83
+ - **`logprobs: bool`** → Returns token-level probabilities for the generated output. You can also specify `top_logprobs=<N>` to get the top N alternative tokens and their probabilities.
84
+ **Note:** This feature works if it's supported by the model.
85
+
86
+ - **`output_lang: str`** → Forces the model to respond in a specific language.
87
+
88
+ - **`user_prompt: str`** → Allows you to inject a custom instruction or into the model alongside the main template. This gives you fine-grained control over how the model interprets or modifies the input text.
89
+
90
+ - **`temperature: float`** → Determines how creative the model should respond. Takes a float number from `0.0` to `2.0`.
91
+
92
+ - **`validator: Callable (Experimental)`** → Forces TheTool to validate the output result based on your custom validator. Validator should return a boolean. If the validator fails, TheTool will retry to get another output by modifying `temperature`. You can also specify `max_validation_retries=<N>`.
93
+
94
+ - **`priority: int (Experimental)`** → Task execution priority level. Affects processing order in queues.
95
+ **Note:** This feature works if it's supported by the model and vLLM.
96
+
97
+ ---
98
+
99
+ ## 🧩 ToolOutput
100
+
101
+ Every tool of `TextTools` returns a `ToolOutput` object which is a BaseModel with attributes:
102
+ - **`result: Any`**
103
+ - **`analysis: str`**
104
+ - **`logprobs: list`**
105
+ - **`errors: list[str]`**
106
+ - **`ToolOutputMetadata`** →
107
+ - **`tool_name: str`**
108
+ - **`processed_at: datetime`**
109
+ - **`execution_time: float`**
110
+
111
+ **Note:** You can use `repr(ToolOutput)` to print your output with all the details.
112
+
113
+ ---
114
+
115
+ ## 🧨 Sync vs Async
116
+ | Tool | Style | Use case |
117
+ |--------------|---------|---------------------------------------------|
118
+ | `TheTool` | Sync | Simple scripts, sequential workflows |
119
+ | `AsyncTheTool` | Async | High-throughput apps, APIs, concurrent tasks |
120
+
121
+ ---
122
+
123
+ ## ⚡ Quick Start (Sync)
124
+
125
+ ```python
126
+ from openai import OpenAI
127
+ from texttools import TheTool
128
+
129
+ client = OpenAI(base_url = "your_url", API_KEY = "your_api_key")
130
+ model = "model_name"
131
+
132
+ the_tool = TheTool(client=client, model=model)
133
+
134
+ detection = the_tool.is_question("Is this project open source?")
135
+ print(repr(detection))
136
+ ```
137
+
138
+ ---
139
+
140
+ ## ⚡ Quick Start (Async)
141
+
142
+ ```python
143
+ import asyncio
144
+ from openai import AsyncOpenAI
145
+ from texttools import AsyncTheTool
146
+
147
+ async def main():
148
+ async_client = AsyncOpenAI(base_url="your_url", api_key="your_api_key")
149
+ model = "model_name"
150
+
151
+ async_the_tool = AsyncTheTool(client=async_client, model=model)
152
+
153
+ translation_task = async_the_tool.translate("سلام، حالت چطوره؟", target_language="English")
154
+ keywords_task = async_the_tool.extract_keywords("Tomorrow, we will be dead by the car crash")
155
+
156
+ (translation, keywords) = await asyncio.gather(translation_task, keywords_task)
157
+ print(repr(translation))
158
+ print(repr(keywords))
159
+
160
+ asyncio.run(main())
161
+ ```
162
+
163
+ ---
164
+
165
+ ## 👍 Use Cases
166
+
167
+ Use **TextTools** when you need to:
168
+
169
+ - 🔍 **Classify** large datasets quickly without model training
170
+ - 🌍 **Translate** and process multilingual corpora with ease
171
+ - 🧩 **Integrate** LLMs into production pipelines (structured outputs)
172
+ - 📊 **Analyze** large text collections using embeddings and categorization
173
+
174
+ ---
175
+
176
+ ## 📚 Batch Processing
177
+
178
+ Process large datasets efficiently using OpenAI's batch API.
179
+
180
+ ## ⚡ Quick Start (Batch Runner)
181
+
182
+ ```python
183
+ from pydantic import BaseModel
184
+ from texttools import BatchRunner, BatchConfig
185
+
186
+ config = BatchConfig(
187
+ system_prompt="Extract entities from the text",
188
+ job_name="entity_extraction",
189
+ input_data_path="data.json",
190
+ output_data_filename="results.json",
191
+ model="gpt-4o-mini"
192
+ )
193
+
194
+ class Output(BaseModel):
195
+ entities: list[str]
196
+
197
+ runner = BatchRunner(config, output_model=Output)
198
+ runner.run()
199
+ ```
200
+
201
+ ---
202
+
203
+ ## 🤝 Contributing
204
+
205
+ Contributions are welcome!
206
+ Feel free to **open issues, suggest new features, or submit pull requests**.
207
+
208
+ ---
209
+
210
+ ## 🌿 License
211
+
212
+ This project is licensed under the MIT License - see the [LICENSE](LICENSE) file for details.
@@ -0,0 +1,34 @@
1
+ hamtaa_texttools-1.2.0.dist-info/licenses/LICENSE,sha256=Hb2YOBKy2MJQLnyLrX37B4ZVuac8eaIcE71SvVIMOLg,1082
2
+ texttools/__init__.py,sha256=4z7wInlrgbGSlWlXHQNeZMCGQH1sN2xtARsbgLHOLd8,283
3
+ texttools/models.py,sha256=5eT2cSrFq8Xa38kANznV7gbi7lwB2PoDxciLKTpsd6c,2516
4
+ texttools/py.typed,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
5
+ texttools/batch/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
6
+ texttools/batch/config.py,sha256=GDDXuhRZ_bOGVwSIlU4tWP247tx1_A7qzLJn7VqDyLU,1050
7
+ texttools/batch/manager.py,sha256=XZtf8UkdClfQlnRKne4nWEcFvdSKE67EamEePKy7jwI,8730
8
+ texttools/batch/runner.py,sha256=9qxXIMfYRXW5SXDqqKtRr61rnQdYZkbCGqKImhSrY6I,9923
9
+ texttools/core/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
10
+ texttools/core/engine.py,sha256=WhEtxZjYEbCnD0gExGRR4eSmAY4J05E9csovt2Qqlm8,9281
11
+ texttools/core/exceptions.py,sha256=6SDjUL1rmd3ngzD3ytF4LyTRj3bQMSFR9ECrLoqXXHw,395
12
+ texttools/core/internal_models.py,sha256=aExdLvhXhSev8NY1kuAJckeXdFBEisQtKZPxybd3rW8,1703
13
+ texttools/core/operators/async_operator.py,sha256=wFs7eZ9QJrL0jBOu00YffgfPnIrCSavNjecSorXh-mE,6452
14
+ texttools/core/operators/sync_operator.py,sha256=NaUS-aLh3y0QNMiKut4qtcSZKYXbuPbw0o2jvPsYKdY,6357
15
+ texttools/prompts/categorize.yaml,sha256=42Rp3SgVHaDLKrJ27_uK788LiQud0pOXJthz4r0a40Y,1214
16
+ texttools/prompts/check_fact.yaml,sha256=zWFQDRhEE1ij9wSeeenS9YSTM-bY5zzUaG390zUgmcs,714
17
+ texttools/prompts/extract_entities.yaml,sha256=_zYKHNJDIzVDI_-TnwFCKyMs-XLM5igvmWhvSTc3INQ,637
18
+ texttools/prompts/extract_keywords.yaml,sha256=1o4u3uwzapNtB1BUpNIRL5qtrwjW0Yhvyq0TZJiafdg,3272
19
+ texttools/prompts/is_question.yaml,sha256=jnPARd2ZiulLzHW_r4WAsz3sOryfz6Gy5-yYXp-2hd0,496
20
+ texttools/prompts/merge_questions.yaml,sha256=l9Q2OEjPp3SDkxbq3zZCj2ZmXacWSnmYMpUr3l6r5yE,1816
21
+ texttools/prompts/propositionize.yaml,sha256=nbGAfbm1-2Hoc0JLtqZi-S7VHQfnMmuTKI7dZeBxQW0,1403
22
+ texttools/prompts/rewrite.yaml,sha256=klEm8MqXK-Bo8RsS5R9KLMT0zlD-BKo_G6tz9lpAcEY,5420
23
+ texttools/prompts/run_custom.yaml,sha256=IETY9H0wPGWIIzcnupfbwwKQblwZrbYAxB754W9MhgU,125
24
+ texttools/prompts/subject_to_question.yaml,sha256=AK16pZW9HUppIF8JBSEenbUNOU3aqeVV781_WUXnLqk,1160
25
+ texttools/prompts/summarize.yaml,sha256=rPh060Bx_yI1W2JNg-nr83LUk9itatYLKM8ciH2pOvg,486
26
+ texttools/prompts/text_to_question.yaml,sha256=pUwPgK9l5f8S4E5fCht9JY7PFVK2aY1InPfASr7R5o4,1017
27
+ texttools/prompts/translate.yaml,sha256=Dd5bs3O8SI-FlVSwHMYGeEjMmdOWeRlcfBHkhixCx7c,665
28
+ texttools/tools/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
29
+ texttools/tools/async_tools.py,sha256=DonASaaOPbWp7Gh1UY4RlP3yPoYTuhJtVmLns8KYupE,42949
30
+ texttools/tools/sync_tools.py,sha256=y4nMlabgvRapb-YFoiGA5-5HflKrRHttiWSHpkg9tug,42742
31
+ hamtaa_texttools-1.2.0.dist-info/METADATA,sha256=vN4XmIWdH6mdAGfgSkjRdQLEoFNzbhhH32jOyEv9H6w,7846
32
+ hamtaa_texttools-1.2.0.dist-info/WHEEL,sha256=_zCd3N1l69ArxyTb8rzEoP9TpbYXkqRFSNOD5OuxnTs,91
33
+ hamtaa_texttools-1.2.0.dist-info/top_level.txt,sha256=5Mh0jIxxZ5rOXHGJ6Mp-JPKviywwN0MYuH0xk5bEWqE,10
34
+ hamtaa_texttools-1.2.0.dist-info/RECORD,,
texttools/__init__.py CHANGED
@@ -1,9 +1,7 @@
1
- from .batch import BatchJobRunner, SimpleBatchManager
2
- from .tools import AsyncTheTool, TheTool
1
+ from .batch.config import BatchConfig
2
+ from .batch.runner import BatchRunner
3
+ from .models import CategoryTree
4
+ from .tools.async_tools import AsyncTheTool
5
+ from .tools.sync_tools import TheTool
3
6
 
4
- __all__ = [
5
- "TheTool",
6
- "AsyncTheTool",
7
- "SimpleBatchManager",
8
- "BatchJobRunner",
9
- ]
7
+ __all__ = ["TheTool", "AsyncTheTool", "CategoryTree", "BatchRunner", "BatchConfig"]
@@ -1,4 +0,0 @@
1
- from .batch_manager import SimpleBatchManager
2
- from .batch_runner import BatchJobRunner
3
-
4
- __all__ = ["SimpleBatchManager", "BatchJobRunner"]
@@ -0,0 +1,40 @@
1
+ from collections.abc import Callable
2
+ from dataclasses import dataclass
3
+ from typing import Any
4
+
5
+
6
+ def export_data(data) -> list[dict[str, str]]:
7
+ """
8
+ Produces a structure of the following form from an initial data structure:
9
+ [{"id": str, "text": str},...]
10
+ """
11
+ return data
12
+
13
+
14
+ def import_data(data) -> Any:
15
+ """
16
+ Takes the output and adds and aggregates it to the original structure.
17
+ """
18
+ return data
19
+
20
+
21
+ @dataclass
22
+ class BatchConfig:
23
+ """
24
+ Configuration for batch job runner.
25
+ """
26
+
27
+ system_prompt: str = ""
28
+ job_name: str = ""
29
+ input_data_path: str = ""
30
+ output_data_filename: str = ""
31
+ model: str = "gpt-4.1-mini"
32
+ MAX_BATCH_SIZE: int = 100
33
+ MAX_TOTAL_TOKENS: int = 2_000_000
34
+ CHARS_PER_TOKEN: float = 2.7
35
+ PROMPT_TOKEN_MULTIPLIER: int = 1_000
36
+ BASE_OUTPUT_DIR: str = "Data/batch_entity_result"
37
+ import_function: Callable = import_data
38
+ export_function: Callable = export_data
39
+ poll_interval_seconds: int = 30
40
+ max_retries: int = 3
@@ -1,19 +1,20 @@
1
1
  import json
2
+ import logging
2
3
  import uuid
3
4
  from pathlib import Path
4
- from typing import Any, Type
5
- import logging
5
+ from typing import Any, Type, TypeVar
6
6
 
7
- from pydantic import BaseModel
8
7
  from openai import OpenAI
9
8
  from openai.lib._pydantic import to_strict_json_schema
9
+ from pydantic import BaseModel
10
+
11
+ # Base Model type for output models
12
+ T = TypeVar("T", bound=BaseModel)
10
13
 
11
- # Configure logger
12
- logger = logging.getLogger("batch_runner")
13
- logger.setLevel(logging.INFO)
14
+ logger = logging.getLogger("texttools.batch_manager")
14
15
 
15
16
 
16
- class SimpleBatchManager:
17
+ class BatchManager:
17
18
  """
18
19
  Manages batch processing jobs for OpenAI's chat completions with structured outputs.
19
20
 
@@ -26,30 +27,29 @@ class SimpleBatchManager:
26
27
  self,
27
28
  client: OpenAI,
28
29
  model: str,
29
- output_model: Type[BaseModel],
30
+ output_model: Type[T],
30
31
  prompt_template: str,
31
- handlers: list[Any] | None = None,
32
32
  state_dir: Path = Path(".batch_jobs"),
33
33
  custom_json_schema_obj_str: dict | None = None,
34
34
  **client_kwargs: Any,
35
35
  ):
36
- self.client = client
37
- self.model = model
38
- self.output_model = output_model
39
- self.prompt_template = prompt_template
40
- self.handlers = handlers or []
41
- self.state_dir = state_dir
42
- self.state_dir.mkdir(parents=True, exist_ok=True)
43
- self.custom_json_schema_obj_str = custom_json_schema_obj_str
44
- self.client_kwargs = client_kwargs
45
- self.dict_input = False
46
-
47
- if self.custom_json_schema_obj_str:
48
- if self.custom_json_schema_obj_str is not dict:
49
- raise ValueError("schema should be a dict")
36
+ self._client = client
37
+ self._model = model
38
+ self._output_model = output_model
39
+ self._prompt_template = prompt_template
40
+ self._state_dir = state_dir
41
+ self._custom_json_schema_obj_str = custom_json_schema_obj_str
42
+ self._client_kwargs = client_kwargs
43
+ self._dict_input = False
44
+ self._state_dir.mkdir(parents=True, exist_ok=True)
45
+
46
+ if custom_json_schema_obj_str and not isinstance(
47
+ custom_json_schema_obj_str, dict
48
+ ):
49
+ raise ValueError("Schema should be a dict")
50
50
 
51
51
  def _state_file(self, job_name: str) -> Path:
52
- return self.state_dir / f"{job_name}.json"
52
+ return self._state_dir / f"{job_name}.json"
53
53
 
54
54
  def _load_state(self, job_name: str) -> list[dict[str, Any]]:
55
55
  """
@@ -83,17 +83,17 @@ class SimpleBatchManager:
83
83
  """
84
84
  response_format_config: dict[str, Any]
85
85
 
86
- if self.custom_json_schema_obj_str:
86
+ if self._custom_json_schema_obj_str:
87
87
  response_format_config = {
88
88
  "type": "json_schema",
89
- "json_schema": self.custom_json_schema_obj_str,
89
+ "json_schema": self._custom_json_schema_obj_str,
90
90
  }
91
91
  else:
92
- raw_schema = to_strict_json_schema(self.output_model)
92
+ raw_schema = to_strict_json_schema(self._output_model)
93
93
  response_format_config = {
94
94
  "type": "json_schema",
95
95
  "json_schema": {
96
- "name": self.output_model.__name__,
96
+ "name": self._output_model.__name__,
97
97
  "schema": raw_schema,
98
98
  },
99
99
  }
@@ -105,11 +105,11 @@ class SimpleBatchManager:
105
105
  "body": {
106
106
  "model": self.model,
107
107
  "messages": [
108
- {"role": "system", "content": self.prompt_template},
108
+ {"role": "system", "content": self._prompt_template},
109
109
  {"role": "user", "content": text},
110
110
  ],
111
111
  "response_format": response_format_config,
112
- **self.client_kwargs,
112
+ **self._client_kwargs,
113
113
  },
114
114
  }
115
115
 
@@ -127,10 +127,10 @@ class SimpleBatchManager:
127
127
 
128
128
  else:
129
129
  raise TypeError(
130
- "The input must be either a list of texts or a dictionary in the form {'id': str, 'text': str}."
130
+ "The input must be either a list of texts or a dictionary in the form {'id': str, 'text': str}"
131
131
  )
132
132
 
133
- file_path = self.state_dir / f"batch_{uuid.uuid4().hex}.jsonl"
133
+ file_path = self._state_dir / f"batch_{uuid.uuid4().hex}.jsonl"
134
134
  with open(file_path, "w", encoding="utf-8") as f:
135
135
  for task in tasks:
136
136
  f.write(json.dumps(task) + "\n")
@@ -143,9 +143,10 @@ class SimpleBatchManager:
143
143
  """
144
144
  if self._load_state(job_name):
145
145
  return
146
+
146
147
  path = self._prepare_file(payload)
147
- upload = self.client.files.create(file=open(path, "rb"), purpose="batch")
148
- job = self.client.batches.create(
148
+ upload = self._client.files.create(file=open(path, "rb"), purpose="batch")
149
+ job = self._client.batches.create(
149
150
  input_file_id=upload.id,
150
151
  endpoint="/v1/chat/completions",
151
152
  completion_window="24h",
@@ -161,7 +162,7 @@ class SimpleBatchManager:
161
162
  if not job:
162
163
  return "completed"
163
164
 
164
- info = self.client.batches.retrieve(job["id"])
165
+ info = self._client.batches.retrieve(job["id"])
165
166
  job = info.to_dict()
166
167
  self._save_state(job_name, [job])
167
168
  logger.info("Batch job status: %s", job)
@@ -179,18 +180,18 @@ class SimpleBatchManager:
179
180
  return {}
180
181
  batch_id = job["id"]
181
182
 
182
- info = self.client.batches.retrieve(batch_id)
183
+ info = self._client.batches.retrieve(batch_id)
183
184
  out_file_id = info.output_file_id
184
185
  if not out_file_id:
185
186
  error_file_id = info.error_file_id
186
187
  if error_file_id:
187
188
  err_content = (
188
- self.client.files.content(error_file_id).read().decode("utf-8")
189
+ self._client.files.content(error_file_id).read().decode("utf-8")
189
190
  )
190
- logger.info("Error file content:", err_content)
191
+ logger.error("Error file content:", err_content)
191
192
  return {}
192
193
 
193
- content = self.client.files.content(out_file_id).read().decode("utf-8")
194
+ content = self._client.files.content(out_file_id).read().decode("utf-8")
194
195
  lines = content.splitlines()
195
196
  results = {}
196
197
  log = []
@@ -201,7 +202,7 @@ class SimpleBatchManager:
201
202
  content = result["response"]["body"]["choices"][0]["message"]["content"]
202
203
  try:
203
204
  parsed_content = json.loads(content)
204
- model_instance = self.output_model(**parsed_content)
205
+ model_instance = self._output_model(**parsed_content)
205
206
  results[custom_id] = model_instance.model_dump(mode="json")
206
207
  except json.JSONDecodeError:
207
208
  results[custom_id] = {"error": "Failed to parse content as JSON"}
@@ -221,8 +222,6 @@ class SimpleBatchManager:
221
222
  error_d = {custom_id: results[custom_id]}
222
223
  log.append(error_d)
223
224
 
224
- for handler in self.handlers:
225
- handler.handle(results)
226
225
  if remove_cache:
227
226
  self._clear_state(job_name)
228
227