hamtaa-texttools 1.0.3__py3-none-any.whl → 1.0.5__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of hamtaa-texttools might be problematic. Click here for more details.

Files changed (32) hide show
  1. {hamtaa_texttools-1.0.3.dist-info → hamtaa_texttools-1.0.5.dist-info}/METADATA +192 -141
  2. hamtaa_texttools-1.0.5.dist-info/RECORD +30 -0
  3. {hamtaa_texttools-1.0.3.dist-info → hamtaa_texttools-1.0.5.dist-info}/licenses/LICENSE +20 -20
  4. {hamtaa_texttools-1.0.3.dist-info → hamtaa_texttools-1.0.5.dist-info}/top_level.txt +0 -0
  5. texttools/__init__.py +9 -9
  6. texttools/batch/__init__.py +4 -4
  7. texttools/batch/batch_manager.py +240 -240
  8. texttools/batch/batch_runner.py +212 -212
  9. texttools/formatters/base_formatter.py +33 -33
  10. texttools/formatters/{user_merge_formatter/user_merge_formatter.py → user_merge_formatter.py} +30 -30
  11. texttools/prompts/README.md +31 -31
  12. texttools/prompts/categorizer.yaml +28 -31
  13. texttools/prompts/custom_tool.yaml +7 -0
  14. texttools/prompts/keyword_extractor.yaml +18 -14
  15. texttools/prompts/ner_extractor.yaml +20 -21
  16. texttools/prompts/question_detector.yaml +13 -14
  17. texttools/prompts/question_generator.yaml +19 -22
  18. texttools/prompts/question_merger.yaml +45 -48
  19. texttools/prompts/rewriter.yaml +111 -0
  20. texttools/prompts/subject_question_generator.yaml +22 -26
  21. texttools/prompts/summarizer.yaml +13 -11
  22. texttools/prompts/translator.yaml +14 -14
  23. texttools/tools/__init__.py +4 -4
  24. texttools/tools/async_the_tool.py +277 -263
  25. texttools/tools/internals/async_operator.py +297 -288
  26. texttools/tools/internals/operator.py +295 -306
  27. texttools/tools/internals/output_models.py +52 -62
  28. texttools/tools/internals/prompt_loader.py +76 -82
  29. texttools/tools/the_tool.py +501 -400
  30. hamtaa_texttools-1.0.3.dist-info/RECORD +0 -29
  31. texttools/prompts/question_rewriter.yaml +0 -46
  32. {hamtaa_texttools-1.0.3.dist-info → hamtaa_texttools-1.0.5.dist-info}/WHEEL +0 -0
@@ -1,212 +1,212 @@
1
- import json
2
- import os
3
- import time
4
- from dataclasses import dataclass
5
- from pathlib import Path
6
- from typing import Any, Callable
7
-
8
- from openai import OpenAI
9
- from pydantic import BaseModel
10
-
11
- from texttools.batch.batch_manager import SimpleBatchManager
12
-
13
-
14
- class Output(BaseModel):
15
- output: str
16
-
17
-
18
- def export_data(data):
19
- """
20
- Produces a structure of the following form from an initial data structure:
21
- [
22
- {"id": str, "content": str},...
23
- ]
24
- """
25
- return data
26
-
27
-
28
- def import_data(data):
29
- """
30
- Takes the output and adds and aggregates it to the original structure.
31
- """
32
- return data
33
-
34
-
35
- @dataclass
36
- class BatchConfig:
37
- """
38
- Configuration for batch job runner.
39
- """
40
-
41
- system_prompt: str = ""
42
- job_name: str = ""
43
- input_data_path: str = ""
44
- output_data_filename: str = ""
45
- model: str = "gpt-4.1-mini"
46
- MAX_BATCH_SIZE: int = 100
47
- MAX_TOTAL_TOKENS: int = 2000000
48
- CHARS_PER_TOKEN: float = 2.7
49
- PROMPT_TOKEN_MULTIPLIER: int = 1000
50
- BASE_OUTPUT_DIR: str = "Data/batch_entity_result"
51
- import_function: Callable = import_data
52
- export_function: Callable = export_data
53
-
54
-
55
- class BatchJobRunner:
56
- """
57
- Orchestrates the execution of batched LLM processing jobs.
58
-
59
- Handles data loading, partitioning, job execution via SimpleBatchManager,
60
- and result saving. Manages the complete workflow from input data to processed outputs,
61
- including retries and progress tracking across multiple batch parts.
62
- """
63
-
64
- def __init__(
65
- self, config: BatchConfig = BatchConfig(), output_model: type = Output
66
- ):
67
- self.config = config
68
- self.system_prompt = config.system_prompt
69
- self.job_name = config.job_name
70
- self.input_data_path = config.input_data_path
71
- self.output_data_filename = config.output_data_filename
72
- self.model = config.model
73
- self.output_model = output_model
74
- self.manager = self._init_manager()
75
- self.data = self._load_data()
76
- self.parts: list[list[dict[str, Any]]] = []
77
- self._partition_data()
78
- Path(self.config.BASE_OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
79
-
80
- def _init_manager(self) -> SimpleBatchManager:
81
- api_key = os.getenv("OPENAI_API_KEY")
82
- client = OpenAI(api_key=api_key)
83
- return SimpleBatchManager(
84
- client=client,
85
- model=self.model,
86
- prompt_template=self.system_prompt,
87
- output_model=self.output_model,
88
- )
89
-
90
- def _load_data(self):
91
- with open(self.input_data_path, "r", encoding="utf-8") as f:
92
- data = json.load(f)
93
- data = self.config.export_function(data)
94
-
95
- # Ensure data is a list of dicts with 'id' and 'content' as strings
96
- if not isinstance(data, list):
97
- raise ValueError(
98
- 'Exported data must be a list in this form: [ {"id": str, "content": str},...]'
99
- )
100
- for item in data:
101
- if not (isinstance(item, dict) and "id" in item and "content" in item):
102
- raise ValueError(
103
- "Each item must be a dict with 'id' and 'content' keys."
104
- )
105
- if not (isinstance(item["id"], str) and isinstance(item["content"], str)):
106
- raise ValueError("'id' and 'content' must be strings.")
107
- return data
108
-
109
- def _partition_data(self):
110
- total_length = sum(len(item["content"]) for item in self.data)
111
- prompt_length = len(self.system_prompt)
112
- total = total_length + (prompt_length * len(self.data))
113
- calculation = total / self.config.CHARS_PER_TOKEN
114
- print(
115
- f"Total chars: {total_length}, Prompt chars: {prompt_length}, Total: {total}, Tokens: {calculation}"
116
- )
117
- if calculation < self.config.MAX_TOTAL_TOKENS:
118
- self.parts = [self.data]
119
- else:
120
- # Partition into chunks of MAX_BATCH_SIZE
121
- self.parts = [
122
- self.data[i : i + self.config.MAX_BATCH_SIZE]
123
- for i in range(0, len(self.data), self.config.MAX_BATCH_SIZE)
124
- ]
125
- print(f"Data split into {len(self.parts)} part(s)")
126
-
127
- def run(self):
128
- for idx, part in enumerate(self.parts):
129
- if self._result_exists(idx):
130
- print(f"Skipping part {idx + 1}: result already exists.")
131
- continue
132
- part_job_name = (
133
- f"{self.job_name}_part_{idx + 1}"
134
- if len(self.parts) > 1
135
- else self.job_name
136
- )
137
- print(
138
- f"\n--- Processing part {idx + 1}/{len(self.parts)}: {part_job_name} ---"
139
- )
140
- self._process_part(part, part_job_name, idx)
141
-
142
- def _process_part(
143
- self, part: list[dict[str, Any]], part_job_name: str, part_idx: int
144
- ):
145
- while True:
146
- print(f"Starting job for part: {part_job_name}")
147
- self.manager.start(part, job_name=part_job_name)
148
- print("Started batch job. Checking status...")
149
- while True:
150
- status = self.manager.check_status(job_name=part_job_name)
151
- print(f"Status: {status}")
152
- if status == "completed":
153
- print("Job completed. Fetching results...")
154
- output_data, log = self.manager.fetch_results(
155
- job_name=part_job_name, remove_cache=False
156
- )
157
- output_data = self.config.import_function(output_data)
158
- self._save_results(output_data, log, part_idx)
159
- print("Fetched and saved results for this part.")
160
- return
161
- elif status == "failed":
162
- print("Job failed. Clearing state, waiting, and retrying...")
163
- self.manager._clear_state(part_job_name)
164
- # Wait before retrying
165
- time.sleep(10)
166
- # Break inner loop to restart the job
167
- break
168
- else:
169
- # Wait before checking again
170
- time.sleep(5)
171
-
172
- def _save_results(
173
- self, output_data: list[dict[str, Any]], log: list[Any], part_idx: int
174
- ):
175
- part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
176
- result_path = (
177
- Path(self.config.BASE_OUTPUT_DIR)
178
- / f"{Path(self.output_data_filename).stem}{part_suffix}.json"
179
- )
180
- if not output_data:
181
- print("No output data to save. Skipping this part.")
182
- return
183
- else:
184
- with open(result_path, "w", encoding="utf-8") as f:
185
- json.dump(output_data, f, ensure_ascii=False, indent=4)
186
- if log:
187
- log_path = (
188
- Path(self.config.BASE_OUTPUT_DIR)
189
- / f"{Path(self.output_data_filename).stem}{part_suffix}_log.json"
190
- )
191
- with open(log_path, "w", encoding="utf-8") as f:
192
- json.dump(log, f, ensure_ascii=False, indent=4)
193
-
194
- def _result_exists(self, part_idx: int) -> bool:
195
- part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
196
- result_path = (
197
- Path(self.config.BASE_OUTPUT_DIR)
198
- / f"{Path(self.output_data_path).stem}{part_suffix}.json"
199
- )
200
- return result_path.exists()
201
-
202
-
203
- if __name__ == "__main__":
204
- print("=== Batch Job Runner ===")
205
- config = BatchConfig(
206
- system_prompt="",
207
- job_name="job_name",
208
- input_data_path="Data.json",
209
- output_data_filename="output",
210
- )
211
- runner = BatchJobRunner(config)
212
- runner.run()
1
+ import json
2
+ import os
3
+ import time
4
+ from dataclasses import dataclass
5
+ from pathlib import Path
6
+ from typing import Any, Callable
7
+
8
+ from openai import OpenAI
9
+ from pydantic import BaseModel
10
+
11
+ from texttools.batch.batch_manager import SimpleBatchManager
12
+
13
+
14
+ class Output(BaseModel):
15
+ output: str
16
+
17
+
18
+ def export_data(data):
19
+ """
20
+ Produces a structure of the following form from an initial data structure:
21
+ [
22
+ {"id": str, "content": str},...
23
+ ]
24
+ """
25
+ return data
26
+
27
+
28
+ def import_data(data):
29
+ """
30
+ Takes the output and adds and aggregates it to the original structure.
31
+ """
32
+ return data
33
+
34
+
35
+ @dataclass
36
+ class BatchConfig:
37
+ """
38
+ Configuration for batch job runner.
39
+ """
40
+
41
+ system_prompt: str = ""
42
+ job_name: str = ""
43
+ input_data_path: str = ""
44
+ output_data_filename: str = ""
45
+ model: str = "gpt-4.1-mini"
46
+ MAX_BATCH_SIZE: int = 100
47
+ MAX_TOTAL_TOKENS: int = 2000000
48
+ CHARS_PER_TOKEN: float = 2.7
49
+ PROMPT_TOKEN_MULTIPLIER: int = 1000
50
+ BASE_OUTPUT_DIR: str = "Data/batch_entity_result"
51
+ import_function: Callable = import_data
52
+ export_function: Callable = export_data
53
+
54
+
55
+ class BatchJobRunner:
56
+ """
57
+ Orchestrates the execution of batched LLM processing jobs.
58
+
59
+ Handles data loading, partitioning, job execution via SimpleBatchManager,
60
+ and result saving. Manages the complete workflow from input data to processed outputs,
61
+ including retries and progress tracking across multiple batch parts.
62
+ """
63
+
64
+ def __init__(
65
+ self, config: BatchConfig = BatchConfig(), output_model: type = Output
66
+ ):
67
+ self.config = config
68
+ self.system_prompt = config.system_prompt
69
+ self.job_name = config.job_name
70
+ self.input_data_path = config.input_data_path
71
+ self.output_data_filename = config.output_data_filename
72
+ self.model = config.model
73
+ self.output_model = output_model
74
+ self.manager = self._init_manager()
75
+ self.data = self._load_data()
76
+ self.parts: list[list[dict[str, Any]]] = []
77
+ self._partition_data()
78
+ Path(self.config.BASE_OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
79
+
80
+ def _init_manager(self) -> SimpleBatchManager:
81
+ api_key = os.getenv("OPENAI_API_KEY")
82
+ client = OpenAI(api_key=api_key)
83
+ return SimpleBatchManager(
84
+ client=client,
85
+ model=self.model,
86
+ prompt_template=self.system_prompt,
87
+ output_model=self.output_model,
88
+ )
89
+
90
+ def _load_data(self):
91
+ with open(self.input_data_path, "r", encoding="utf-8") as f:
92
+ data = json.load(f)
93
+ data = self.config.export_function(data)
94
+
95
+ # Ensure data is a list of dicts with 'id' and 'content' as strings
96
+ if not isinstance(data, list):
97
+ raise ValueError(
98
+ 'Exported data must be a list in this form: [ {"id": str, "content": str},...]'
99
+ )
100
+ for item in data:
101
+ if not (isinstance(item, dict) and "id" in item and "content" in item):
102
+ raise ValueError(
103
+ "Each item must be a dict with 'id' and 'content' keys."
104
+ )
105
+ if not (isinstance(item["id"], str) and isinstance(item["content"], str)):
106
+ raise ValueError("'id' and 'content' must be strings.")
107
+ return data
108
+
109
+ def _partition_data(self):
110
+ total_length = sum(len(item["content"]) for item in self.data)
111
+ prompt_length = len(self.system_prompt)
112
+ total = total_length + (prompt_length * len(self.data))
113
+ calculation = total / self.config.CHARS_PER_TOKEN
114
+ print(
115
+ f"Total chars: {total_length}, Prompt chars: {prompt_length}, Total: {total}, Tokens: {calculation}"
116
+ )
117
+ if calculation < self.config.MAX_TOTAL_TOKENS:
118
+ self.parts = [self.data]
119
+ else:
120
+ # Partition into chunks of MAX_BATCH_SIZE
121
+ self.parts = [
122
+ self.data[i : i + self.config.MAX_BATCH_SIZE]
123
+ for i in range(0, len(self.data), self.config.MAX_BATCH_SIZE)
124
+ ]
125
+ print(f"Data split into {len(self.parts)} part(s)")
126
+
127
+ def run(self):
128
+ for idx, part in enumerate(self.parts):
129
+ if self._result_exists(idx):
130
+ print(f"Skipping part {idx + 1}: result already exists.")
131
+ continue
132
+ part_job_name = (
133
+ f"{self.job_name}_part_{idx + 1}"
134
+ if len(self.parts) > 1
135
+ else self.job_name
136
+ )
137
+ print(
138
+ f"\n--- Processing part {idx + 1}/{len(self.parts)}: {part_job_name} ---"
139
+ )
140
+ self._process_part(part, part_job_name, idx)
141
+
142
+ def _process_part(
143
+ self, part: list[dict[str, Any]], part_job_name: str, part_idx: int
144
+ ):
145
+ while True:
146
+ print(f"Starting job for part: {part_job_name}")
147
+ self.manager.start(part, job_name=part_job_name)
148
+ print("Started batch job. Checking status...")
149
+ while True:
150
+ status = self.manager.check_status(job_name=part_job_name)
151
+ print(f"Status: {status}")
152
+ if status == "completed":
153
+ print("Job completed. Fetching results...")
154
+ output_data, log = self.manager.fetch_results(
155
+ job_name=part_job_name, remove_cache=False
156
+ )
157
+ output_data = self.config.import_function(output_data)
158
+ self._save_results(output_data, log, part_idx)
159
+ print("Fetched and saved results for this part.")
160
+ return
161
+ elif status == "failed":
162
+ print("Job failed. Clearing state, waiting, and retrying...")
163
+ self.manager._clear_state(part_job_name)
164
+ # Wait before retrying
165
+ time.sleep(10)
166
+ # Break inner loop to restart the job
167
+ break
168
+ else:
169
+ # Wait before checking again
170
+ time.sleep(5)
171
+
172
+ def _save_results(
173
+ self, output_data: list[dict[str, Any]], log: list[Any], part_idx: int
174
+ ):
175
+ part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
176
+ result_path = (
177
+ Path(self.config.BASE_OUTPUT_DIR)
178
+ / f"{Path(self.output_data_filename).stem}{part_suffix}.json"
179
+ )
180
+ if not output_data:
181
+ print("No output data to save. Skipping this part.")
182
+ return
183
+ else:
184
+ with open(result_path, "w", encoding="utf-8") as f:
185
+ json.dump(output_data, f, ensure_ascii=False, indent=4)
186
+ if log:
187
+ log_path = (
188
+ Path(self.config.BASE_OUTPUT_DIR)
189
+ / f"{Path(self.output_data_filename).stem}{part_suffix}_log.json"
190
+ )
191
+ with open(log_path, "w", encoding="utf-8") as f:
192
+ json.dump(log, f, ensure_ascii=False, indent=4)
193
+
194
+ def _result_exists(self, part_idx: int) -> bool:
195
+ part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
196
+ result_path = (
197
+ Path(self.config.BASE_OUTPUT_DIR)
198
+ / f"{Path(self.output_data_path).stem}{part_suffix}.json"
199
+ )
200
+ return result_path.exists()
201
+
202
+
203
+ if __name__ == "__main__":
204
+ print("=== Batch Job Runner ===")
205
+ config = BatchConfig(
206
+ system_prompt="",
207
+ job_name="job_name",
208
+ input_data_path="Data.json",
209
+ output_data_filename="output",
210
+ )
211
+ runner = BatchJobRunner(config)
212
+ runner.run()
@@ -1,33 +1,33 @@
1
- from abc import ABC, abstractmethod
2
- from typing import Any
3
-
4
-
5
- class BaseFormatter(ABC):
6
- """
7
- Adapter to convert a conversation into a specific LLM API's input format.
8
-
9
- Concrete implementations transform standardized messages (e.g., list[dict]) into the
10
- exact payload required by a provider (e.g., OpenAI's message list, a single string, etc.).
11
- """
12
-
13
- @abstractmethod
14
- def format(
15
- self,
16
- messages: Any,
17
- ) -> Any:
18
- """
19
- Transform the input messages into a provider-specific payload.
20
-
21
- Args:
22
- messages: The input conversation. While often a list of dicts with
23
- 'role' and 'content' keys, the exact type and structure may vary
24
- by implementation.
25
-
26
- Returns:
27
- A payload in the format expected by the target LLM API. This could be:
28
- - A list of role-content dictionaries (e.g., for OpenAI)
29
- - A single formatted string (e.g., for completion-style APIs)
30
- - A complex dictionary with additional parameters
31
- - Any other provider-specific data structure
32
- """
33
- pass
1
+ from abc import ABC, abstractmethod
2
+ from typing import Any
3
+
4
+
5
+ class BaseFormatter(ABC):
6
+ """
7
+ Adapter to convert a conversation into a specific LLM API's input format.
8
+
9
+ Concrete implementations transform standardized messages (e.g., list[dict]) into the
10
+ exact payload required by a provider (e.g., OpenAI's message list, a single string, etc.).
11
+ """
12
+
13
+ @abstractmethod
14
+ def format(
15
+ self,
16
+ messages: Any,
17
+ ) -> Any:
18
+ """
19
+ Transform the input messages into a provider-specific payload.
20
+
21
+ Args:
22
+ messages: The input conversation. While often a list of dicts with
23
+ 'role' and 'content' keys, the exact type and structure may vary
24
+ by implementation.
25
+
26
+ Returns:
27
+ A payload in the format expected by the target LLM API. This could be:
28
+ - A list of role-content dictionaries (e.g., for OpenAI)
29
+ - A single formatted string (e.g., for completion-style APIs)
30
+ - A complex dictionary with additional parameters
31
+ - Any other provider-specific data structure
32
+ """
33
+ pass
@@ -1,30 +1,30 @@
1
- from texttools.formatters.base_formatter import BaseFormatter
2
-
3
-
4
- class UserMergeFormatter(BaseFormatter):
5
- """
6
- Merges consecutive user messages into a single message, separated by newlines.
7
-
8
- This is useful for condensing a multi-turn user input into a single coherent
9
- message for the LLM. Assistant and system messages are left unchanged and
10
- act as separators between user message groups.
11
-
12
- Raises:
13
- ValueError: If the input messages have invalid structure or roles.
14
- """
15
-
16
- def format(self, messages: list[dict[str, str]]) -> list[dict[str, str]]:
17
- merged: list[dict[str, str]] = []
18
-
19
- for message in messages:
20
- role, content = message["role"], message["content"].strip()
21
-
22
- # Merge with previous user turn
23
- if merged and role == "user" and merged[-1]["role"] == "user":
24
- merged[-1]["content"] += "\n" + content
25
-
26
- # Otherwise, start a new turn
27
- else:
28
- merged.append({"role": role, "content": content})
29
-
30
- return merged
1
+ from texttools.formatters.base_formatter import BaseFormatter
2
+
3
+
4
+ class UserMergeFormatter(BaseFormatter):
5
+ """
6
+ Merges consecutive user messages into a single message, separated by newlines.
7
+
8
+ This is useful for condensing a multi-turn user input into a single coherent
9
+ message for the LLM. Assistant and system messages are left unchanged and
10
+ act as separators between user message groups.
11
+
12
+ Raises:
13
+ ValueError: If the input messages have invalid structure or roles.
14
+ """
15
+
16
+ def format(self, messages: list[dict[str, str]]) -> list[dict[str, str]]:
17
+ merged: list[dict[str, str]] = []
18
+
19
+ for message in messages:
20
+ role, content = message["role"], message["content"].strip()
21
+
22
+ # Merge with previous user turn
23
+ if merged and role == "user" and merged[-1]["role"] == "user":
24
+ merged[-1]["content"] += "\n" + content
25
+
26
+ # Otherwise, start a new turn
27
+ else:
28
+ merged.append({"role": role, "content": content})
29
+
30
+ return merged
@@ -1,31 +1,31 @@
1
- # Prompts
2
-
3
- ## Overview
4
- This folder contains YAML files for all prompts used in the project. Each file represents a separate prompt template, which can be loaded by tools or scripts that require structured prompts for AI models.
5
-
6
- ## Structure
7
- - **prompt_file.yaml**: Each YAML file represents a single prompt template.
8
- - **main_template**: The main instruction template for the model.
9
- - **analyze_template** (optional): A secondary reasoning template used before generating the final response.
10
- - **Modes** (optional): Some prompts may have multiple modes (e.g., `default`, `reason`) to allow different behaviors.
11
-
12
- ### Example YAML Structure
13
- ```yaml
14
- main_template:
15
- default: |
16
- Your main instructions here with placeholders like {input}.
17
- reason: |
18
- Optional reasoning instructions here.
19
-
20
- analyze_template:
21
- default: |
22
- Analyze and summarize the input.
23
- reason: |
24
- Optional detailed analysis template.
25
- ```
26
-
27
- ## Guidelines
28
- 1. **Naming**: Use descriptive names for each YAML file corresponding to the tool or task it serves.
29
- 2. **Placeholders**: Use `{input}` or other relevant placeholders to dynamically inject data.
30
- 3. **Modes**: If using modes, ensure both `main_template` and `analyze_template` contain the corresponding keys.
31
- 4. **Consistency**: Keep formatting consistent across files for easier parsing by scripts.
1
+ # Prompts
2
+
3
+ ## Overview
4
+ This folder contains YAML files for all prompts used in the project. Each file represents a separate prompt template, which can be loaded by tools or scripts that require structured prompts for AI models.
5
+
6
+ ## Structure
7
+ - **prompt_file.yaml**: Each YAML file represents a single prompt template.
8
+ - **main_template**: The main instruction template for the model.
9
+ - **analyze_template** (optional): A secondary reasoning template used before generating the final response.
10
+ - **Modes** (optional): Some prompts may have multiple modes (e.g., `default`, `reason`) to allow different behaviors.
11
+
12
+ ### Example YAML Structure
13
+ ```yaml
14
+ main_template:
15
+ default: |
16
+ Your main instructions here with placeholders like {input}.
17
+ reason: |
18
+ Optional reasoning instructions here.
19
+
20
+ analyze_template:
21
+ default: |
22
+ Analyze and summarize the input.
23
+ reason: |
24
+ Optional detailed analysis template.
25
+ ```
26
+
27
+ ## Guidelines
28
+ 1. **Naming**: Use descriptive names for each YAML file corresponding to the tool or task it serves.
29
+ 2. **Placeholders**: Use `{input}` or other relevant placeholders to dynamically inject data.
30
+ 3. **Modes**: If using modes, ensure both `main_template` and `analyze_template` contain the corresponding keys.
31
+ 4. **Consistency**: Keep formatting consistent across files for easier parsing by scripts.