hamtaa-texttools 1.0.1__py3-none-any.whl → 1.1.7__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of hamtaa-texttools might be problematic. Click here for more details.
- hamtaa_texttools-1.1.7.dist-info/METADATA +228 -0
- hamtaa_texttools-1.1.7.dist-info/RECORD +30 -0
- {hamtaa_texttools-1.0.1.dist-info → hamtaa_texttools-1.1.7.dist-info}/licenses/LICENSE +20 -20
- {hamtaa_texttools-1.0.1.dist-info → hamtaa_texttools-1.1.7.dist-info}/top_level.txt +0 -0
- texttools/__init__.py +4 -9
- texttools/batch/__init__.py +3 -0
- texttools/{utils/batch_manager → batch}/batch_manager.py +226 -240
- texttools/batch/batch_runner.py +254 -0
- texttools/prompts/README.md +35 -0
- texttools/prompts/categorizer.yaml +28 -0
- texttools/prompts/extract_entities.yaml +20 -0
- texttools/prompts/extract_keywords.yaml +18 -0
- texttools/prompts/is_question.yaml +14 -0
- texttools/prompts/merge_questions.yaml +46 -0
- texttools/prompts/rewrite.yaml +111 -0
- texttools/prompts/run_custom.yaml +7 -0
- texttools/prompts/subject_to_question.yaml +22 -0
- texttools/prompts/summarize.yaml +14 -0
- texttools/prompts/text_to_question.yaml +20 -0
- texttools/prompts/translate.yaml +15 -0
- texttools/tools/__init__.py +4 -3
- texttools/tools/async_the_tool.py +435 -0
- texttools/tools/internals/async_operator.py +242 -0
- texttools/tools/internals/base_operator.py +100 -0
- texttools/tools/internals/formatters.py +24 -0
- texttools/tools/internals/operator.py +242 -0
- texttools/tools/internals/output_models.py +62 -0
- texttools/tools/internals/prompt_loader.py +60 -0
- texttools/tools/the_tool.py +433 -291
- hamtaa_texttools-1.0.1.dist-info/METADATA +0 -129
- hamtaa_texttools-1.0.1.dist-info/RECORD +0 -18
- texttools/formatters/base_formatter.py +0 -33
- texttools/formatters/user_merge_formatter/user_merge_formatter.py +0 -47
- texttools/prompts/__init__.py +0 -0
- texttools/tools/operator.py +0 -236
- texttools/tools/output_models.py +0 -54
- texttools/tools/prompt_loader.py +0 -84
- texttools/utils/__init__.py +0 -4
- texttools/utils/batch_manager/__init__.py +0 -4
- texttools/utils/batch_manager/batch_runner.py +0 -212
- {hamtaa_texttools-1.0.1.dist-info → hamtaa_texttools-1.1.7.dist-info}/WHEEL +0 -0
|
@@ -1,212 +0,0 @@
|
|
|
1
|
-
import json
|
|
2
|
-
import os
|
|
3
|
-
import time
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from typing import Any, Callable
|
|
7
|
-
|
|
8
|
-
from openai import OpenAI
|
|
9
|
-
from pydantic import BaseModel
|
|
10
|
-
|
|
11
|
-
from texttools.utils.batch_manager import SimpleBatchManager
|
|
12
|
-
|
|
13
|
-
|
|
14
|
-
class Output(BaseModel):
|
|
15
|
-
output: str
|
|
16
|
-
|
|
17
|
-
|
|
18
|
-
def export_data(data):
|
|
19
|
-
"""
|
|
20
|
-
Produces a structure of the following form from an initial data structure:
|
|
21
|
-
[
|
|
22
|
-
{"id": str, "content": str},...
|
|
23
|
-
]
|
|
24
|
-
"""
|
|
25
|
-
return data
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
def import_data(data):
|
|
29
|
-
"""
|
|
30
|
-
Takes the output and adds and aggregates it to the original structure.
|
|
31
|
-
"""
|
|
32
|
-
return data
|
|
33
|
-
|
|
34
|
-
|
|
35
|
-
@dataclass
|
|
36
|
-
class BatchConfig:
|
|
37
|
-
"""
|
|
38
|
-
Configuration for batch job runner.
|
|
39
|
-
"""
|
|
40
|
-
|
|
41
|
-
system_prompt: str = ""
|
|
42
|
-
job_name: str = ""
|
|
43
|
-
input_data_path: str = ""
|
|
44
|
-
output_data_filename: str = ""
|
|
45
|
-
model: str = "gpt-4.1-mini"
|
|
46
|
-
MAX_BATCH_SIZE: int = 100
|
|
47
|
-
MAX_TOTAL_TOKENS: int = 2000000
|
|
48
|
-
CHARS_PER_TOKEN: float = 2.7
|
|
49
|
-
PROMPT_TOKEN_MULTIPLIER: int = 1000
|
|
50
|
-
BASE_OUTPUT_DIR: str = "Data/batch_entity_result"
|
|
51
|
-
import_function: Callable = import_data
|
|
52
|
-
export_function: Callable = export_data
|
|
53
|
-
|
|
54
|
-
|
|
55
|
-
class BatchJobRunner:
|
|
56
|
-
"""
|
|
57
|
-
Orchestrates the execution of batched LLM processing jobs.
|
|
58
|
-
|
|
59
|
-
Handles data loading, partitioning, job execution via SimpleBatchManager,
|
|
60
|
-
and result saving. Manages the complete workflow from input data to processed outputs,
|
|
61
|
-
including retries and progress tracking across multiple batch parts.
|
|
62
|
-
"""
|
|
63
|
-
|
|
64
|
-
def __init__(
|
|
65
|
-
self, config: BatchConfig = BatchConfig(), output_model: type = Output
|
|
66
|
-
):
|
|
67
|
-
self.config = config
|
|
68
|
-
self.system_prompt = config.system_prompt
|
|
69
|
-
self.job_name = config.job_name
|
|
70
|
-
self.input_data_path = config.input_data_path
|
|
71
|
-
self.output_data_filename = config.output_data_filename
|
|
72
|
-
self.model = config.model
|
|
73
|
-
self.output_model = output_model
|
|
74
|
-
self.manager = self._init_manager()
|
|
75
|
-
self.data = self._load_data()
|
|
76
|
-
self.parts: list[list[dict[str, Any]]] = []
|
|
77
|
-
self._partition_data()
|
|
78
|
-
Path(self.config.BASE_OUTPUT_DIR).mkdir(parents=True, exist_ok=True)
|
|
79
|
-
|
|
80
|
-
def _init_manager(self) -> SimpleBatchManager:
|
|
81
|
-
api_key = os.getenv("OPENAI_API_KEY")
|
|
82
|
-
client = OpenAI(api_key=api_key)
|
|
83
|
-
return SimpleBatchManager(
|
|
84
|
-
client=client,
|
|
85
|
-
model=self.model,
|
|
86
|
-
prompt_template=self.system_prompt,
|
|
87
|
-
output_model=self.output_model,
|
|
88
|
-
)
|
|
89
|
-
|
|
90
|
-
def _load_data(self):
|
|
91
|
-
with open(self.input_data_path, "r", encoding="utf-8") as f:
|
|
92
|
-
data = json.load(f)
|
|
93
|
-
data = self.config.export_function(data)
|
|
94
|
-
|
|
95
|
-
# Ensure data is a list of dicts with 'id' and 'content' as strings
|
|
96
|
-
if not isinstance(data, list):
|
|
97
|
-
raise ValueError(
|
|
98
|
-
'Exported data must be a list in this form: [ {"id": str, "content": str},...]'
|
|
99
|
-
)
|
|
100
|
-
for item in data:
|
|
101
|
-
if not (isinstance(item, dict) and "id" in item and "content" in item):
|
|
102
|
-
raise ValueError(
|
|
103
|
-
"Each item must be a dict with 'id' and 'content' keys."
|
|
104
|
-
)
|
|
105
|
-
if not (isinstance(item["id"], str) and isinstance(item["content"], str)):
|
|
106
|
-
raise ValueError("'id' and 'content' must be strings.")
|
|
107
|
-
return data
|
|
108
|
-
|
|
109
|
-
def _partition_data(self):
|
|
110
|
-
total_length = sum(len(item["content"]) for item in self.data)
|
|
111
|
-
prompt_length = len(self.system_prompt)
|
|
112
|
-
total = total_length + (prompt_length * len(self.data))
|
|
113
|
-
calculation = total / self.config.CHARS_PER_TOKEN
|
|
114
|
-
print(
|
|
115
|
-
f"Total chars: {total_length}, Prompt chars: {prompt_length}, Total: {total}, Tokens: {calculation}"
|
|
116
|
-
)
|
|
117
|
-
if calculation < self.config.MAX_TOTAL_TOKENS:
|
|
118
|
-
self.parts = [self.data]
|
|
119
|
-
else:
|
|
120
|
-
# Partition into chunks of MAX_BATCH_SIZE
|
|
121
|
-
self.parts = [
|
|
122
|
-
self.data[i : i + self.config.MAX_BATCH_SIZE]
|
|
123
|
-
for i in range(0, len(self.data), self.config.MAX_BATCH_SIZE)
|
|
124
|
-
]
|
|
125
|
-
print(f"Data split into {len(self.parts)} part(s)")
|
|
126
|
-
|
|
127
|
-
def run(self):
|
|
128
|
-
for idx, part in enumerate(self.parts):
|
|
129
|
-
if self._result_exists(idx):
|
|
130
|
-
print(f"Skipping part {idx + 1}: result already exists.")
|
|
131
|
-
continue
|
|
132
|
-
part_job_name = (
|
|
133
|
-
f"{self.job_name}_part_{idx + 1}"
|
|
134
|
-
if len(self.parts) > 1
|
|
135
|
-
else self.job_name
|
|
136
|
-
)
|
|
137
|
-
print(
|
|
138
|
-
f"\n--- Processing part {idx + 1}/{len(self.parts)}: {part_job_name} ---"
|
|
139
|
-
)
|
|
140
|
-
self._process_part(part, part_job_name, idx)
|
|
141
|
-
|
|
142
|
-
def _process_part(
|
|
143
|
-
self, part: list[dict[str, Any]], part_job_name: str, part_idx: int
|
|
144
|
-
):
|
|
145
|
-
while True:
|
|
146
|
-
print(f"Starting job for part: {part_job_name}")
|
|
147
|
-
self.manager.start(part, job_name=part_job_name)
|
|
148
|
-
print("Started batch job. Checking status...")
|
|
149
|
-
while True:
|
|
150
|
-
status = self.manager.check_status(job_name=part_job_name)
|
|
151
|
-
print(f"Status: {status}")
|
|
152
|
-
if status == "completed":
|
|
153
|
-
print("Job completed. Fetching results...")
|
|
154
|
-
output_data, log = self.manager.fetch_results(
|
|
155
|
-
job_name=part_job_name, remove_cache=False
|
|
156
|
-
)
|
|
157
|
-
output_data = self.config.import_function(output_data)
|
|
158
|
-
self._save_results(output_data, log, part_idx)
|
|
159
|
-
print("Fetched and saved results for this part.")
|
|
160
|
-
return
|
|
161
|
-
elif status == "failed":
|
|
162
|
-
print("Job failed. Clearing state, waiting, and retrying...")
|
|
163
|
-
self.manager._clear_state(part_job_name)
|
|
164
|
-
# Wait before retrying
|
|
165
|
-
time.sleep(10)
|
|
166
|
-
# Break inner loop to restart the job
|
|
167
|
-
break
|
|
168
|
-
else:
|
|
169
|
-
# Wait before checking again
|
|
170
|
-
time.sleep(5)
|
|
171
|
-
|
|
172
|
-
def _save_results(
|
|
173
|
-
self, output_data: list[dict[str, Any]], log: list[Any], part_idx: int
|
|
174
|
-
):
|
|
175
|
-
part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
|
|
176
|
-
result_path = (
|
|
177
|
-
Path(self.config.BASE_OUTPUT_DIR)
|
|
178
|
-
/ f"{Path(self.output_data_filename).stem}{part_suffix}.json"
|
|
179
|
-
)
|
|
180
|
-
if not output_data:
|
|
181
|
-
print("No output data to save. Skipping this part.")
|
|
182
|
-
return
|
|
183
|
-
else:
|
|
184
|
-
with open(result_path, "w", encoding="utf-8") as f:
|
|
185
|
-
json.dump(output_data, f, ensure_ascii=False, indent=4)
|
|
186
|
-
if log:
|
|
187
|
-
log_path = (
|
|
188
|
-
Path(self.config.BASE_OUTPUT_DIR)
|
|
189
|
-
/ f"{Path(self.output_data_filename).stem}{part_suffix}_log.json"
|
|
190
|
-
)
|
|
191
|
-
with open(log_path, "w", encoding="utf-8") as f:
|
|
192
|
-
json.dump(log, f, ensure_ascii=False, indent=4)
|
|
193
|
-
|
|
194
|
-
def _result_exists(self, part_idx: int) -> bool:
|
|
195
|
-
part_suffix = f"_part_{part_idx + 1}" if len(self.parts) > 1 else ""
|
|
196
|
-
result_path = (
|
|
197
|
-
Path(self.config.BASE_OUTPUT_DIR)
|
|
198
|
-
/ f"{Path(self.output_data_path).stem}{part_suffix}.json"
|
|
199
|
-
)
|
|
200
|
-
return result_path.exists()
|
|
201
|
-
|
|
202
|
-
|
|
203
|
-
if __name__ == "__main__":
|
|
204
|
-
print("=== Batch Job Runner ===")
|
|
205
|
-
config = BatchConfig(
|
|
206
|
-
system_prompt="",
|
|
207
|
-
job_name="job_name",
|
|
208
|
-
input_data_path="Data.json",
|
|
209
|
-
output_data_filename="output",
|
|
210
|
-
)
|
|
211
|
-
runner = BatchJobRunner(config)
|
|
212
|
-
runner.run()
|
|
File without changes
|