halib 0.2.30__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- halib/__init__.py +94 -0
- halib/common/__init__.py +0 -0
- halib/common/common.py +326 -0
- halib/common/rich_color.py +285 -0
- halib/common.py +151 -0
- halib/csvfile.py +48 -0
- halib/cuda.py +39 -0
- halib/dataset.py +209 -0
- halib/exp/__init__.py +0 -0
- halib/exp/core/__init__.py +0 -0
- halib/exp/core/base_config.py +167 -0
- halib/exp/core/base_exp.py +147 -0
- halib/exp/core/param_gen.py +170 -0
- halib/exp/core/wandb_op.py +117 -0
- halib/exp/data/__init__.py +0 -0
- halib/exp/data/dataclass_util.py +41 -0
- halib/exp/data/dataset.py +208 -0
- halib/exp/data/torchloader.py +165 -0
- halib/exp/perf/__init__.py +0 -0
- halib/exp/perf/flop_calc.py +190 -0
- halib/exp/perf/gpu_mon.py +58 -0
- halib/exp/perf/perfcalc.py +470 -0
- halib/exp/perf/perfmetrics.py +137 -0
- halib/exp/perf/perftb.py +778 -0
- halib/exp/perf/profiler.py +507 -0
- halib/exp/viz/__init__.py +0 -0
- halib/exp/viz/plot.py +754 -0
- halib/filesys.py +117 -0
- halib/filetype/__init__.py +0 -0
- halib/filetype/csvfile.py +192 -0
- halib/filetype/ipynb.py +61 -0
- halib/filetype/jsonfile.py +19 -0
- halib/filetype/textfile.py +12 -0
- halib/filetype/videofile.py +266 -0
- halib/filetype/yamlfile.py +87 -0
- halib/gdrive.py +179 -0
- halib/gdrive_mkdir.py +41 -0
- halib/gdrive_test.py +37 -0
- halib/jsonfile.py +22 -0
- halib/listop.py +13 -0
- halib/online/__init__.py +0 -0
- halib/online/gdrive.py +229 -0
- halib/online/gdrive_mkdir.py +53 -0
- halib/online/gdrive_test.py +50 -0
- halib/online/projectmake.py +131 -0
- halib/online/tele_noti.py +165 -0
- halib/plot.py +301 -0
- halib/projectmake.py +115 -0
- halib/research/__init__.py +0 -0
- halib/research/base_config.py +100 -0
- halib/research/base_exp.py +157 -0
- halib/research/benchquery.py +131 -0
- halib/research/core/__init__.py +0 -0
- halib/research/core/base_config.py +144 -0
- halib/research/core/base_exp.py +157 -0
- halib/research/core/param_gen.py +108 -0
- halib/research/core/wandb_op.py +117 -0
- halib/research/data/__init__.py +0 -0
- halib/research/data/dataclass_util.py +41 -0
- halib/research/data/dataset.py +208 -0
- halib/research/data/torchloader.py +165 -0
- halib/research/dataset.py +208 -0
- halib/research/flop_csv.py +34 -0
- halib/research/flops.py +156 -0
- halib/research/metrics.py +137 -0
- halib/research/mics.py +74 -0
- halib/research/params_gen.py +108 -0
- halib/research/perf/__init__.py +0 -0
- halib/research/perf/flop_calc.py +190 -0
- halib/research/perf/gpu_mon.py +58 -0
- halib/research/perf/perfcalc.py +363 -0
- halib/research/perf/perfmetrics.py +137 -0
- halib/research/perf/perftb.py +778 -0
- halib/research/perf/profiler.py +301 -0
- halib/research/perfcalc.py +361 -0
- halib/research/perftb.py +780 -0
- halib/research/plot.py +758 -0
- halib/research/profiler.py +300 -0
- halib/research/torchloader.py +162 -0
- halib/research/viz/__init__.py +0 -0
- halib/research/viz/plot.py +754 -0
- halib/research/wandb_op.py +116 -0
- halib/rich_color.py +285 -0
- halib/sys/__init__.py +0 -0
- halib/sys/cmd.py +8 -0
- halib/sys/filesys.py +124 -0
- halib/system/__init__.py +0 -0
- halib/system/_list_pc.csv +6 -0
- halib/system/cmd.py +8 -0
- halib/system/filesys.py +164 -0
- halib/system/path.py +106 -0
- halib/tele_noti.py +166 -0
- halib/textfile.py +13 -0
- halib/torchloader.py +162 -0
- halib/utils/__init__.py +0 -0
- halib/utils/dataclass_util.py +40 -0
- halib/utils/dict.py +317 -0
- halib/utils/dict_op.py +9 -0
- halib/utils/gpu_mon.py +58 -0
- halib/utils/list.py +17 -0
- halib/utils/listop.py +13 -0
- halib/utils/slack.py +86 -0
- halib/utils/tele_noti.py +166 -0
- halib/utils/video.py +82 -0
- halib/videofile.py +139 -0
- halib-0.2.30.dist-info/METADATA +237 -0
- halib-0.2.30.dist-info/RECORD +110 -0
- halib-0.2.30.dist-info/WHEEL +5 -0
- halib-0.2.30.dist-info/licenses/LICENSE.txt +17 -0
- halib-0.2.30.dist-info/top_level.txt +1 -0
|
@@ -0,0 +1,301 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import time
|
|
3
|
+
import json
|
|
4
|
+
|
|
5
|
+
from pathlib import Path
|
|
6
|
+
from pprint import pprint
|
|
7
|
+
from threading import Lock
|
|
8
|
+
from loguru import logger
|
|
9
|
+
|
|
10
|
+
from plotly.subplots import make_subplots
|
|
11
|
+
import plotly.graph_objects as go
|
|
12
|
+
import plotly.express as px # for dynamic color scales
|
|
13
|
+
|
|
14
|
+
from ...common.common import ConsoleLog
|
|
15
|
+
|
|
16
|
+
|
|
17
|
+
class zProfiler:
|
|
18
|
+
"""A singleton profiler to measure execution time of contexts and steps.
|
|
19
|
+
|
|
20
|
+
Args:
|
|
21
|
+
interval_report (int): Frequency of periodic reports (0 to disable).
|
|
22
|
+
stop_to_view (bool): Pause execution to view reports if True (only in debug mode).
|
|
23
|
+
output_file (str): Path to save the profiling report.
|
|
24
|
+
report_format (str): Output format for reports ("json" or "csv").
|
|
25
|
+
|
|
26
|
+
Example:
|
|
27
|
+
prof = zProfiler()
|
|
28
|
+
prof.ctx_start("my_context")
|
|
29
|
+
prof.step_start("my_context", "step1")
|
|
30
|
+
time.sleep(0.1)
|
|
31
|
+
prof.step_end("my_context", "step1")
|
|
32
|
+
prof.ctx_end("my_context")
|
|
33
|
+
"""
|
|
34
|
+
|
|
35
|
+
_instance = None
|
|
36
|
+
_lock = Lock()
|
|
37
|
+
|
|
38
|
+
def __new__(cls, *args, **kwargs):
|
|
39
|
+
with cls._lock:
|
|
40
|
+
if cls._instance is None:
|
|
41
|
+
cls._instance = super().__new__(cls)
|
|
42
|
+
return cls._instance
|
|
43
|
+
|
|
44
|
+
def __init__(
|
|
45
|
+
self,
|
|
46
|
+
):
|
|
47
|
+
if not hasattr(self, "_initialized"):
|
|
48
|
+
self.time_dict = {}
|
|
49
|
+
self._initialized = True
|
|
50
|
+
|
|
51
|
+
def ctx_start(self, ctx_name="ctx_default"):
|
|
52
|
+
if not isinstance(ctx_name, str) or not ctx_name:
|
|
53
|
+
raise ValueError("ctx_name must be a non-empty string")
|
|
54
|
+
if ctx_name not in self.time_dict:
|
|
55
|
+
self.time_dict[ctx_name] = {
|
|
56
|
+
"start": time.perf_counter(),
|
|
57
|
+
"step_dict": {},
|
|
58
|
+
"report_count": 0,
|
|
59
|
+
}
|
|
60
|
+
self.time_dict[ctx_name]["report_count"] += 1
|
|
61
|
+
|
|
62
|
+
def ctx_end(self, ctx_name="ctx_default", report_func=None):
|
|
63
|
+
if ctx_name not in self.time_dict:
|
|
64
|
+
return
|
|
65
|
+
self.time_dict[ctx_name]["end"] = time.perf_counter()
|
|
66
|
+
self.time_dict[ctx_name]["duration"] = (
|
|
67
|
+
self.time_dict[ctx_name]["end"] - self.time_dict[ctx_name]["start"]
|
|
68
|
+
)
|
|
69
|
+
|
|
70
|
+
def step_start(self, ctx_name, step_name):
|
|
71
|
+
if not isinstance(step_name, str) or not step_name:
|
|
72
|
+
raise ValueError("step_name must be a non-empty string")
|
|
73
|
+
if ctx_name not in self.time_dict:
|
|
74
|
+
return
|
|
75
|
+
if step_name not in self.time_dict[ctx_name]["step_dict"]:
|
|
76
|
+
self.time_dict[ctx_name]["step_dict"][step_name] = []
|
|
77
|
+
self.time_dict[ctx_name]["step_dict"][step_name].append([time.perf_counter()])
|
|
78
|
+
|
|
79
|
+
def step_end(self, ctx_name, step_name):
|
|
80
|
+
if (
|
|
81
|
+
ctx_name not in self.time_dict
|
|
82
|
+
or step_name not in self.time_dict[ctx_name]["step_dict"]
|
|
83
|
+
):
|
|
84
|
+
return
|
|
85
|
+
self.time_dict[ctx_name]["step_dict"][step_name][-1].append(time.perf_counter())
|
|
86
|
+
|
|
87
|
+
def _step_dict_to_detail(self, ctx_step_dict):
|
|
88
|
+
"""
|
|
89
|
+
'ctx_step_dict': {
|
|
90
|
+
│ │ 'preprocess': [
|
|
91
|
+
│ │ │ [278090.947465806, 278090.960484853],
|
|
92
|
+
│ │ │ [278091.178424035, 278091.230944486],
|
|
93
|
+
│ │ 'infer': [
|
|
94
|
+
│ │ │ [278090.960490534, 278091.178424035],
|
|
95
|
+
│ │ │ [278091.230944486, 278091.251378469],
|
|
96
|
+
│ }
|
|
97
|
+
"""
|
|
98
|
+
assert (
|
|
99
|
+
len(ctx_step_dict.keys()) > 0
|
|
100
|
+
), "step_dict must have only one key (step_name) for detail."
|
|
101
|
+
normed_ctx_step_dict = {}
|
|
102
|
+
for step_name, time_list in ctx_step_dict.items():
|
|
103
|
+
if not isinstance(ctx_step_dict[step_name], list):
|
|
104
|
+
raise ValueError(f"Step data for {step_name} must be a list")
|
|
105
|
+
# step_name = list(ctx_step_dict.keys())[0] # ! debug
|
|
106
|
+
normed_time_ls = []
|
|
107
|
+
for idx, time_data in enumerate(time_list):
|
|
108
|
+
elapsed_time = -1
|
|
109
|
+
if len(time_data) == 2:
|
|
110
|
+
start, end = time_data[0], time_data[1]
|
|
111
|
+
elapsed_time = end - start
|
|
112
|
+
normed_time_ls.append((idx, elapsed_time)) # including step
|
|
113
|
+
normed_ctx_step_dict[step_name] = normed_time_ls
|
|
114
|
+
return normed_ctx_step_dict
|
|
115
|
+
|
|
116
|
+
def get_report_dict(self, with_detail=False):
|
|
117
|
+
report_dict = {}
|
|
118
|
+
for ctx_name, ctx_dict in self.time_dict.items():
|
|
119
|
+
report_dict[ctx_name] = {
|
|
120
|
+
"duration": ctx_dict.get("duration", 0.0),
|
|
121
|
+
"step_dict": {
|
|
122
|
+
"summary": {"avg_time": {}, "percent_time": {}},
|
|
123
|
+
"detail": {},
|
|
124
|
+
},
|
|
125
|
+
}
|
|
126
|
+
|
|
127
|
+
if with_detail:
|
|
128
|
+
report_dict[ctx_name]["step_dict"]["detail"] = (
|
|
129
|
+
self._step_dict_to_detail(ctx_dict["step_dict"])
|
|
130
|
+
)
|
|
131
|
+
avg_time_list = []
|
|
132
|
+
epsilon = 1e-5
|
|
133
|
+
for step_name, step_list in ctx_dict["step_dict"].items():
|
|
134
|
+
durations = []
|
|
135
|
+
try:
|
|
136
|
+
for time_data in step_list:
|
|
137
|
+
if len(time_data) != 2:
|
|
138
|
+
continue
|
|
139
|
+
start, end = time_data
|
|
140
|
+
durations.append(end - start)
|
|
141
|
+
except Exception as e:
|
|
142
|
+
logger.error(
|
|
143
|
+
f"Error processing step {step_name} in context {ctx_name}: {e}"
|
|
144
|
+
)
|
|
145
|
+
continue
|
|
146
|
+
if not durations:
|
|
147
|
+
continue
|
|
148
|
+
avg_time = sum(durations) / len(durations)
|
|
149
|
+
if avg_time < epsilon:
|
|
150
|
+
continue
|
|
151
|
+
avg_time_list.append((step_name, avg_time))
|
|
152
|
+
total_avg_time = (
|
|
153
|
+
sum(time for _, time in avg_time_list) or 1e-10
|
|
154
|
+
) # Avoid division by zero
|
|
155
|
+
for step_name, avg_time in avg_time_list:
|
|
156
|
+
report_dict[ctx_name]["step_dict"]["summary"]["percent_time"][
|
|
157
|
+
f"per_{step_name}"
|
|
158
|
+
] = (avg_time / total_avg_time) * 100.0
|
|
159
|
+
report_dict[ctx_name]["step_dict"]["summary"]["avg_time"][
|
|
160
|
+
f"avg_{step_name}"
|
|
161
|
+
] = avg_time
|
|
162
|
+
report_dict[ctx_name]["step_dict"]["summary"][
|
|
163
|
+
"total_avg_time"
|
|
164
|
+
] = total_avg_time
|
|
165
|
+
report_dict[ctx_name]["step_dict"]["summary"] = dict(
|
|
166
|
+
sorted(report_dict[ctx_name]["step_dict"]["summary"].items())
|
|
167
|
+
)
|
|
168
|
+
return report_dict
|
|
169
|
+
|
|
170
|
+
@classmethod
|
|
171
|
+
@classmethod
|
|
172
|
+
def plot_formatted_data(
|
|
173
|
+
cls, profiler_data, outdir=None, file_format="png", do_show=False, tag=""
|
|
174
|
+
):
|
|
175
|
+
"""
|
|
176
|
+
Plot each context in a separate figure with bar + pie charts.
|
|
177
|
+
Save each figure in the specified format (png or svg).
|
|
178
|
+
"""
|
|
179
|
+
|
|
180
|
+
if outdir is not None:
|
|
181
|
+
os.makedirs(outdir, exist_ok=True)
|
|
182
|
+
|
|
183
|
+
if file_format.lower() not in ["png", "svg"]:
|
|
184
|
+
raise ValueError("file_format must be 'png' or 'svg'")
|
|
185
|
+
|
|
186
|
+
results = {} # {context: fig}
|
|
187
|
+
|
|
188
|
+
for ctx, ctx_data in profiler_data.items():
|
|
189
|
+
summary = ctx_data["step_dict"]["summary"]
|
|
190
|
+
avg_times = summary["avg_time"]
|
|
191
|
+
percent_times = summary["percent_time"]
|
|
192
|
+
|
|
193
|
+
step_names = [s.replace("avg_", "") for s in avg_times.keys()]
|
|
194
|
+
# pprint(f'{step_names=}')
|
|
195
|
+
n_steps = len(step_names)
|
|
196
|
+
|
|
197
|
+
assert n_steps > 0, "No steps found for context: {}".format(ctx)
|
|
198
|
+
# Generate dynamic colors
|
|
199
|
+
colors = px.colors.sample_colorscale(
|
|
200
|
+
"Viridis", [i / (n_steps - 1) for i in range(n_steps)]
|
|
201
|
+
) if n_steps > 1 else [px.colors.sample_colorscale("Viridis", [0])[0]]
|
|
202
|
+
# pprint(f'{len(colors)} colors generated for {n_steps} steps')
|
|
203
|
+
color_map = dict(zip(step_names, colors))
|
|
204
|
+
|
|
205
|
+
# Create figure
|
|
206
|
+
fig = make_subplots(
|
|
207
|
+
rows=1,
|
|
208
|
+
cols=2,
|
|
209
|
+
subplot_titles=[f"Avg Time", f"% Time"],
|
|
210
|
+
specs=[[{"type": "bar"}, {"type": "pie"}]],
|
|
211
|
+
)
|
|
212
|
+
|
|
213
|
+
# Bar chart
|
|
214
|
+
fig.add_trace(
|
|
215
|
+
go.Bar(
|
|
216
|
+
x=step_names,
|
|
217
|
+
y=list(avg_times.values()),
|
|
218
|
+
text=[f"{v*1000:.2f} ms" for v in avg_times.values()],
|
|
219
|
+
textposition="outside",
|
|
220
|
+
marker=dict(color=[color_map[s] for s in step_names]),
|
|
221
|
+
name="", # unified legend
|
|
222
|
+
showlegend=False,
|
|
223
|
+
),
|
|
224
|
+
row=1,
|
|
225
|
+
col=1,
|
|
226
|
+
)
|
|
227
|
+
|
|
228
|
+
# Pie chart (colors match bar)
|
|
229
|
+
fig.add_trace(
|
|
230
|
+
go.Pie(
|
|
231
|
+
labels=step_names,
|
|
232
|
+
values=list(percent_times.values()),
|
|
233
|
+
marker=dict(colors=[color_map[s] for s in step_names]),
|
|
234
|
+
hole=0.4,
|
|
235
|
+
name="",
|
|
236
|
+
showlegend=True,
|
|
237
|
+
),
|
|
238
|
+
row=1,
|
|
239
|
+
col=2,
|
|
240
|
+
)
|
|
241
|
+
tag_str = tag if tag and len(tag) > 0 else ""
|
|
242
|
+
# Layout
|
|
243
|
+
fig.update_layout(
|
|
244
|
+
title_text=f"[{tag_str}] Context Profiler: {ctx}",
|
|
245
|
+
width=1000,
|
|
246
|
+
height=400,
|
|
247
|
+
showlegend=True,
|
|
248
|
+
legend=dict(title="Steps", x=1.05, y=0.5, traceorder="normal"),
|
|
249
|
+
hovermode="x unified",
|
|
250
|
+
)
|
|
251
|
+
|
|
252
|
+
fig.update_xaxes(title_text="Steps", row=1, col=1)
|
|
253
|
+
fig.update_yaxes(title_text="Avg Time (ms)", row=1, col=1)
|
|
254
|
+
|
|
255
|
+
# Show figure
|
|
256
|
+
if do_show:
|
|
257
|
+
fig.show()
|
|
258
|
+
|
|
259
|
+
# Save figure
|
|
260
|
+
if outdir is not None:
|
|
261
|
+
file_prefix = ctx if len(tag_str) == 0 else f"{tag_str}_{ctx}"
|
|
262
|
+
file_path = os.path.join(outdir, f"{file_prefix}_summary.{file_format.lower()}")
|
|
263
|
+
fig.write_image(file_path)
|
|
264
|
+
print(f"Saved figure: {file_path}")
|
|
265
|
+
|
|
266
|
+
results[ctx] = fig
|
|
267
|
+
|
|
268
|
+
return results
|
|
269
|
+
|
|
270
|
+
def report_and_plot(self, outdir=None, file_format="png", do_show=False, tag=""):
|
|
271
|
+
"""
|
|
272
|
+
Generate the profiling report and plot the formatted data.
|
|
273
|
+
|
|
274
|
+
Args:
|
|
275
|
+
outdir (str): Directory to save figures. If None, figures are only shown.
|
|
276
|
+
file_format (str): Target file format, "png" or "svg". Default is "png".
|
|
277
|
+
do_show (bool): Whether to display the plots. Default is False.
|
|
278
|
+
"""
|
|
279
|
+
report = self.get_report_dict()
|
|
280
|
+
self.get_report_dict(with_detail=False)
|
|
281
|
+
return self.plot_formatted_data(
|
|
282
|
+
report, outdir=outdir, file_format=file_format, do_show=do_show, tag=tag
|
|
283
|
+
)
|
|
284
|
+
def meta_info(self):
|
|
285
|
+
"""
|
|
286
|
+
Print the structure of the profiler's time dictionary.
|
|
287
|
+
Useful for debugging and understanding the profiler's internal state.
|
|
288
|
+
"""
|
|
289
|
+
for ctx_name, ctx_dict in self.time_dict.items():
|
|
290
|
+
with ConsoleLog(f"Context: {ctx_name}"):
|
|
291
|
+
step_names = list(ctx_dict['step_dict'].keys())
|
|
292
|
+
for step_name in step_names:
|
|
293
|
+
pprint(f"Step: {step_name}")
|
|
294
|
+
|
|
295
|
+
def save_report_dict(self, output_file, with_detail=False):
|
|
296
|
+
try:
|
|
297
|
+
report = self.get_report_dict(with_detail=with_detail)
|
|
298
|
+
with open(output_file, "w") as f:
|
|
299
|
+
json.dump(report, f, indent=4)
|
|
300
|
+
except Exception as e:
|
|
301
|
+
logger.error(f"Failed to save report to {output_file}: {e}")
|
|
@@ -0,0 +1,361 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import glob
|
|
3
|
+
from typing import Optional, Tuple
|
|
4
|
+
import pandas as pd
|
|
5
|
+
|
|
6
|
+
from abc import ABC, abstractmethod
|
|
7
|
+
from collections import OrderedDict
|
|
8
|
+
|
|
9
|
+
from ..system import filesys as fs
|
|
10
|
+
from ..common import now_str
|
|
11
|
+
from ..research.perftb import PerfTB
|
|
12
|
+
from ..research.metrics import *
|
|
13
|
+
|
|
14
|
+
|
|
15
|
+
REQUIRED_COLS = ["experiment", "dataset"]
|
|
16
|
+
CSV_FILE_POSTFIX = "__perf"
|
|
17
|
+
METRIC_PREFIX = "metric_"
|
|
18
|
+
|
|
19
|
+
|
|
20
|
+
class PerfCalc(ABC): # Abstract base class for performance calculation
|
|
21
|
+
@abstractmethod
|
|
22
|
+
def get_experiment_name(self) -> str:
|
|
23
|
+
"""
|
|
24
|
+
Return the name of the experiment.
|
|
25
|
+
This function should be overridden by the subclass if needed.
|
|
26
|
+
"""
|
|
27
|
+
pass
|
|
28
|
+
|
|
29
|
+
@abstractmethod
|
|
30
|
+
def get_dataset_name(self) -> str:
|
|
31
|
+
"""
|
|
32
|
+
Return the name of the dataset.
|
|
33
|
+
This function should be overridden by the subclass if needed.
|
|
34
|
+
"""
|
|
35
|
+
pass
|
|
36
|
+
|
|
37
|
+
@abstractmethod
|
|
38
|
+
def get_metric_backend(self) -> MetricsBackend:
|
|
39
|
+
"""
|
|
40
|
+
Return a list of metric names to be used for performance calculation OR a dictionaray with keys as metric names and values as metric instances of torchmetrics.Metric. For example: {"accuracy": Accuracy(), "precision": Precision()}
|
|
41
|
+
|
|
42
|
+
"""
|
|
43
|
+
pass
|
|
44
|
+
|
|
45
|
+
def valid_proc_extra_data(self, proc_extra_data):
|
|
46
|
+
# make sure that all items in proc_extra_data are dictionaries, with same keys
|
|
47
|
+
if proc_extra_data is None or len(proc_extra_data) == 0:
|
|
48
|
+
return
|
|
49
|
+
if not all(isinstance(item, dict) for item in proc_extra_data):
|
|
50
|
+
raise TypeError("All items in proc_extra_data must be dictionaries")
|
|
51
|
+
|
|
52
|
+
if not all(
|
|
53
|
+
item.keys() == proc_extra_data[0].keys() for item in proc_extra_data
|
|
54
|
+
):
|
|
55
|
+
raise ValueError(
|
|
56
|
+
"All dictionaries in proc_extra_data must have the same keys"
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
def valid_proc_metric_raw_data(self, metric_names, proc_metric_raw_data):
|
|
60
|
+
# make sure that all items in proc_metric_raw_data are dictionaries, with same keys as metric_names
|
|
61
|
+
assert (
|
|
62
|
+
isinstance(proc_metric_raw_data, list) and len(proc_metric_raw_data) > 0
|
|
63
|
+
), "raw_data_for_metrics must be a non-empty list of dictionaries"
|
|
64
|
+
|
|
65
|
+
# make sure that all items in proc_metric_raw_data are dictionaries with keys as metric_names
|
|
66
|
+
if not all(isinstance(item, dict) for item in proc_metric_raw_data):
|
|
67
|
+
raise TypeError("All items in raw_data_for_metrics must be dictionaries")
|
|
68
|
+
if not all(
|
|
69
|
+
set(item.keys()) == set(metric_names) for item in proc_metric_raw_data
|
|
70
|
+
):
|
|
71
|
+
raise ValueError(
|
|
72
|
+
"All dictionaries in raw_data_for_metrics must have the same keys as metric_names"
|
|
73
|
+
)
|
|
74
|
+
|
|
75
|
+
# ! only need to override this method if torchmetrics are not used
|
|
76
|
+
def calc_exp_perf_metrics(
|
|
77
|
+
self, metric_names, raw_metrics_data, extra_data=None, *args, **kwargs
|
|
78
|
+
):
|
|
79
|
+
assert isinstance(raw_metrics_data, dict) or isinstance(
|
|
80
|
+
raw_metrics_data, list
|
|
81
|
+
), "raw_data_for_metrics must be a dictionary or a list"
|
|
82
|
+
|
|
83
|
+
if extra_data is not None:
|
|
84
|
+
assert isinstance(
|
|
85
|
+
extra_data, type(raw_metrics_data)
|
|
86
|
+
), "extra_data must be of the same type as raw_data_for_metrics (dict or list)"
|
|
87
|
+
# prepare raw_metric data for processing
|
|
88
|
+
proc_metric_raw_data_ls = (
|
|
89
|
+
raw_metrics_data
|
|
90
|
+
if isinstance(raw_metrics_data, list)
|
|
91
|
+
else [raw_metrics_data.copy()]
|
|
92
|
+
)
|
|
93
|
+
self.valid_proc_metric_raw_data(metric_names, proc_metric_raw_data_ls)
|
|
94
|
+
# prepare extra data for processing
|
|
95
|
+
proc_extra_data_ls = []
|
|
96
|
+
if extra_data is not None:
|
|
97
|
+
proc_extra_data_ls = (
|
|
98
|
+
extra_data if isinstance(extra_data, list) else [extra_data.copy()]
|
|
99
|
+
)
|
|
100
|
+
assert len(proc_extra_data_ls) == len(
|
|
101
|
+
proc_metric_raw_data_ls
|
|
102
|
+
), "extra_data must have the same length as raw_data_for_metrics if it is a list"
|
|
103
|
+
# validate the extra_data
|
|
104
|
+
self.valid_proc_extra_data(proc_extra_data_ls)
|
|
105
|
+
|
|
106
|
+
# calculate the metrics output results
|
|
107
|
+
metrics_backend = self.get_metric_backend()
|
|
108
|
+
proc_outdict_list = []
|
|
109
|
+
for idx, raw_metrics_data in enumerate(proc_metric_raw_data_ls):
|
|
110
|
+
out_dict = {
|
|
111
|
+
"dataset": self.get_dataset_name(),
|
|
112
|
+
"experiment": self.get_experiment_name(),
|
|
113
|
+
}
|
|
114
|
+
custom_fields = []
|
|
115
|
+
if len(proc_extra_data_ls) > 0:
|
|
116
|
+
# add extra data to the output dictionary
|
|
117
|
+
extra_data_item = proc_extra_data_ls[idx]
|
|
118
|
+
out_dict.update(extra_data_item)
|
|
119
|
+
custom_fields = list(extra_data_item.keys())
|
|
120
|
+
metric_results = metrics_backend.calc_metrics(
|
|
121
|
+
metrics_data_dict=raw_metrics_data, *args, **kwargs
|
|
122
|
+
)
|
|
123
|
+
metric_results_prefix = {
|
|
124
|
+
f"metric_{k}": v for k, v in metric_results.items()
|
|
125
|
+
}
|
|
126
|
+
out_dict.update(metric_results_prefix)
|
|
127
|
+
ordered_cols = (
|
|
128
|
+
REQUIRED_COLS + custom_fields + list(metric_results_prefix.keys())
|
|
129
|
+
)
|
|
130
|
+
out_dict = OrderedDict(
|
|
131
|
+
(col, out_dict[col]) for col in ordered_cols if col in out_dict
|
|
132
|
+
)
|
|
133
|
+
proc_outdict_list.append(out_dict)
|
|
134
|
+
|
|
135
|
+
return proc_outdict_list
|
|
136
|
+
|
|
137
|
+
#! custom kwargs:
|
|
138
|
+
#! outfile - if provided, will save the output to a CSV file with the given path
|
|
139
|
+
#! outdir - if provided, will save the output to a CSV file in the given directory with a generated filename
|
|
140
|
+
#! return_df - if True, will return a DataFrame instead of a dictionary
|
|
141
|
+
def calc_perfs(
|
|
142
|
+
self,
|
|
143
|
+
raw_metrics_data: Union[List[dict], dict],
|
|
144
|
+
extra_data: Optional[Union[List[dict], dict]] = None,
|
|
145
|
+
*args,
|
|
146
|
+
**kwargs,
|
|
147
|
+
) -> Tuple[Union[List[OrderedDict], pd.DataFrame], Optional[str]]:
|
|
148
|
+
"""
|
|
149
|
+
Calculate the metrics.
|
|
150
|
+
This function should be overridden by the subclass if needed.
|
|
151
|
+
Must return a dictionary with keys as metric names and values as the calculated metrics.
|
|
152
|
+
"""
|
|
153
|
+
metric_names = self.get_metric_backend().metric_names
|
|
154
|
+
out_dict_list = self.calc_exp_perf_metrics(
|
|
155
|
+
metric_names=metric_names,
|
|
156
|
+
raw_metrics_data=raw_metrics_data,
|
|
157
|
+
extra_data=extra_data,
|
|
158
|
+
*args,
|
|
159
|
+
**kwargs,
|
|
160
|
+
)
|
|
161
|
+
csv_outfile = kwargs.get("outfile", None)
|
|
162
|
+
if csv_outfile is not None:
|
|
163
|
+
filePathNoExt, _ = os.path.splitext(csv_outfile)
|
|
164
|
+
# pprint(f"CSV Outfile Path (No Ext): {filePathNoExt}")
|
|
165
|
+
csv_outfile = f"{filePathNoExt}{CSV_FILE_POSTFIX}.csv"
|
|
166
|
+
elif "outdir" in kwargs:
|
|
167
|
+
csvoutdir = kwargs["outdir"]
|
|
168
|
+
csvfilename = f"{now_str()}_{self.get_dataset_name()}_{self.get_experiment_name()}_{CSV_FILE_POSTFIX}.csv"
|
|
169
|
+
csv_outfile = os.path.join(csvoutdir, csvfilename)
|
|
170
|
+
|
|
171
|
+
# convert out_dict to a DataFrame
|
|
172
|
+
df = pd.DataFrame(out_dict_list)
|
|
173
|
+
# get the orders of the columns as the orders or the keys in out_dict
|
|
174
|
+
ordered_cols = list(out_dict_list[0].keys())
|
|
175
|
+
df = df[ordered_cols] # reorder columns
|
|
176
|
+
if csv_outfile:
|
|
177
|
+
df.to_csv(csv_outfile, index=False, sep=";", encoding="utf-8")
|
|
178
|
+
return_df = kwargs.get("return_df", False)
|
|
179
|
+
if return_df: # return DataFrame instead of dict if requested
|
|
180
|
+
return df, csv_outfile
|
|
181
|
+
else:
|
|
182
|
+
return out_dict_list, csv_outfile
|
|
183
|
+
|
|
184
|
+
@staticmethod
|
|
185
|
+
def default_exp_csv_filter_fn(exp_file_name: str) -> bool:
|
|
186
|
+
"""
|
|
187
|
+
Default filter function for experiments.
|
|
188
|
+
Returns True if the experiment name does not start with "test_" or "debug_".
|
|
189
|
+
"""
|
|
190
|
+
return "__perf.csv" in exp_file_name
|
|
191
|
+
|
|
192
|
+
@classmethod
|
|
193
|
+
def get_perftb_for_multi_exps(
|
|
194
|
+
cls,
|
|
195
|
+
indir: str,
|
|
196
|
+
exp_csv_filter_fn=default_exp_csv_filter_fn,
|
|
197
|
+
include_file_name=False,
|
|
198
|
+
csv_sep=";",
|
|
199
|
+
) -> PerfTB:
|
|
200
|
+
"""
|
|
201
|
+
Generate a performance report by scanning experiment subdirectories.
|
|
202
|
+
Must return a dictionary with keys as metric names and values as performance tables.
|
|
203
|
+
"""
|
|
204
|
+
|
|
205
|
+
def get_df_for_all_exp_perf(csv_perf_files, csv_sep=";"):
|
|
206
|
+
"""
|
|
207
|
+
Create a single DataFrame from all CSV files.
|
|
208
|
+
Assumes all CSV files MAY have different metrics
|
|
209
|
+
"""
|
|
210
|
+
cols = []
|
|
211
|
+
FILE_NAME_COL = "file_name" if include_file_name else None
|
|
212
|
+
|
|
213
|
+
for csv_file in csv_perf_files:
|
|
214
|
+
temp_df = pd.read_csv(csv_file, sep=csv_sep)
|
|
215
|
+
if FILE_NAME_COL:
|
|
216
|
+
temp_df[FILE_NAME_COL] = fs.get_file_name(
|
|
217
|
+
csv_file, split_file_ext=False
|
|
218
|
+
)
|
|
219
|
+
# csvfile.fn_display_df(temp_df)
|
|
220
|
+
temp_df_cols = temp_df.columns.tolist()
|
|
221
|
+
for col in temp_df_cols:
|
|
222
|
+
if col not in cols:
|
|
223
|
+
cols.append(col)
|
|
224
|
+
|
|
225
|
+
df = pd.DataFrame(columns=cols)
|
|
226
|
+
for csv_file in csv_perf_files:
|
|
227
|
+
temp_df = pd.read_csv(csv_file, sep=csv_sep)
|
|
228
|
+
if FILE_NAME_COL:
|
|
229
|
+
temp_df[FILE_NAME_COL] = fs.get_file_name(
|
|
230
|
+
csv_file, split_file_ext=False
|
|
231
|
+
)
|
|
232
|
+
# Drop all-NA columns to avoid dtype inconsistency
|
|
233
|
+
temp_df = temp_df.dropna(axis=1, how="all")
|
|
234
|
+
# ensure all columns are present in the final DataFrame
|
|
235
|
+
for col in cols:
|
|
236
|
+
if col not in temp_df.columns:
|
|
237
|
+
temp_df[col] = None # fill missing columns with None
|
|
238
|
+
df = pd.concat([df, temp_df], ignore_index=True)
|
|
239
|
+
# assert that REQUIRED_COLS are present in the DataFrame
|
|
240
|
+
# pprint(df.columns.tolist())
|
|
241
|
+
sticky_cols = REQUIRED_COLS + (
|
|
242
|
+
[FILE_NAME_COL] if include_file_name else []
|
|
243
|
+
) # columns that must always be present
|
|
244
|
+
for col in sticky_cols:
|
|
245
|
+
if col not in df.columns:
|
|
246
|
+
raise ValueError(
|
|
247
|
+
f"Required column '{col}' is missing from the DataFrame. REQUIRED_COLS = {sticky_cols}"
|
|
248
|
+
)
|
|
249
|
+
metric_cols = [col for col in df.columns if col.startswith(METRIC_PREFIX)]
|
|
250
|
+
assert (
|
|
251
|
+
len(metric_cols) > 0
|
|
252
|
+
), "No metric columns found in the DataFrame. Ensure that the CSV files contain metric columns starting with 'metric_'."
|
|
253
|
+
final_cols = sticky_cols + metric_cols
|
|
254
|
+
df = df[final_cols]
|
|
255
|
+
# # !hahv debug
|
|
256
|
+
# pprint("------ Final DataFrame Columns ------")
|
|
257
|
+
# csvfile.fn_display_df(df)
|
|
258
|
+
# ! validate all rows in df before returning
|
|
259
|
+
# make sure all rows will have at least values for REQUIRED_COLS and at least one metric column
|
|
260
|
+
for index, row in df.iterrows():
|
|
261
|
+
if not all(col in row and pd.notna(row[col]) for col in sticky_cols):
|
|
262
|
+
raise ValueError(
|
|
263
|
+
f"Row {index} is missing required columns or has NaN values in required columns: {row}"
|
|
264
|
+
)
|
|
265
|
+
if not any(pd.notna(row[col]) for col in metric_cols):
|
|
266
|
+
raise ValueError(f"Row {index} has no metric values: {row}")
|
|
267
|
+
# make sure these is no (experiment, dataset) pair that is duplicated
|
|
268
|
+
duplicates = df.duplicated(subset=sticky_cols, keep=False)
|
|
269
|
+
if duplicates.any():
|
|
270
|
+
raise ValueError(
|
|
271
|
+
"Duplicate (experiment, dataset) pairs found in the DataFrame. Please ensure that each experiment-dataset combination is unique."
|
|
272
|
+
)
|
|
273
|
+
return df
|
|
274
|
+
|
|
275
|
+
def mk_perftb_report(df):
|
|
276
|
+
"""
|
|
277
|
+
Create a performance report table from the DataFrame.
|
|
278
|
+
This function should be customized based on the specific requirements of the report.
|
|
279
|
+
"""
|
|
280
|
+
perftb = PerfTB()
|
|
281
|
+
# find all "dataset" values (unique)
|
|
282
|
+
dataset_names = list(df["dataset"].unique())
|
|
283
|
+
# find all columns that start with METRIC_PREFIX
|
|
284
|
+
metric_cols = [col for col in df.columns if col.startswith(METRIC_PREFIX)]
|
|
285
|
+
|
|
286
|
+
# Determine which metrics are associated with each dataset.
|
|
287
|
+
# Since a dataset may appear in multiple rows and may not include all metrics in each, identify the row with the same dataset that contains the most non-NaN metric values. The set of metrics for that dataset is defined by the non-NaN metrics in that row.
|
|
288
|
+
|
|
289
|
+
dataset_metrics = {}
|
|
290
|
+
for dataset_name in dataset_names:
|
|
291
|
+
dataset_rows = df[df["dataset"] == dataset_name]
|
|
292
|
+
# Find the row with the most non-NaN metric values
|
|
293
|
+
max_non_nan_row = dataset_rows[metric_cols].count(axis=1).idxmax()
|
|
294
|
+
metrics_for_dataset = (
|
|
295
|
+
dataset_rows.loc[max_non_nan_row, metric_cols]
|
|
296
|
+
.dropna()
|
|
297
|
+
.index.tolist()
|
|
298
|
+
)
|
|
299
|
+
dataset_metrics[dataset_name] = metrics_for_dataset
|
|
300
|
+
|
|
301
|
+
for dataset_name, metrics in dataset_metrics.items():
|
|
302
|
+
# Create a new row for the performance table
|
|
303
|
+
perftb.add_dataset(dataset_name, metrics)
|
|
304
|
+
|
|
305
|
+
for _, row in df.iterrows():
|
|
306
|
+
dataset_name = row["dataset"]
|
|
307
|
+
ds_metrics = dataset_metrics.get(dataset_name)
|
|
308
|
+
if dataset_name in dataset_metrics:
|
|
309
|
+
# Add the metrics for this row to the performance table
|
|
310
|
+
exp_name = row.get("experiment")
|
|
311
|
+
exp_metric_values = {}
|
|
312
|
+
for metric in ds_metrics:
|
|
313
|
+
if metric in row and pd.notna(row[metric]):
|
|
314
|
+
exp_metric_values[metric] = row[metric]
|
|
315
|
+
perftb.add_experiment(
|
|
316
|
+
experiment_name=exp_name,
|
|
317
|
+
dataset_name=dataset_name,
|
|
318
|
+
metrics=exp_metric_values,
|
|
319
|
+
)
|
|
320
|
+
|
|
321
|
+
return perftb
|
|
322
|
+
|
|
323
|
+
assert os.path.exists(indir), f"Input directory {indir} does not exist."
|
|
324
|
+
|
|
325
|
+
csv_perf_files = []
|
|
326
|
+
# Find experiment subdirectories
|
|
327
|
+
exp_dirs = [
|
|
328
|
+
os.path.join(indir, d)
|
|
329
|
+
for d in os.listdir(indir)
|
|
330
|
+
if os.path.isdir(os.path.join(indir, d))
|
|
331
|
+
]
|
|
332
|
+
if len(exp_dirs) == 0:
|
|
333
|
+
csv_perf_files = glob.glob(os.path.join(indir, f"*.csv"))
|
|
334
|
+
csv_perf_files = [
|
|
335
|
+
file_item
|
|
336
|
+
for file_item in csv_perf_files
|
|
337
|
+
if exp_csv_filter_fn(file_item)
|
|
338
|
+
]
|
|
339
|
+
else:
|
|
340
|
+
# multiple experiment directories found
|
|
341
|
+
# Collect all matching CSV files in those subdirs
|
|
342
|
+
for exp_dir in exp_dirs:
|
|
343
|
+
# pprint(f"Searching in experiment directory: {exp_dir}")
|
|
344
|
+
matched = glob.glob(os.path.join(exp_dir, f"*.csv"))
|
|
345
|
+
matched = [
|
|
346
|
+
file_item for file_item in matched if exp_csv_filter_fn(file_item)
|
|
347
|
+
]
|
|
348
|
+
csv_perf_files.extend(matched)
|
|
349
|
+
|
|
350
|
+
assert (
|
|
351
|
+
len(csv_perf_files) > 0
|
|
352
|
+
), f"No CSV files matching pattern '{exp_csv_filter_fn}' found in the experiment directories."
|
|
353
|
+
|
|
354
|
+
assert (
|
|
355
|
+
len(csv_perf_files) > 0
|
|
356
|
+
), f"No CSV files matching pattern '{exp_csv_filter_fn}' found in the experiment directories."
|
|
357
|
+
|
|
358
|
+
all_exp_perf_df = get_df_for_all_exp_perf(csv_perf_files, csv_sep=csv_sep)
|
|
359
|
+
# csvfile.fn_display_df(all_exp_perf_df)
|
|
360
|
+
perf_tb = mk_perftb_report(all_exp_perf_df)
|
|
361
|
+
return perf_tb
|