halib 0.2.2__py3-none-any.whl → 0.2.4__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- halib/exp/__init__.py +0 -0
- halib/exp/core/__init__.py +0 -0
- halib/exp/core/base_config.py +144 -0
- halib/exp/core/base_exp.py +157 -0
- halib/exp/core/param_gen.py +108 -0
- halib/exp/core/wandb_op.py +117 -0
- halib/exp/data/__init__.py +0 -0
- halib/exp/data/dataclass_util.py +41 -0
- halib/exp/data/dataset.py +208 -0
- halib/exp/data/torchloader.py +165 -0
- halib/exp/perf/__init__.py +0 -0
- halib/exp/perf/flop_calc.py +190 -0
- halib/exp/perf/gpu_mon.py +58 -0
- halib/exp/perf/perfcalc.py +363 -0
- halib/exp/perf/perfmetrics.py +137 -0
- halib/exp/perf/perftb.py +778 -0
- halib/exp/perf/profiler.py +301 -0
- halib/exp/viz/__init__.py +0 -0
- halib/exp/viz/plot.py +754 -0
- {halib-0.2.2.dist-info → halib-0.2.4.dist-info}/METADATA +4 -4
- {halib-0.2.2.dist-info → halib-0.2.4.dist-info}/RECORD +24 -5
- {halib-0.2.2.dist-info → halib-0.2.4.dist-info}/WHEEL +0 -0
- {halib-0.2.2.dist-info → halib-0.2.4.dist-info}/licenses/LICENSE.txt +0 -0
- {halib-0.2.2.dist-info → halib-0.2.4.dist-info}/top_level.txt +0 -0
halib/exp/__init__.py
ADDED
|
File without changes
|
|
File without changes
|
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from rich.pretty import pprint
|
|
3
|
+
from abc import ABC, abstractmethod
|
|
4
|
+
from typing import List, Optional, TypeVar, Generic
|
|
5
|
+
|
|
6
|
+
from abc import ABC, abstractmethod
|
|
7
|
+
from dataclasses import dataclass
|
|
8
|
+
from dataclass_wizard import YAMLWizard
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class NamedCfg(ABC):
|
|
12
|
+
"""
|
|
13
|
+
Base class for named configurations.
|
|
14
|
+
All configurations should have a name.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
@abstractmethod
|
|
18
|
+
def get_name(self):
|
|
19
|
+
"""
|
|
20
|
+
Get the name of the configuration.
|
|
21
|
+
This method should be implemented in subclasses.
|
|
22
|
+
"""
|
|
23
|
+
pass
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class AutoNamedCfg(YAMLWizard, NamedCfg):
|
|
28
|
+
"""
|
|
29
|
+
Mixin that automatically implements get_name() by returning self.name.
|
|
30
|
+
Classes using this MUST have a 'name' field.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
name: Optional[str] = None
|
|
34
|
+
|
|
35
|
+
def get_name(self):
|
|
36
|
+
return self.name
|
|
37
|
+
|
|
38
|
+
def __post_init__(self):
|
|
39
|
+
# Enforce the "MUST" rule here
|
|
40
|
+
if self.name is None:
|
|
41
|
+
# We allow None during initial load, but it must be set before usage
|
|
42
|
+
# or handled by the loader.
|
|
43
|
+
pass
|
|
44
|
+
|
|
45
|
+
T = TypeVar("T", bound=AutoNamedCfg)
|
|
46
|
+
|
|
47
|
+
class BaseSelectorCfg(Generic[T]):
|
|
48
|
+
"""
|
|
49
|
+
Base class to handle the logic of selecting an item from a list by name.
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
def _resolve_selection(self, items: List[T], selected_name: str, context: str) -> T:
|
|
53
|
+
if selected_name is None:
|
|
54
|
+
raise ValueError(f"No {context} selected in the configuration.")
|
|
55
|
+
|
|
56
|
+
# Create a lookup dict for O(1) access, or just iterate if list is short
|
|
57
|
+
for item in items:
|
|
58
|
+
if item.name == selected_name:
|
|
59
|
+
return item
|
|
60
|
+
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"{context.capitalize()} '{selected_name}' not found in the configuration list."
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
class ExpBaseCfg(ABC, YAMLWizard):
|
|
67
|
+
"""
|
|
68
|
+
Base class for configuration objects.
|
|
69
|
+
What a cfg class must have:
|
|
70
|
+
1 - a dataset cfg
|
|
71
|
+
2 - a metric cfg
|
|
72
|
+
3 - a method cfg
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
# Save to yaml fil
|
|
76
|
+
def save_to_outdir(
|
|
77
|
+
self, filename: str = "__config.yaml", outdir=None, override: bool = False
|
|
78
|
+
) -> None:
|
|
79
|
+
"""
|
|
80
|
+
Save the configuration to the output directory.
|
|
81
|
+
"""
|
|
82
|
+
if outdir is not None:
|
|
83
|
+
output_dir = outdir
|
|
84
|
+
else:
|
|
85
|
+
output_dir = self.get_outdir()
|
|
86
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
87
|
+
assert (output_dir is not None) and (
|
|
88
|
+
os.path.isdir(output_dir)
|
|
89
|
+
), f"Output directory '{output_dir}' does not exist or is not a directory."
|
|
90
|
+
file_path = os.path.join(output_dir, filename)
|
|
91
|
+
if os.path.exists(file_path) and not override:
|
|
92
|
+
pprint(
|
|
93
|
+
f"File '{file_path}' already exists. Use 'override=True' to overwrite."
|
|
94
|
+
)
|
|
95
|
+
else:
|
|
96
|
+
# method of YAMLWizard to_yaml_file
|
|
97
|
+
self.to_yaml_file(file_path)
|
|
98
|
+
|
|
99
|
+
@classmethod
|
|
100
|
+
@abstractmethod
|
|
101
|
+
# load from a custom YAML file
|
|
102
|
+
def from_custom_yaml_file(cls, yaml_file: str):
|
|
103
|
+
"""Load a configuration from a custom YAML file."""
|
|
104
|
+
pass
|
|
105
|
+
|
|
106
|
+
@abstractmethod
|
|
107
|
+
def get_cfg_name(self):
|
|
108
|
+
"""
|
|
109
|
+
Get the name of the configuration.
|
|
110
|
+
This method should be implemented in subclasses.
|
|
111
|
+
"""
|
|
112
|
+
pass
|
|
113
|
+
|
|
114
|
+
@abstractmethod
|
|
115
|
+
def get_outdir(self):
|
|
116
|
+
"""
|
|
117
|
+
Get the output directory for the configuration.
|
|
118
|
+
This method should be implemented in subclasses.
|
|
119
|
+
"""
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
@abstractmethod
|
|
123
|
+
def get_general_cfg(self):
|
|
124
|
+
"""
|
|
125
|
+
Get the general configuration like output directory, log settings, SEED, etc.
|
|
126
|
+
This method should be implemented in subclasses.
|
|
127
|
+
"""
|
|
128
|
+
pass
|
|
129
|
+
|
|
130
|
+
@abstractmethod
|
|
131
|
+
def get_dataset_cfg(self) -> NamedCfg:
|
|
132
|
+
"""
|
|
133
|
+
Get the dataset configuration.
|
|
134
|
+
This method should be implemented in subclasses.
|
|
135
|
+
"""
|
|
136
|
+
pass
|
|
137
|
+
|
|
138
|
+
@abstractmethod
|
|
139
|
+
def get_metric_cfg(self) -> NamedCfg:
|
|
140
|
+
"""
|
|
141
|
+
Get the metric configuration.
|
|
142
|
+
This method should be implemented in subclasses.
|
|
143
|
+
"""
|
|
144
|
+
pass
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Tuple, Any, Optional
|
|
3
|
+
from base_config import ExpBaseCfg
|
|
4
|
+
from ..perf.perfcalc import PerfCalc
|
|
5
|
+
from ..perf.perfmetrics import MetricsBackend
|
|
6
|
+
|
|
7
|
+
# ! SEE https://github.com/hahv/base_exp for sample usage
|
|
8
|
+
class BaseExp(PerfCalc, ABC):
|
|
9
|
+
"""
|
|
10
|
+
Base class for experiments.
|
|
11
|
+
Orchestrates the experiment pipeline using a pluggable metrics backend.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
def __init__(self, config: ExpBaseCfg):
|
|
15
|
+
self.config = config
|
|
16
|
+
self.metric_backend = None
|
|
17
|
+
# Flag to track if init_general/prepare_dataset has run
|
|
18
|
+
self._is_env_ready = False
|
|
19
|
+
|
|
20
|
+
# -----------------------
|
|
21
|
+
# PerfCalc Required Methods
|
|
22
|
+
# -----------------------
|
|
23
|
+
def get_dataset_name(self):
|
|
24
|
+
return self.config.get_dataset_cfg().get_name()
|
|
25
|
+
|
|
26
|
+
def get_experiment_name(self):
|
|
27
|
+
return self.config.get_cfg_name()
|
|
28
|
+
|
|
29
|
+
def get_metric_backend(self):
|
|
30
|
+
if not self.metric_backend:
|
|
31
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
32
|
+
return self.metric_backend
|
|
33
|
+
|
|
34
|
+
# -----------------------
|
|
35
|
+
# Abstract Experiment Steps
|
|
36
|
+
# -----------------------
|
|
37
|
+
@abstractmethod
|
|
38
|
+
def init_general(self, general_cfg):
|
|
39
|
+
"""Setup general settings like SEED, logging, env variables."""
|
|
40
|
+
pass
|
|
41
|
+
|
|
42
|
+
@abstractmethod
|
|
43
|
+
def prepare_dataset(self, dataset_cfg):
|
|
44
|
+
"""Load/prepare dataset."""
|
|
45
|
+
pass
|
|
46
|
+
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def prepare_metrics(self, metric_cfg) -> MetricsBackend:
|
|
49
|
+
"""
|
|
50
|
+
Prepare the metrics for the experiment.
|
|
51
|
+
This method should be implemented in subclasses.
|
|
52
|
+
"""
|
|
53
|
+
pass
|
|
54
|
+
|
|
55
|
+
@abstractmethod
|
|
56
|
+
def before_exec_exp_once(self, *args, **kwargs):
|
|
57
|
+
"""Optional: any setup before exec_exp. Note this is called once per run_exp."""
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def exec_exp(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
62
|
+
"""Run experiment process, e.g.: training/evaluation loop.
|
|
63
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
64
|
+
"""
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def exec_eval(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
69
|
+
"""Run evaluation process.
|
|
70
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
71
|
+
"""
|
|
72
|
+
pass
|
|
73
|
+
|
|
74
|
+
# -----------------------
|
|
75
|
+
# Internal Helpers
|
|
76
|
+
# -----------------------
|
|
77
|
+
def _validate_and_unpack(self, results):
|
|
78
|
+
if results is None:
|
|
79
|
+
return None
|
|
80
|
+
if not isinstance(results, (tuple, list)) or len(results) != 2:
|
|
81
|
+
raise ValueError("exec must return (metrics_data, extra_data)")
|
|
82
|
+
return results[0], results[1]
|
|
83
|
+
|
|
84
|
+
def _prepare_environment(self, force_reload: bool = False):
|
|
85
|
+
"""
|
|
86
|
+
Common setup. Skips if already initialized, unless force_reload is True.
|
|
87
|
+
"""
|
|
88
|
+
if self._is_env_ready and not force_reload:
|
|
89
|
+
# Environment is already prepared, skipping setup.
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
# 1. Run Setup
|
|
93
|
+
self.init_general(self.config.get_general_cfg())
|
|
94
|
+
self.prepare_dataset(self.config.get_dataset_cfg())
|
|
95
|
+
|
|
96
|
+
# 2. Update metric backend (refresh if needed)
|
|
97
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
98
|
+
|
|
99
|
+
# 3. Mark as ready
|
|
100
|
+
self._is_env_ready = True
|
|
101
|
+
|
|
102
|
+
# -----------------------
|
|
103
|
+
# Main Experiment Runner
|
|
104
|
+
# -----------------------
|
|
105
|
+
def run_exp(self, should_calc_metrics=True, reload_env=False, *args, **kwargs):
|
|
106
|
+
"""
|
|
107
|
+
Run the whole experiment pipeline.
|
|
108
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
109
|
+
:param should_calc_metrics: Whether to calculate and save metrics after execution.
|
|
110
|
+
:kwargs Params:
|
|
111
|
+
+ 'outfile' to save csv file results,
|
|
112
|
+
+ 'outdir' to set output directory for experiment results.
|
|
113
|
+
+ 'return_df' to return a DataFrame of results instead of a dictionary.
|
|
114
|
+
|
|
115
|
+
Full pipeline:
|
|
116
|
+
1. Init
|
|
117
|
+
2. Prepare Environment (General + Dataset + Metrics)
|
|
118
|
+
3. Save Config
|
|
119
|
+
4. Execute
|
|
120
|
+
5. Calculate & Save Metrics
|
|
121
|
+
"""
|
|
122
|
+
self._prepare_environment(force_reload=reload_env)
|
|
123
|
+
|
|
124
|
+
# Any pre-exec setup (loading models, etc)
|
|
125
|
+
self.before_exec_exp_once(*args, **kwargs)
|
|
126
|
+
# Save config before running
|
|
127
|
+
self.config.save_to_outdir()
|
|
128
|
+
|
|
129
|
+
# Execute experiment
|
|
130
|
+
results = self.exec_exp(*args, **kwargs)
|
|
131
|
+
|
|
132
|
+
if should_calc_metrics and results is not None:
|
|
133
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
134
|
+
# Calculate & Save metrics
|
|
135
|
+
perf_results = self.calc_perfs(
|
|
136
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
137
|
+
)
|
|
138
|
+
return perf_results
|
|
139
|
+
else:
|
|
140
|
+
return results
|
|
141
|
+
|
|
142
|
+
# -----------------------
|
|
143
|
+
# Main Experiment Evaluator
|
|
144
|
+
# -----------------------
|
|
145
|
+
def eval_exp(self, reload_env=False, *args, **kwargs):
|
|
146
|
+
"""
|
|
147
|
+
Run evaluation only.
|
|
148
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
149
|
+
"""
|
|
150
|
+
self._prepare_environment(force_reload=reload_env)
|
|
151
|
+
results = self.exec_eval(*args, **kwargs)
|
|
152
|
+
if results is not None:
|
|
153
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
154
|
+
return self.calc_perfs(
|
|
155
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
156
|
+
)
|
|
157
|
+
return None
|
|
@@ -0,0 +1,108 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import yaml
|
|
3
|
+
import numpy as np
|
|
4
|
+
from typing import Dict, Any, List
|
|
5
|
+
|
|
6
|
+
from ...common.common import *
|
|
7
|
+
from ...filetype import yamlfile
|
|
8
|
+
|
|
9
|
+
class ParamGen:
|
|
10
|
+
@staticmethod
|
|
11
|
+
def build_from_file(params_file):
|
|
12
|
+
builder = ParamGen(params_file)
|
|
13
|
+
return builder.params
|
|
14
|
+
|
|
15
|
+
def __init__(self, params_file=None):
|
|
16
|
+
self.params = {}
|
|
17
|
+
assert os.path.isfile(params_file), f"params_file not found: {params_file}"
|
|
18
|
+
self.params = self._build(params_file)
|
|
19
|
+
|
|
20
|
+
def _expand_param(self, param_name: str, config: Dict[str, Any]) -> List[Any]:
|
|
21
|
+
"""
|
|
22
|
+
Validates and expands the values for a single parameter configuration.
|
|
23
|
+
|
|
24
|
+
Args:
|
|
25
|
+
param_name: The name of the parameter being processed.
|
|
26
|
+
config: The configuration dictionary for this parameter.
|
|
27
|
+
|
|
28
|
+
Returns:
|
|
29
|
+
A list of the expanded values for the parameter.
|
|
30
|
+
|
|
31
|
+
Raises:
|
|
32
|
+
TypeError: If the configuration or its values have an incorrect type.
|
|
33
|
+
ValueError: If the configuration is missing keys or has an invalid structure.
|
|
34
|
+
"""
|
|
35
|
+
# 1. Validate the configuration structure
|
|
36
|
+
if not isinstance(config, dict):
|
|
37
|
+
raise TypeError(f"Config for '{param_name}' must be a dictionary.")
|
|
38
|
+
|
|
39
|
+
if "type" not in config or "values" not in config:
|
|
40
|
+
raise ValueError(
|
|
41
|
+
f"Config for '{param_name}' must contain 'type' and 'values' keys."
|
|
42
|
+
)
|
|
43
|
+
|
|
44
|
+
gen_type = config["type"]
|
|
45
|
+
values = config["values"]
|
|
46
|
+
|
|
47
|
+
# 2. Handle the generation based on type
|
|
48
|
+
if gen_type == "list":
|
|
49
|
+
# Ensure values are returned as a list, even if a single item was provided
|
|
50
|
+
return values if isinstance(values, list) else [values]
|
|
51
|
+
|
|
52
|
+
elif gen_type == "range":
|
|
53
|
+
if not isinstance(values, list) or len(values) != 3:
|
|
54
|
+
raise ValueError(
|
|
55
|
+
f"For 'range' type on '{param_name}', 'values' must be a list of 3 numbers "
|
|
56
|
+
f"[start, end, step], but got: {values}"
|
|
57
|
+
)
|
|
58
|
+
|
|
59
|
+
start, end, step = values
|
|
60
|
+
if all(isinstance(v, int) for v in values):
|
|
61
|
+
return list(range(start, end, step))
|
|
62
|
+
elif all(isinstance(v, (int, float)) for v in values):
|
|
63
|
+
# Use numpy for floating point ranges
|
|
64
|
+
temp_list = list(np.arange(start, end, step))
|
|
65
|
+
# convert to float (not np.float)
|
|
66
|
+
return [float(v) for v in temp_list]
|
|
67
|
+
else:
|
|
68
|
+
raise TypeError(
|
|
69
|
+
f"All 'values' for 'range' on '{param_name}' must be numbers."
|
|
70
|
+
)
|
|
71
|
+
|
|
72
|
+
else:
|
|
73
|
+
raise ValueError(
|
|
74
|
+
f"Invalid 'type' for '{param_name}': '{gen_type}'. Must be 'list' or 'range'."
|
|
75
|
+
)
|
|
76
|
+
|
|
77
|
+
def _build(self, params_file):
|
|
78
|
+
"""
|
|
79
|
+
Builds a full optimization configuration by expanding parameter values based on their type.
|
|
80
|
+
|
|
81
|
+
This function processes a dictionary where each key is a parameter name and each value
|
|
82
|
+
is a config dict specifying the 'type' ('list' or 'range') and 'values' for generation.
|
|
83
|
+
|
|
84
|
+
Args:
|
|
85
|
+
opt_cfg: The input configuration dictionary.
|
|
86
|
+
Example:
|
|
87
|
+
{
|
|
88
|
+
"learning_rate": {"type": "range", "values": [0.01, 0.1, 0.01]},
|
|
89
|
+
"optimizer": {"type": "list", "values": ["adam", "sgd"]},
|
|
90
|
+
"epochs": {"type": "list", "values": 100}
|
|
91
|
+
}
|
|
92
|
+
|
|
93
|
+
Returns:
|
|
94
|
+
A dictionary with parameter names mapped to their fully expanded list of values.
|
|
95
|
+
"""
|
|
96
|
+
cfg_raw_dict = yamlfile.load_yaml(params_file, to_dict=True)
|
|
97
|
+
if not isinstance(cfg_raw_dict, dict):
|
|
98
|
+
raise TypeError("The entire opt_cfg must be a dictionary.")
|
|
99
|
+
|
|
100
|
+
# Use a dictionary comprehension for a clean and efficient build
|
|
101
|
+
return {
|
|
102
|
+
param_name: self._expand_param(param_name, config)
|
|
103
|
+
for param_name, config in cfg_raw_dict.items()
|
|
104
|
+
}
|
|
105
|
+
|
|
106
|
+
def save(self, outfile):
|
|
107
|
+
with open(outfile, "w") as f:
|
|
108
|
+
yaml.dump(self.params, f)
|
|
@@ -0,0 +1,117 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import glob
|
|
3
|
+
import wandb
|
|
4
|
+
import argparse
|
|
5
|
+
import subprocess
|
|
6
|
+
|
|
7
|
+
from tqdm import tqdm
|
|
8
|
+
from rich.console import Console
|
|
9
|
+
|
|
10
|
+
console = Console()
|
|
11
|
+
|
|
12
|
+
def sync_runs(outdir):
|
|
13
|
+
outdir = os.path.abspath(outdir)
|
|
14
|
+
assert os.path.exists(outdir), f"Output directory {outdir} does not exist."
|
|
15
|
+
sub_dirs = [name for name in os.listdir(outdir) if os.path.isdir(os.path.join(outdir, name))]
|
|
16
|
+
assert len(sub_dirs) > 0, f"No subdirectories found in {outdir}."
|
|
17
|
+
console.rule("Parent Directory")
|
|
18
|
+
console.print(f"[yellow]{outdir}[/yellow]")
|
|
19
|
+
|
|
20
|
+
exp_dirs = [os.path.join(outdir, sub_dir) for sub_dir in sub_dirs]
|
|
21
|
+
wandb_dirs = []
|
|
22
|
+
for exp_dir in exp_dirs:
|
|
23
|
+
wandb_dirs.extend(glob.glob(f"{exp_dir}/wandb/*run-*"))
|
|
24
|
+
if len(wandb_dirs) == 0:
|
|
25
|
+
console.print(f"No wandb runs found in {outdir}.")
|
|
26
|
+
return
|
|
27
|
+
else:
|
|
28
|
+
console.print(f"Found [bold]{len(wandb_dirs)}[/bold] wandb runs in {outdir}.")
|
|
29
|
+
for i, wandb_dir in enumerate(wandb_dirs):
|
|
30
|
+
console.rule(f"Syncing wandb run {i + 1}/{len(wandb_dirs)}")
|
|
31
|
+
console.print(f"Syncing: {wandb_dir}")
|
|
32
|
+
process = subprocess.Popen(
|
|
33
|
+
["wandb", "sync", wandb_dir],
|
|
34
|
+
stdout=subprocess.PIPE,
|
|
35
|
+
stderr=subprocess.STDOUT,
|
|
36
|
+
text=True,
|
|
37
|
+
)
|
|
38
|
+
|
|
39
|
+
for line in process.stdout:
|
|
40
|
+
console.print(line.strip())
|
|
41
|
+
if " ERROR Error while calling W&B API" in line:
|
|
42
|
+
break
|
|
43
|
+
process.stdout.close()
|
|
44
|
+
process.wait()
|
|
45
|
+
if process.returncode != 0:
|
|
46
|
+
console.print(f"[red]Error syncing {wandb_dir}. Return code: {process.returncode}[/red]")
|
|
47
|
+
else:
|
|
48
|
+
console.print(f"Successfully synced {wandb_dir}.")
|
|
49
|
+
|
|
50
|
+
def delete_runs(project, pattern=None):
|
|
51
|
+
console.rule("Delete W&B Runs")
|
|
52
|
+
confirm_msg = f"Are you sure you want to delete all runs in"
|
|
53
|
+
confirm_msg += f" \n\tproject: [red]{project}[/red]"
|
|
54
|
+
if pattern:
|
|
55
|
+
confirm_msg += f"\n\tpattern: [blue]{pattern}[/blue]"
|
|
56
|
+
|
|
57
|
+
console.print(confirm_msg)
|
|
58
|
+
confirmation = input(f"This action cannot be undone. [y/N]: ").strip().lower()
|
|
59
|
+
if confirmation != "y":
|
|
60
|
+
print("Cancelled.")
|
|
61
|
+
return
|
|
62
|
+
|
|
63
|
+
print("Confirmed. Proceeding...")
|
|
64
|
+
api = wandb.Api()
|
|
65
|
+
runs = api.runs(project)
|
|
66
|
+
|
|
67
|
+
deleted = 0
|
|
68
|
+
console.rule("Deleting W&B Runs")
|
|
69
|
+
if len(runs) == 0:
|
|
70
|
+
print("No runs found in the project.")
|
|
71
|
+
return
|
|
72
|
+
for run in tqdm(runs):
|
|
73
|
+
if pattern is None or pattern in run.name:
|
|
74
|
+
run.delete()
|
|
75
|
+
console.print(f"Deleted run: [red]{run.name}[/red]")
|
|
76
|
+
deleted += 1
|
|
77
|
+
|
|
78
|
+
console.print(f"Total runs deleted: {deleted}")
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def valid_argument(args):
|
|
82
|
+
if args.op == "sync":
|
|
83
|
+
assert os.path.exists(args.outdir), f"Output directory {args.outdir} does not exist."
|
|
84
|
+
elif args.op == "delete":
|
|
85
|
+
assert isinstance(args.project, str) and len(args.project.strip()) > 0, "Project name must be a non-empty string."
|
|
86
|
+
else:
|
|
87
|
+
raise ValueError(f"Unknown operation: {args.op}")
|
|
88
|
+
|
|
89
|
+
def parse_args():
|
|
90
|
+
parser = argparse.ArgumentParser(description="Operations on W&B runs")
|
|
91
|
+
parser.add_argument("-op", "--op", type=str, help="Operation to perform", default="sync", choices=["delete", "sync"])
|
|
92
|
+
parser.add_argument("-prj", "--project", type=str, default="fire-paper2-2025", help="W&B project name")
|
|
93
|
+
parser.add_argument("-outdir", "--outdir", type=str, help="arg1 description", default="./zout/train")
|
|
94
|
+
parser.add_argument("-pt", "--pattern",
|
|
95
|
+
type=str,
|
|
96
|
+
default=None,
|
|
97
|
+
help="Run name pattern to match for deletion",
|
|
98
|
+
)
|
|
99
|
+
|
|
100
|
+
return parser.parse_args()
|
|
101
|
+
|
|
102
|
+
|
|
103
|
+
def main():
|
|
104
|
+
args = parse_args()
|
|
105
|
+
# Validate arguments, stop if invalid
|
|
106
|
+
valid_argument(args)
|
|
107
|
+
|
|
108
|
+
op = args.op
|
|
109
|
+
if op == "sync":
|
|
110
|
+
sync_runs(args.outdir)
|
|
111
|
+
elif op == "delete":
|
|
112
|
+
delete_runs(args.project, args.pattern)
|
|
113
|
+
else:
|
|
114
|
+
raise ValueError(f"Unknown operation: {op}")
|
|
115
|
+
|
|
116
|
+
if __name__ == "__main__":
|
|
117
|
+
main()
|
|
File without changes
|
|
@@ -0,0 +1,41 @@
|
|
|
1
|
+
import yaml
|
|
2
|
+
from typing import Any
|
|
3
|
+
|
|
4
|
+
from rich.pretty import pprint
|
|
5
|
+
from dataclasses import make_dataclass
|
|
6
|
+
|
|
7
|
+
from ...filetype import yamlfile
|
|
8
|
+
|
|
9
|
+
def dict_to_dataclass(name: str, data: dict):
|
|
10
|
+
fields = []
|
|
11
|
+
values = {}
|
|
12
|
+
|
|
13
|
+
for key, value in data.items():
|
|
14
|
+
if isinstance(value, dict):
|
|
15
|
+
sub_dc = dict_to_dataclass(key.capitalize(), value)
|
|
16
|
+
fields.append((key, type(sub_dc)))
|
|
17
|
+
values[key] = sub_dc
|
|
18
|
+
else:
|
|
19
|
+
field_type = type(value) if value is not None else Any
|
|
20
|
+
fields.append((key, field_type))
|
|
21
|
+
values[key] = value
|
|
22
|
+
|
|
23
|
+
DC = make_dataclass(name.capitalize(), fields)
|
|
24
|
+
return DC(**values)
|
|
25
|
+
|
|
26
|
+
def yaml_to_dataclass(name: str, yaml_str: str):
|
|
27
|
+
data = yaml.safe_load(yaml_str)
|
|
28
|
+
return dict_to_dataclass(name, data)
|
|
29
|
+
|
|
30
|
+
|
|
31
|
+
def yamlfile_to_dataclass(name: str, file_path: str):
|
|
32
|
+
data_dict = yamlfile.load_yaml(file_path, to_dict=True)
|
|
33
|
+
if "__base__" in data_dict:
|
|
34
|
+
del data_dict["__base__"]
|
|
35
|
+
return dict_to_dataclass(name, data_dict)
|
|
36
|
+
|
|
37
|
+
if __name__ == "__main__":
|
|
38
|
+
cfg = yamlfile_to_dataclass("Config", "test/dataclass_util_test_cfg.yaml")
|
|
39
|
+
|
|
40
|
+
# ! NOTICE: after print out this dataclass, we can copy the output and paste it into CHATGPT to generate a list of needed dataclass classes using `from dataclass_wizard import YAMLWizard`
|
|
41
|
+
pprint(cfg)
|