halib 0.1.99__py3-none-any.whl → 0.2.2__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- halib/__init__.py +3 -3
- halib/common/__init__.py +0 -0
- halib/common/common.py +178 -0
- halib/common/rich_color.py +285 -0
- halib/filetype/csvfile.py +3 -9
- halib/filetype/ipynb.py +3 -5
- halib/filetype/jsonfile.py +0 -3
- halib/filetype/textfile.py +0 -1
- halib/filetype/videofile.py +91 -2
- halib/filetype/yamlfile.py +3 -3
- halib/online/projectmake.py +7 -6
- halib/online/tele_noti.py +165 -0
- halib/research/base_exp.py +75 -18
- halib/research/core/__init__.py +0 -0
- halib/research/core/base_config.py +144 -0
- halib/research/core/base_exp.py +157 -0
- halib/research/core/param_gen.py +108 -0
- halib/research/core/wandb_op.py +117 -0
- halib/research/data/__init__.py +0 -0
- halib/research/data/dataclass_util.py +41 -0
- halib/research/data/dataset.py +208 -0
- halib/research/data/torchloader.py +165 -0
- halib/research/dataset.py +1 -1
- halib/research/metrics.py +4 -0
- halib/research/mics.py +8 -2
- halib/research/perf/__init__.py +0 -0
- halib/research/perf/flop_calc.py +190 -0
- halib/research/perf/gpu_mon.py +58 -0
- halib/research/perf/perfcalc.py +363 -0
- halib/research/perf/perfmetrics.py +137 -0
- halib/research/perf/perftb.py +778 -0
- halib/research/perf/profiler.py +301 -0
- halib/research/perfcalc.py +57 -32
- halib/research/viz/__init__.py +0 -0
- halib/research/viz/plot.py +754 -0
- halib/system/filesys.py +60 -20
- halib/system/path.py +73 -0
- halib/utils/dict.py +9 -0
- halib/utils/list.py +12 -0
- {halib-0.1.99.dist-info → halib-0.2.2.dist-info}/METADATA +7 -1
- halib-0.2.2.dist-info/RECORD +89 -0
- halib-0.1.99.dist-info/RECORD +0 -64
- {halib-0.1.99.dist-info → halib-0.2.2.dist-info}/WHEEL +0 -0
- {halib-0.1.99.dist-info → halib-0.2.2.dist-info}/licenses/LICENSE.txt +0 -0
- {halib-0.1.99.dist-info → halib-0.2.2.dist-info}/top_level.txt +0 -0
|
@@ -0,0 +1,165 @@
|
|
|
1
|
+
# Watch a log file and send a telegram message when train reaches a certain epoch or end
|
|
2
|
+
|
|
3
|
+
import os
|
|
4
|
+
import yaml
|
|
5
|
+
import asyncio
|
|
6
|
+
import telegram
|
|
7
|
+
import pandas as pd
|
|
8
|
+
|
|
9
|
+
from rich.pretty import pprint
|
|
10
|
+
from rich.console import Console
|
|
11
|
+
import plotly.graph_objects as go
|
|
12
|
+
|
|
13
|
+
from ..system import filesys as fs
|
|
14
|
+
from ..filetype import textfile, csvfile
|
|
15
|
+
|
|
16
|
+
from argparse import ArgumentParser
|
|
17
|
+
|
|
18
|
+
tele_console = Console()
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def parse_args():
|
|
22
|
+
parser = ArgumentParser(description="desc text")
|
|
23
|
+
parser.add_argument(
|
|
24
|
+
"-cfg",
|
|
25
|
+
"--cfg",
|
|
26
|
+
type=str,
|
|
27
|
+
help="yaml file for tele",
|
|
28
|
+
default=r"E:\Dev\__halib\halib\online\tele_noti_cfg.yaml",
|
|
29
|
+
)
|
|
30
|
+
|
|
31
|
+
return parser.parse_args()
|
|
32
|
+
|
|
33
|
+
def get_watcher_message_df(target_file, num_last_lines):
|
|
34
|
+
file_ext = fs.get_file_name(target_file, split_file_ext=True)[1]
|
|
35
|
+
supported_ext = [".txt", ".log", ".csv"]
|
|
36
|
+
assert (
|
|
37
|
+
file_ext in supported_ext
|
|
38
|
+
), f"File extension {file_ext} not supported. Supported extensions are {supported_ext}"
|
|
39
|
+
last_lines_df = None
|
|
40
|
+
if file_ext in [".txt", ".log"]:
|
|
41
|
+
lines = textfile.read_line_by_line(target_file)
|
|
42
|
+
if num_last_lines > len(lines):
|
|
43
|
+
num_last_lines = len(lines)
|
|
44
|
+
last_line_arr = lines[-num_last_lines:]
|
|
45
|
+
# add a line start with word "epoch"
|
|
46
|
+
epoch_info_list = "Epoch: n/a"
|
|
47
|
+
for line in reversed(lines):
|
|
48
|
+
if "epoch" in line.lower():
|
|
49
|
+
epoch_info_list = line
|
|
50
|
+
break
|
|
51
|
+
last_line_arr.insert(0, epoch_info_list) # insert at the beginning
|
|
52
|
+
dfCreator = csvfile.DFCreator()
|
|
53
|
+
dfCreator.create_table("last_lines", ["line"])
|
|
54
|
+
last_line_arr = [[line] for line in last_line_arr]
|
|
55
|
+
dfCreator.insert_rows("last_lines", last_line_arr)
|
|
56
|
+
dfCreator.fill_table_from_row_pool("last_lines")
|
|
57
|
+
last_lines_df = dfCreator["last_lines"].copy()
|
|
58
|
+
else:
|
|
59
|
+
df = pd.read_csv(target_file)
|
|
60
|
+
num_rows = len(df)
|
|
61
|
+
if num_last_lines > num_rows:
|
|
62
|
+
num_last_lines = num_rows
|
|
63
|
+
last_lines_df = df.tail(num_last_lines)
|
|
64
|
+
return last_lines_df
|
|
65
|
+
|
|
66
|
+
|
|
67
|
+
def df2img(df: pd.DataFrame, output_img_dir, decimal_places, out_img_scale):
|
|
68
|
+
df = df.round(decimal_places)
|
|
69
|
+
fig = go.Figure(
|
|
70
|
+
data=[
|
|
71
|
+
go.Table(
|
|
72
|
+
header=dict(values=list(df.columns), align="center"),
|
|
73
|
+
cells=dict(
|
|
74
|
+
values=df.values.transpose(),
|
|
75
|
+
fill_color=[["white", "lightgrey"] * df.shape[0]],
|
|
76
|
+
align="center",
|
|
77
|
+
),
|
|
78
|
+
)
|
|
79
|
+
]
|
|
80
|
+
)
|
|
81
|
+
if not os.path.exists(output_img_dir):
|
|
82
|
+
os.makedirs(output_img_dir)
|
|
83
|
+
img_path = os.path.normpath(os.path.join(output_img_dir, "last_lines.png"))
|
|
84
|
+
fig.write_image(img_path, scale=out_img_scale)
|
|
85
|
+
return img_path
|
|
86
|
+
|
|
87
|
+
|
|
88
|
+
def compose_message_and_img_path(
|
|
89
|
+
target_file, project, num_last_lines, decimal_places, out_img_scale, output_img_dir
|
|
90
|
+
):
|
|
91
|
+
context_msg = f">> Project: {project} \n>> File: {target_file} \n>> Last {num_last_lines} lines:"
|
|
92
|
+
msg_df = get_watcher_message_df(target_file, num_last_lines)
|
|
93
|
+
try:
|
|
94
|
+
img_path = df2img(msg_df, output_img_dir, decimal_places, out_img_scale)
|
|
95
|
+
except Exception as e:
|
|
96
|
+
pprint(f"Error: {e}")
|
|
97
|
+
img_path = None
|
|
98
|
+
return context_msg, img_path
|
|
99
|
+
|
|
100
|
+
|
|
101
|
+
async def send_to_telegram(cfg_dict, interval_in_sec):
|
|
102
|
+
# pprint(cfg_dict)
|
|
103
|
+
token = cfg_dict["telegram"]["token"]
|
|
104
|
+
chat_id = cfg_dict["telegram"]["chat_id"]
|
|
105
|
+
|
|
106
|
+
noti_settings = cfg_dict["noti_settings"]
|
|
107
|
+
project = noti_settings["project"]
|
|
108
|
+
target_file = noti_settings["target_file"]
|
|
109
|
+
num_last_lines = noti_settings["num_last_lines"]
|
|
110
|
+
output_img_dir = noti_settings["output_img_dir"]
|
|
111
|
+
decimal_places = noti_settings["decimal_places"]
|
|
112
|
+
out_img_scale = noti_settings["out_img_scale"]
|
|
113
|
+
|
|
114
|
+
bot = telegram.Bot(token=token)
|
|
115
|
+
async with bot:
|
|
116
|
+
try:
|
|
117
|
+
context_msg, img_path = compose_message_and_img_path(
|
|
118
|
+
target_file,
|
|
119
|
+
project,
|
|
120
|
+
num_last_lines,
|
|
121
|
+
decimal_places,
|
|
122
|
+
out_img_scale,
|
|
123
|
+
output_img_dir,
|
|
124
|
+
)
|
|
125
|
+
time_now = next_time = pd.Timestamp.now().strftime("%Y-%m-%d %H:%M:%S")
|
|
126
|
+
sep_line = "-" * 50
|
|
127
|
+
context_msg = f"{sep_line}\n>> Time: {time_now}\n{context_msg}"
|
|
128
|
+
# calculate the next time to send message
|
|
129
|
+
next_time = pd.Timestamp.now() + pd.Timedelta(seconds=interval_in_sec)
|
|
130
|
+
next_time = next_time.strftime("%Y-%m-%d %H:%M:%S")
|
|
131
|
+
next_time_info = f"Next msg: {next_time}"
|
|
132
|
+
tele_console.rule()
|
|
133
|
+
tele_console.print("[green] Send message to telegram [/green]")
|
|
134
|
+
tele_console.print(
|
|
135
|
+
f"[red] Next message will be sent at <{next_time}> [/red]"
|
|
136
|
+
)
|
|
137
|
+
await bot.send_message(text=context_msg, chat_id=chat_id)
|
|
138
|
+
if img_path:
|
|
139
|
+
await bot.send_photo(chat_id=chat_id, photo=open(img_path, "rb"))
|
|
140
|
+
await bot.send_message(text=next_time_info, chat_id=chat_id)
|
|
141
|
+
except Exception as e:
|
|
142
|
+
pprint(f"Error: {e}")
|
|
143
|
+
pprint("Message not sent to telegram")
|
|
144
|
+
|
|
145
|
+
|
|
146
|
+
async def run_forever(cfg_path):
|
|
147
|
+
cfg_dict = yaml.safe_load(open(cfg_path, "r"))
|
|
148
|
+
noti_settings = cfg_dict["noti_settings"]
|
|
149
|
+
interval_in_min = noti_settings["interval_in_min"]
|
|
150
|
+
interval_in_sec = int(interval_in_min * 60)
|
|
151
|
+
pprint(
|
|
152
|
+
f"Message will be sent every {interval_in_min} minutes or {interval_in_sec} seconds"
|
|
153
|
+
)
|
|
154
|
+
while True:
|
|
155
|
+
await send_to_telegram(cfg_dict, interval_in_sec)
|
|
156
|
+
await asyncio.sleep(interval_in_sec)
|
|
157
|
+
|
|
158
|
+
|
|
159
|
+
async def main():
|
|
160
|
+
args = parse_args()
|
|
161
|
+
await run_forever(args.cfg)
|
|
162
|
+
|
|
163
|
+
|
|
164
|
+
if __name__ == "__main__":
|
|
165
|
+
asyncio.run(main())
|
halib/research/base_exp.py
CHANGED
|
@@ -1,5 +1,5 @@
|
|
|
1
1
|
from abc import ABC, abstractmethod
|
|
2
|
-
|
|
2
|
+
from typing import Tuple, Any, Optional
|
|
3
3
|
from ..research.base_config import ExpBaseConfig
|
|
4
4
|
from ..research.perfcalc import PerfCalc
|
|
5
5
|
from ..research.metrics import MetricsBackend
|
|
@@ -14,6 +14,8 @@ class BaseExperiment(PerfCalc, ABC):
|
|
|
14
14
|
def __init__(self, config: ExpBaseConfig):
|
|
15
15
|
self.config = config
|
|
16
16
|
self.metric_backend = None
|
|
17
|
+
# Flag to track if init_general/prepare_dataset has run
|
|
18
|
+
self._is_env_ready = False
|
|
17
19
|
|
|
18
20
|
# -----------------------
|
|
19
21
|
# PerfCalc Required Methods
|
|
@@ -51,50 +53,105 @@ class BaseExperiment(PerfCalc, ABC):
|
|
|
51
53
|
pass
|
|
52
54
|
|
|
53
55
|
@abstractmethod
|
|
54
|
-
def
|
|
56
|
+
def before_exec_exp_once(self, *args, **kwargs):
|
|
57
|
+
"""Optional: any setup before exec_exp. Note this is called once per run_exp."""
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def exec_exp(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
55
62
|
"""Run experiment process, e.g.: training/evaluation loop.
|
|
56
|
-
Return: raw_metrics_data,
|
|
63
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
57
64
|
"""
|
|
58
65
|
pass
|
|
59
66
|
|
|
60
|
-
|
|
61
|
-
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def exec_eval(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
69
|
+
"""Run evaluation process.
|
|
70
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
71
|
+
"""
|
|
62
72
|
pass
|
|
63
73
|
|
|
74
|
+
# -----------------------
|
|
75
|
+
# Internal Helpers
|
|
76
|
+
# -----------------------
|
|
77
|
+
def _validate_and_unpack(self, results):
|
|
78
|
+
if results is None:
|
|
79
|
+
return None
|
|
80
|
+
if not isinstance(results, (tuple, list)) or len(results) != 2:
|
|
81
|
+
raise ValueError("exec must return (metrics_data, extra_data)")
|
|
82
|
+
return results[0], results[1]
|
|
83
|
+
|
|
84
|
+
def _prepare_environment(self, force_reload: bool = False):
|
|
85
|
+
"""
|
|
86
|
+
Common setup. Skips if already initialized, unless force_reload is True.
|
|
87
|
+
"""
|
|
88
|
+
if self._is_env_ready and not force_reload:
|
|
89
|
+
# Environment is already prepared, skipping setup.
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
# 1. Run Setup
|
|
93
|
+
self.init_general(self.config.get_general_cfg())
|
|
94
|
+
self.prepare_dataset(self.config.get_dataset_cfg())
|
|
95
|
+
|
|
96
|
+
# 2. Update metric backend (refresh if needed)
|
|
97
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
98
|
+
|
|
99
|
+
# 3. Mark as ready
|
|
100
|
+
self._is_env_ready = True
|
|
101
|
+
|
|
64
102
|
# -----------------------
|
|
65
103
|
# Main Experiment Runner
|
|
66
104
|
# -----------------------
|
|
67
|
-
def run_exp(self,
|
|
105
|
+
def run_exp(self, should_calc_metrics=True, reload_env=False, *args, **kwargs):
|
|
68
106
|
"""
|
|
69
107
|
Run the whole experiment pipeline.
|
|
70
|
-
|
|
108
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
109
|
+
:param should_calc_metrics: Whether to calculate and save metrics after execution.
|
|
110
|
+
:kwargs Params:
|
|
71
111
|
+ 'outfile' to save csv file results,
|
|
72
112
|
+ 'outdir' to set output directory for experiment results.
|
|
73
113
|
+ 'return_df' to return a DataFrame of results instead of a dictionary.
|
|
74
114
|
|
|
75
115
|
Full pipeline:
|
|
76
116
|
1. Init
|
|
77
|
-
2. Dataset
|
|
78
|
-
3.
|
|
79
|
-
4.
|
|
80
|
-
5.
|
|
81
|
-
6. Calculate & Save Metrics
|
|
117
|
+
2. Prepare Environment (General + Dataset + Metrics)
|
|
118
|
+
3. Save Config
|
|
119
|
+
4. Execute
|
|
120
|
+
5. Calculate & Save Metrics
|
|
82
121
|
"""
|
|
83
|
-
self.
|
|
84
|
-
self.prepare_dataset(self.config.get_dataset_cfg())
|
|
85
|
-
self.prepare_metrics(self.config.get_metric_cfg())
|
|
122
|
+
self._prepare_environment(force_reload=reload_env)
|
|
86
123
|
|
|
124
|
+
# Any pre-exec setup (loading models, etc)
|
|
125
|
+
self.before_exec_exp_once(*args, **kwargs)
|
|
87
126
|
# Save config before running
|
|
88
127
|
self.config.save_to_outdir()
|
|
89
128
|
|
|
90
129
|
# Execute experiment
|
|
91
130
|
results = self.exec_exp(*args, **kwargs)
|
|
92
|
-
|
|
93
|
-
|
|
131
|
+
|
|
132
|
+
if should_calc_metrics and results is not None:
|
|
133
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
94
134
|
# Calculate & Save metrics
|
|
95
|
-
perf_results = self.
|
|
135
|
+
perf_results = self.calc_perfs(
|
|
96
136
|
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
97
137
|
)
|
|
98
138
|
return perf_results
|
|
99
139
|
else:
|
|
100
140
|
return results
|
|
141
|
+
|
|
142
|
+
# -----------------------
|
|
143
|
+
# Main Experiment Evaluator
|
|
144
|
+
# -----------------------
|
|
145
|
+
def eval_exp(self, reload_env=False, *args, **kwargs):
|
|
146
|
+
"""
|
|
147
|
+
Run evaluation only.
|
|
148
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
149
|
+
"""
|
|
150
|
+
self._prepare_environment(force_reload=reload_env)
|
|
151
|
+
results = self.exec_eval(*args, **kwargs)
|
|
152
|
+
if results is not None:
|
|
153
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
154
|
+
return self.calc_perfs(
|
|
155
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
156
|
+
)
|
|
157
|
+
return None
|
|
File without changes
|
|
@@ -0,0 +1,144 @@
|
|
|
1
|
+
import os
|
|
2
|
+
from rich.pretty import pprint
|
|
3
|
+
from abc import ABC, abstractmethod
|
|
4
|
+
from typing import List, Optional, TypeVar, Generic
|
|
5
|
+
|
|
6
|
+
from abc import ABC, abstractmethod
|
|
7
|
+
from dataclasses import dataclass
|
|
8
|
+
from dataclass_wizard import YAMLWizard
|
|
9
|
+
|
|
10
|
+
|
|
11
|
+
class NamedConfig(ABC):
|
|
12
|
+
"""
|
|
13
|
+
Base class for named configurations.
|
|
14
|
+
All configurations should have a name.
|
|
15
|
+
"""
|
|
16
|
+
|
|
17
|
+
@abstractmethod
|
|
18
|
+
def get_name(self):
|
|
19
|
+
"""
|
|
20
|
+
Get the name of the configuration.
|
|
21
|
+
This method should be implemented in subclasses.
|
|
22
|
+
"""
|
|
23
|
+
pass
|
|
24
|
+
|
|
25
|
+
|
|
26
|
+
@dataclass
|
|
27
|
+
class AutoNamedConfig(YAMLWizard, NamedConfig):
|
|
28
|
+
"""
|
|
29
|
+
Mixin that automatically implements get_name() by returning self.name.
|
|
30
|
+
Classes using this MUST have a 'name' field.
|
|
31
|
+
"""
|
|
32
|
+
|
|
33
|
+
name: Optional[str] = None
|
|
34
|
+
|
|
35
|
+
def get_name(self):
|
|
36
|
+
return self.name
|
|
37
|
+
|
|
38
|
+
def __post_init__(self):
|
|
39
|
+
# Enforce the "MUST" rule here
|
|
40
|
+
if self.name is None:
|
|
41
|
+
# We allow None during initial load, but it must be set before usage
|
|
42
|
+
# or handled by the loader.
|
|
43
|
+
pass
|
|
44
|
+
|
|
45
|
+
T = TypeVar("T", bound=AutoNamedConfig)
|
|
46
|
+
|
|
47
|
+
class BaseSelectorConfig(Generic[T]):
|
|
48
|
+
"""
|
|
49
|
+
Base class to handle the logic of selecting an item from a list by name.
|
|
50
|
+
"""
|
|
51
|
+
|
|
52
|
+
def _resolve_selection(self, items: List[T], selected_name: str, context: str) -> T:
|
|
53
|
+
if selected_name is None:
|
|
54
|
+
raise ValueError(f"No {context} selected in the configuration.")
|
|
55
|
+
|
|
56
|
+
# Create a lookup dict for O(1) access, or just iterate if list is short
|
|
57
|
+
for item in items:
|
|
58
|
+
if item.name == selected_name:
|
|
59
|
+
return item
|
|
60
|
+
|
|
61
|
+
raise ValueError(
|
|
62
|
+
f"{context.capitalize()} '{selected_name}' not found in the configuration list."
|
|
63
|
+
)
|
|
64
|
+
|
|
65
|
+
|
|
66
|
+
class ExpBaseConfig(ABC, YAMLWizard):
|
|
67
|
+
"""
|
|
68
|
+
Base class for configuration objects.
|
|
69
|
+
What a cfg class must have:
|
|
70
|
+
1 - a dataset cfg
|
|
71
|
+
2 - a metric cfg
|
|
72
|
+
3 - a method cfg
|
|
73
|
+
"""
|
|
74
|
+
|
|
75
|
+
# Save to yaml fil
|
|
76
|
+
def save_to_outdir(
|
|
77
|
+
self, filename: str = "__config.yaml", outdir=None, override: bool = False
|
|
78
|
+
) -> None:
|
|
79
|
+
"""
|
|
80
|
+
Save the configuration to the output directory.
|
|
81
|
+
"""
|
|
82
|
+
if outdir is not None:
|
|
83
|
+
output_dir = outdir
|
|
84
|
+
else:
|
|
85
|
+
output_dir = self.get_outdir()
|
|
86
|
+
os.makedirs(output_dir, exist_ok=True)
|
|
87
|
+
assert (output_dir is not None) and (
|
|
88
|
+
os.path.isdir(output_dir)
|
|
89
|
+
), f"Output directory '{output_dir}' does not exist or is not a directory."
|
|
90
|
+
file_path = os.path.join(output_dir, filename)
|
|
91
|
+
if os.path.exists(file_path) and not override:
|
|
92
|
+
pprint(
|
|
93
|
+
f"File '{file_path}' already exists. Use 'override=True' to overwrite."
|
|
94
|
+
)
|
|
95
|
+
else:
|
|
96
|
+
# method of YAMLWizard to_yaml_file
|
|
97
|
+
self.to_yaml_file(file_path)
|
|
98
|
+
|
|
99
|
+
@classmethod
|
|
100
|
+
@abstractmethod
|
|
101
|
+
# load from a custom YAML file
|
|
102
|
+
def from_custom_yaml_file(cls, yaml_file: str):
|
|
103
|
+
"""Load a configuration from a custom YAML file."""
|
|
104
|
+
pass
|
|
105
|
+
|
|
106
|
+
@abstractmethod
|
|
107
|
+
def get_cfg_name(self):
|
|
108
|
+
"""
|
|
109
|
+
Get the name of the configuration.
|
|
110
|
+
This method should be implemented in subclasses.
|
|
111
|
+
"""
|
|
112
|
+
pass
|
|
113
|
+
|
|
114
|
+
@abstractmethod
|
|
115
|
+
def get_outdir(self):
|
|
116
|
+
"""
|
|
117
|
+
Get the output directory for the configuration.
|
|
118
|
+
This method should be implemented in subclasses.
|
|
119
|
+
"""
|
|
120
|
+
return None
|
|
121
|
+
|
|
122
|
+
@abstractmethod
|
|
123
|
+
def get_general_cfg(self):
|
|
124
|
+
"""
|
|
125
|
+
Get the general configuration like output directory, log settings, SEED, etc.
|
|
126
|
+
This method should be implemented in subclasses.
|
|
127
|
+
"""
|
|
128
|
+
pass
|
|
129
|
+
|
|
130
|
+
@abstractmethod
|
|
131
|
+
def get_dataset_cfg(self) -> NamedConfig:
|
|
132
|
+
"""
|
|
133
|
+
Get the dataset configuration.
|
|
134
|
+
This method should be implemented in subclasses.
|
|
135
|
+
"""
|
|
136
|
+
pass
|
|
137
|
+
|
|
138
|
+
@abstractmethod
|
|
139
|
+
def get_metric_cfg(self) -> NamedConfig:
|
|
140
|
+
"""
|
|
141
|
+
Get the metric configuration.
|
|
142
|
+
This method should be implemented in subclasses.
|
|
143
|
+
"""
|
|
144
|
+
pass
|
|
@@ -0,0 +1,157 @@
|
|
|
1
|
+
from abc import ABC, abstractmethod
|
|
2
|
+
from typing import Tuple, Any, Optional
|
|
3
|
+
from base_config import ExpBaseConfig
|
|
4
|
+
from ..perf.perfcalc import PerfCalc
|
|
5
|
+
from ..perf.perfmetrics import MetricsBackend
|
|
6
|
+
|
|
7
|
+
# ! SEE https://github.com/hahv/base_exp for sample usage
|
|
8
|
+
class BaseExperiment(PerfCalc, ABC):
|
|
9
|
+
"""
|
|
10
|
+
Base class for experiments.
|
|
11
|
+
Orchestrates the experiment pipeline using a pluggable metrics backend.
|
|
12
|
+
"""
|
|
13
|
+
|
|
14
|
+
def __init__(self, config: ExpBaseConfig):
|
|
15
|
+
self.config = config
|
|
16
|
+
self.metric_backend = None
|
|
17
|
+
# Flag to track if init_general/prepare_dataset has run
|
|
18
|
+
self._is_env_ready = False
|
|
19
|
+
|
|
20
|
+
# -----------------------
|
|
21
|
+
# PerfCalc Required Methods
|
|
22
|
+
# -----------------------
|
|
23
|
+
def get_dataset_name(self):
|
|
24
|
+
return self.config.get_dataset_cfg().get_name()
|
|
25
|
+
|
|
26
|
+
def get_experiment_name(self):
|
|
27
|
+
return self.config.get_cfg_name()
|
|
28
|
+
|
|
29
|
+
def get_metric_backend(self):
|
|
30
|
+
if not self.metric_backend:
|
|
31
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
32
|
+
return self.metric_backend
|
|
33
|
+
|
|
34
|
+
# -----------------------
|
|
35
|
+
# Abstract Experiment Steps
|
|
36
|
+
# -----------------------
|
|
37
|
+
@abstractmethod
|
|
38
|
+
def init_general(self, general_cfg):
|
|
39
|
+
"""Setup general settings like SEED, logging, env variables."""
|
|
40
|
+
pass
|
|
41
|
+
|
|
42
|
+
@abstractmethod
|
|
43
|
+
def prepare_dataset(self, dataset_cfg):
|
|
44
|
+
"""Load/prepare dataset."""
|
|
45
|
+
pass
|
|
46
|
+
|
|
47
|
+
@abstractmethod
|
|
48
|
+
def prepare_metrics(self, metric_cfg) -> MetricsBackend:
|
|
49
|
+
"""
|
|
50
|
+
Prepare the metrics for the experiment.
|
|
51
|
+
This method should be implemented in subclasses.
|
|
52
|
+
"""
|
|
53
|
+
pass
|
|
54
|
+
|
|
55
|
+
@abstractmethod
|
|
56
|
+
def before_exec_exp_once(self, *args, **kwargs):
|
|
57
|
+
"""Optional: any setup before exec_exp. Note this is called once per run_exp."""
|
|
58
|
+
pass
|
|
59
|
+
|
|
60
|
+
@abstractmethod
|
|
61
|
+
def exec_exp(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
62
|
+
"""Run experiment process, e.g.: training/evaluation loop.
|
|
63
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
64
|
+
"""
|
|
65
|
+
pass
|
|
66
|
+
|
|
67
|
+
@abstractmethod
|
|
68
|
+
def exec_eval(self, *args, **kwargs) -> Optional[Tuple[Any, Any]]:
|
|
69
|
+
"""Run evaluation process.
|
|
70
|
+
Return: either `None` or a tuple of (raw_metrics_data, extra_data) for calc_and_save_exp_perfs
|
|
71
|
+
"""
|
|
72
|
+
pass
|
|
73
|
+
|
|
74
|
+
# -----------------------
|
|
75
|
+
# Internal Helpers
|
|
76
|
+
# -----------------------
|
|
77
|
+
def _validate_and_unpack(self, results):
|
|
78
|
+
if results is None:
|
|
79
|
+
return None
|
|
80
|
+
if not isinstance(results, (tuple, list)) or len(results) != 2:
|
|
81
|
+
raise ValueError("exec must return (metrics_data, extra_data)")
|
|
82
|
+
return results[0], results[1]
|
|
83
|
+
|
|
84
|
+
def _prepare_environment(self, force_reload: bool = False):
|
|
85
|
+
"""
|
|
86
|
+
Common setup. Skips if already initialized, unless force_reload is True.
|
|
87
|
+
"""
|
|
88
|
+
if self._is_env_ready and not force_reload:
|
|
89
|
+
# Environment is already prepared, skipping setup.
|
|
90
|
+
return
|
|
91
|
+
|
|
92
|
+
# 1. Run Setup
|
|
93
|
+
self.init_general(self.config.get_general_cfg())
|
|
94
|
+
self.prepare_dataset(self.config.get_dataset_cfg())
|
|
95
|
+
|
|
96
|
+
# 2. Update metric backend (refresh if needed)
|
|
97
|
+
self.metric_backend = self.prepare_metrics(self.config.get_metric_cfg())
|
|
98
|
+
|
|
99
|
+
# 3. Mark as ready
|
|
100
|
+
self._is_env_ready = True
|
|
101
|
+
|
|
102
|
+
# -----------------------
|
|
103
|
+
# Main Experiment Runner
|
|
104
|
+
# -----------------------
|
|
105
|
+
def run_exp(self, should_calc_metrics=True, reload_env=False, *args, **kwargs):
|
|
106
|
+
"""
|
|
107
|
+
Run the whole experiment pipeline.
|
|
108
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
109
|
+
:param should_calc_metrics: Whether to calculate and save metrics after execution.
|
|
110
|
+
:kwargs Params:
|
|
111
|
+
+ 'outfile' to save csv file results,
|
|
112
|
+
+ 'outdir' to set output directory for experiment results.
|
|
113
|
+
+ 'return_df' to return a DataFrame of results instead of a dictionary.
|
|
114
|
+
|
|
115
|
+
Full pipeline:
|
|
116
|
+
1. Init
|
|
117
|
+
2. Prepare Environment (General + Dataset + Metrics)
|
|
118
|
+
3. Save Config
|
|
119
|
+
4. Execute
|
|
120
|
+
5. Calculate & Save Metrics
|
|
121
|
+
"""
|
|
122
|
+
self._prepare_environment(force_reload=reload_env)
|
|
123
|
+
|
|
124
|
+
# Any pre-exec setup (loading models, etc)
|
|
125
|
+
self.before_exec_exp_once(*args, **kwargs)
|
|
126
|
+
# Save config before running
|
|
127
|
+
self.config.save_to_outdir()
|
|
128
|
+
|
|
129
|
+
# Execute experiment
|
|
130
|
+
results = self.exec_exp(*args, **kwargs)
|
|
131
|
+
|
|
132
|
+
if should_calc_metrics and results is not None:
|
|
133
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
134
|
+
# Calculate & Save metrics
|
|
135
|
+
perf_results = self.calc_perfs(
|
|
136
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
137
|
+
)
|
|
138
|
+
return perf_results
|
|
139
|
+
else:
|
|
140
|
+
return results
|
|
141
|
+
|
|
142
|
+
# -----------------------
|
|
143
|
+
# Main Experiment Evaluator
|
|
144
|
+
# -----------------------
|
|
145
|
+
def eval_exp(self, reload_env=False, *args, **kwargs):
|
|
146
|
+
"""
|
|
147
|
+
Run evaluation only.
|
|
148
|
+
:param reload_env: If True, forces dataset/general init to run again.
|
|
149
|
+
"""
|
|
150
|
+
self._prepare_environment(force_reload=reload_env)
|
|
151
|
+
results = self.exec_eval(*args, **kwargs)
|
|
152
|
+
if results is not None:
|
|
153
|
+
metrics_data, extra_data = self._validate_and_unpack(results)
|
|
154
|
+
return self.calc_perfs(
|
|
155
|
+
raw_metrics_data=metrics_data, extra_data=extra_data, *args, **kwargs
|
|
156
|
+
)
|
|
157
|
+
return None
|