halib 0.1.91__py3-none-any.whl → 0.1.99__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- halib/common.py +53 -10
- halib/filetype/ipynb.py +63 -0
- halib/filetype/yamlfile.py +23 -0
- halib/research/dataset.py +6 -7
- halib/research/flop_csv.py +34 -0
- halib/research/flops.py +156 -0
- halib/research/mics.py +52 -0
- halib/research/perfcalc.py +3 -3
- halib/research/perftb.py +2 -1
- halib/research/plot.py +480 -218
- halib/utils/video.py +6 -0
- {halib-0.1.91.dist-info → halib-0.1.99.dist-info}/METADATA +10 -2
- {halib-0.1.91.dist-info → halib-0.1.99.dist-info}/RECORD +16 -13
- {halib-0.1.91.dist-info → halib-0.1.99.dist-info}/WHEEL +0 -0
- {halib-0.1.91.dist-info → halib-0.1.99.dist-info}/licenses/LICENSE.txt +0 -0
- {halib-0.1.91.dist-info → halib-0.1.99.dist-info}/top_level.txt +0 -0
halib/common.py
CHANGED
|
@@ -1,3 +1,4 @@
|
|
|
1
|
+
import os
|
|
1
2
|
import re
|
|
2
3
|
import rich
|
|
3
4
|
import arrow
|
|
@@ -9,6 +10,8 @@ from rich import print
|
|
|
9
10
|
from rich.panel import Panel
|
|
10
11
|
from rich.console import Console
|
|
11
12
|
from rich.pretty import pprint, Pretty
|
|
13
|
+
from pathlib import PureWindowsPath
|
|
14
|
+
|
|
12
15
|
|
|
13
16
|
console = Console()
|
|
14
17
|
|
|
@@ -91,18 +94,58 @@ class ConsoleLog:
|
|
|
91
94
|
print(f"Exception message: {exc_value}")
|
|
92
95
|
|
|
93
96
|
|
|
94
|
-
def
|
|
95
|
-
|
|
96
|
-
|
|
97
|
-
|
|
98
|
-
|
|
99
|
-
|
|
100
|
-
|
|
97
|
+
def linux_to_wins_path(path: str) -> str:
|
|
98
|
+
"""
|
|
99
|
+
Convert a Linux-style WSL path (/mnt/c/... or /mnt/d/...) to a Windows-style path (C:\...).
|
|
100
|
+
"""
|
|
101
|
+
# Handle only /mnt/<drive>/... style
|
|
102
|
+
if (
|
|
103
|
+
path.startswith("/mnt/")
|
|
104
|
+
and len(path) > 6
|
|
105
|
+
and path[5].isalpha()
|
|
106
|
+
and path[6] == "/"
|
|
107
|
+
):
|
|
108
|
+
drive = path[5].upper() # Extract drive letter
|
|
109
|
+
win_path = f"{drive}:{path[6:]}" # Replace "/mnt/c/" with "C:/"
|
|
110
|
+
else:
|
|
111
|
+
win_path = path # Return unchanged if not a WSL-style path
|
|
112
|
+
# Normalize to Windows-style backslashes
|
|
113
|
+
return str(PureWindowsPath(win_path))
|
|
114
|
+
|
|
115
|
+
|
|
116
|
+
def pprint_local_path(
|
|
117
|
+
local_path: str, get_wins_path: bool = False, tag: str = ""
|
|
118
|
+
) -> str:
|
|
119
|
+
"""
|
|
120
|
+
Pretty-print a local path with emoji and clickable file:// URI.
|
|
121
|
+
|
|
122
|
+
Args:
|
|
123
|
+
local_path: Path to file or directory (Linux or Windows style).
|
|
124
|
+
get_wins_path: If True on Linux, convert WSL-style path to Windows style before printing.
|
|
125
|
+
tag: Optional console log tag.
|
|
126
|
+
|
|
127
|
+
Returns:
|
|
128
|
+
The file URI string.
|
|
129
|
+
"""
|
|
130
|
+
p = Path(local_path).resolve()
|
|
131
|
+
type_str = "📄" if p.is_file() else "📁" if p.is_dir() else "❓"
|
|
132
|
+
|
|
133
|
+
if get_wins_path and os.name == "posix":
|
|
134
|
+
# Try WSL → Windows conversion
|
|
135
|
+
converted = linux_to_wins_path(str(p))
|
|
136
|
+
if converted != str(p): # Conversion happened
|
|
137
|
+
file_uri = str(PureWindowsPath(converted).as_uri())
|
|
138
|
+
else:
|
|
139
|
+
file_uri = p.as_uri()
|
|
140
|
+
else:
|
|
141
|
+
file_uri = p.as_uri()
|
|
142
|
+
|
|
101
143
|
content_str = f"{type_str} [link={file_uri}]{file_uri}[/link]"
|
|
102
|
-
|
|
144
|
+
|
|
145
|
+
if tag:
|
|
103
146
|
with ConsoleLog(tag):
|
|
104
147
|
console.print(content_str)
|
|
105
148
|
else:
|
|
106
|
-
|
|
107
|
-
|
|
149
|
+
console.print(content_str)
|
|
150
|
+
|
|
108
151
|
return file_uri
|
halib/filetype/ipynb.py
ADDED
|
@@ -0,0 +1,63 @@
|
|
|
1
|
+
from contextlib import contextmanager
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
|
|
4
|
+
import ipynbname
|
|
5
|
+
|
|
6
|
+
from ..common import console, now_str
|
|
7
|
+
|
|
8
|
+
|
|
9
|
+
@contextmanager
|
|
10
|
+
def gen_ipynb_name(
|
|
11
|
+
filename,
|
|
12
|
+
add_time_stamp=False,
|
|
13
|
+
nb_prefix="nb__",
|
|
14
|
+
separator="__",
|
|
15
|
+
):
|
|
16
|
+
"""
|
|
17
|
+
Context manager that prefixes the filename with the notebook name.
|
|
18
|
+
Output: NotebookName_OriginalName.ext
|
|
19
|
+
"""
|
|
20
|
+
try:
|
|
21
|
+
nb_name = ipynbname.name()
|
|
22
|
+
except FileNotFoundError:
|
|
23
|
+
nb_name = "script" # Fallback
|
|
24
|
+
|
|
25
|
+
p = Path(filename)
|
|
26
|
+
|
|
27
|
+
# --- FIX START ---
|
|
28
|
+
|
|
29
|
+
# 1. Get the parts separately
|
|
30
|
+
original_stem = p.stem # "test" (no extension)
|
|
31
|
+
extension = p.suffix # ".csv"
|
|
32
|
+
|
|
33
|
+
now_string = now_str() if add_time_stamp else ""
|
|
34
|
+
|
|
35
|
+
# 2. Construct the base name (Notebook + Separator + OriginalName)
|
|
36
|
+
base_name = f"{nb_prefix}{nb_name}{separator}{original_stem}"
|
|
37
|
+
|
|
38
|
+
# 3. Append timestamp if needed
|
|
39
|
+
if now_string:
|
|
40
|
+
base_name = f"{base_name}{separator}{now_string}"
|
|
41
|
+
|
|
42
|
+
# 4. Add the extension at the VERY END
|
|
43
|
+
new_filename = f"{base_name}{extension}"
|
|
44
|
+
|
|
45
|
+
# --- FIX END ---
|
|
46
|
+
|
|
47
|
+
final_path = p.parent / new_filename
|
|
48
|
+
|
|
49
|
+
# Assuming you use 'rich' console based on your snippet
|
|
50
|
+
# console.rule()
|
|
51
|
+
# print(f"📝 Saving as: {final_path}")
|
|
52
|
+
|
|
53
|
+
yield str(final_path)
|
|
54
|
+
|
|
55
|
+
|
|
56
|
+
if __name__ == "__main__":
|
|
57
|
+
# --- Usage Example ---
|
|
58
|
+
# Assume Notebook Name is: "MyThesisWork"
|
|
59
|
+
filename = "results.csv"
|
|
60
|
+
with gen_ipynb_name(filename) as filename_ipynb:
|
|
61
|
+
# filename_ipynb is now: "MyThesisWork_results.csv"
|
|
62
|
+
print(f"File to save: {filename_ipynb}")
|
|
63
|
+
# df.to_csv(filename_ipynb)
|
halib/filetype/yamlfile.py
CHANGED
|
@@ -6,6 +6,8 @@ from omegaconf import OmegaConf
|
|
|
6
6
|
from rich.console import Console
|
|
7
7
|
from argparse import ArgumentParser
|
|
8
8
|
|
|
9
|
+
from ..research.mics import *
|
|
10
|
+
|
|
9
11
|
console = Console()
|
|
10
12
|
|
|
11
13
|
|
|
@@ -51,6 +53,27 @@ def load_yaml(yaml_file, to_dict=False, log_info=False):
|
|
|
51
53
|
else:
|
|
52
54
|
return omgconf
|
|
53
55
|
|
|
56
|
+
def load_yaml_with_PC_abbr(
|
|
57
|
+
yaml_file, pc_abbr_to_working_disk=DEFAULT_ABBR_WORKING_DISK
|
|
58
|
+
):
|
|
59
|
+
# current PC abbreviation
|
|
60
|
+
pc_abbr = get_PC_abbr_name()
|
|
61
|
+
|
|
62
|
+
# current plaftform: windows or linux
|
|
63
|
+
current_platform = platform.system().lower()
|
|
64
|
+
|
|
65
|
+
assert pc_abbr in pc_abbr_to_working_disk, f"The is no mapping for {pc_abbr} to <working_disk>"
|
|
66
|
+
|
|
67
|
+
# working disk
|
|
68
|
+
working_disk = pc_abbr_to_working_disk.get(pc_abbr)
|
|
69
|
+
|
|
70
|
+
# load yaml file
|
|
71
|
+
data_dict = load_yaml(yaml_file=yaml_file, to_dict=True)
|
|
72
|
+
|
|
73
|
+
# Normalize paths in the loaded data
|
|
74
|
+
data_dict = normalize_paths(data_dict, working_disk, current_platform)
|
|
75
|
+
return data_dict
|
|
76
|
+
|
|
54
77
|
|
|
55
78
|
def parse_args():
|
|
56
79
|
parser = ArgumentParser(description="desc text")
|
halib/research/dataset.py
CHANGED
|
@@ -4,18 +4,17 @@
|
|
|
4
4
|
|
|
5
5
|
from argparse import ArgumentParser
|
|
6
6
|
|
|
7
|
-
from rich import inspect
|
|
8
|
-
from common import console, seed_everything, ConsoleLog
|
|
9
|
-
from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
|
|
10
|
-
from tqdm import tqdm
|
|
11
7
|
import os
|
|
12
8
|
import click
|
|
13
|
-
from torchvision.datasets import ImageFolder
|
|
14
9
|
import shutil
|
|
10
|
+
from tqdm import tqdm
|
|
11
|
+
from rich import inspect
|
|
15
12
|
from rich.pretty import pprint
|
|
16
|
-
from
|
|
17
|
-
import
|
|
13
|
+
from torchvision.datasets import ImageFolder
|
|
14
|
+
from sklearn.model_selection import StratifiedShuffleSplit, ShuffleSplit
|
|
18
15
|
|
|
16
|
+
from ..system import filesys as fs
|
|
17
|
+
from ..common import console, seed_everything, ConsoleLog
|
|
19
18
|
|
|
20
19
|
def parse_args():
|
|
21
20
|
parser = ArgumentParser(description="desc text")
|
|
@@ -0,0 +1,34 @@
|
|
|
1
|
+
from halib import *
|
|
2
|
+
from flops import _calculate_flops_for_model
|
|
3
|
+
|
|
4
|
+
from halib import *
|
|
5
|
+
from argparse import ArgumentParser
|
|
6
|
+
|
|
7
|
+
|
|
8
|
+
def main():
|
|
9
|
+
csv_file = "./results-imagenet.csv"
|
|
10
|
+
df = pd.read_csv(csv_file)
|
|
11
|
+
# make param_count column as float
|
|
12
|
+
# df['param_count'] = df['param_count'].astype(float)
|
|
13
|
+
df['param_count'] = pd.to_numeric(df['param_count'], errors='coerce').fillna(99999).astype(float)
|
|
14
|
+
df = df[df['param_count'] < 5.0] # filter models with param_count < 20M
|
|
15
|
+
|
|
16
|
+
dict_ls = []
|
|
17
|
+
|
|
18
|
+
for index, row in tqdm(df.iterrows()):
|
|
19
|
+
console.rule(f"Row {index+1}/{len(df)}")
|
|
20
|
+
model = row['model']
|
|
21
|
+
num_class = 2
|
|
22
|
+
_, _, mflops = _calculate_flops_for_model(model, num_class)
|
|
23
|
+
dict_ls.append({'model': model, 'param_count': row['param_count'], 'mflops': mflops})
|
|
24
|
+
|
|
25
|
+
# Create a DataFrame from the list of dictionaries
|
|
26
|
+
result_df = pd.DataFrame(dict_ls)
|
|
27
|
+
|
|
28
|
+
final_df = pd.merge(df, result_df, on=['model', 'param_count'])
|
|
29
|
+
final_df.sort_values(by='mflops', inplace=True, ascending=True)
|
|
30
|
+
csvfile.fn_display_df(final_df)
|
|
31
|
+
|
|
32
|
+
|
|
33
|
+
if __name__ == "__main__":
|
|
34
|
+
main()
|
halib/research/flops.py
ADDED
|
@@ -0,0 +1,156 @@
|
|
|
1
|
+
import os
|
|
2
|
+
import sys
|
|
3
|
+
import torch
|
|
4
|
+
import timm
|
|
5
|
+
from argparse import ArgumentParser
|
|
6
|
+
from fvcore.nn import FlopCountAnalysis
|
|
7
|
+
from halib import *
|
|
8
|
+
from halib.filetype import csvfile
|
|
9
|
+
from curriculum.utils.config import *
|
|
10
|
+
from curriculum.utils.model_helper import *
|
|
11
|
+
|
|
12
|
+
|
|
13
|
+
# ---------------------------------------------------------------------
|
|
14
|
+
# Argument Parser
|
|
15
|
+
# ---------------------------------------------------------------------
|
|
16
|
+
def parse_args():
|
|
17
|
+
parser = ArgumentParser(description="Calculate FLOPs for TIMM or trained models")
|
|
18
|
+
|
|
19
|
+
# Option 1: Direct TIMM model
|
|
20
|
+
parser.add_argument(
|
|
21
|
+
"--model_name", type=str, help="TIMM model name (e.g., efficientnet_b0)"
|
|
22
|
+
)
|
|
23
|
+
parser.add_argument(
|
|
24
|
+
"--num_classes", type=int, default=1000, help="Number of output classes"
|
|
25
|
+
)
|
|
26
|
+
|
|
27
|
+
# Option 2: Experiment directory
|
|
28
|
+
parser.add_argument(
|
|
29
|
+
"--indir",
|
|
30
|
+
type=str,
|
|
31
|
+
default=None,
|
|
32
|
+
help="Directory containing trained experiment (with .yaml and .pth)",
|
|
33
|
+
)
|
|
34
|
+
parser.add_argument(
|
|
35
|
+
"-o", "--o", action="store_true", help="Open output CSV after saving"
|
|
36
|
+
)
|
|
37
|
+
return parser.parse_args()
|
|
38
|
+
|
|
39
|
+
|
|
40
|
+
# ---------------------------------------------------------------------
|
|
41
|
+
# Helper Functions
|
|
42
|
+
# ---------------------------------------------------------------------
|
|
43
|
+
def _get_list_of_proc_dirs(indir):
|
|
44
|
+
assert os.path.exists(indir), f"Input directory {indir} does not exist."
|
|
45
|
+
pth_files = [f for f in os.listdir(indir) if f.endswith(".pth")]
|
|
46
|
+
if len(pth_files) > 0:
|
|
47
|
+
return [indir]
|
|
48
|
+
return [
|
|
49
|
+
os.path.join(indir, f)
|
|
50
|
+
for f in os.listdir(indir)
|
|
51
|
+
if os.path.isdir(os.path.join(indir, f))
|
|
52
|
+
]
|
|
53
|
+
|
|
54
|
+
|
|
55
|
+
def _calculate_flops_for_model(model_name, num_classes):
|
|
56
|
+
"""Calculate FLOPs for a plain TIMM model."""
|
|
57
|
+
try:
|
|
58
|
+
model = timm.create_model(model_name, pretrained=False, num_classes=num_classes)
|
|
59
|
+
input_size = timm.data.resolve_data_config(model.default_cfg)["input_size"]
|
|
60
|
+
dummy_input = torch.randn(1, *input_size)
|
|
61
|
+
model.eval() # ! set to eval mode to avoid some warnings or errors
|
|
62
|
+
flops = FlopCountAnalysis(model, dummy_input)
|
|
63
|
+
gflops = flops.total() / 1e9
|
|
64
|
+
mflops = flops.total() / 1e6
|
|
65
|
+
print(f"\nModel: **{model_name}**, Classes: {num_classes}")
|
|
66
|
+
print(f"Input size: {input_size}, FLOPs: **{gflops:.3f} GFLOPs**, **{mflops:.3f} MFLOPs**\n")
|
|
67
|
+
return model_name, gflops, mflops
|
|
68
|
+
except Exception as e:
|
|
69
|
+
print(f"[Error] Could not calculate FLOPs for {model_name}: {e}")
|
|
70
|
+
return model_name, -1, -1
|
|
71
|
+
|
|
72
|
+
|
|
73
|
+
def _calculate_flops_for_experiment(exp_dir):
|
|
74
|
+
"""Calculate FLOPs for a trained experiment directory."""
|
|
75
|
+
yaml_files = [f for f in os.listdir(exp_dir) if f.endswith(".yaml")]
|
|
76
|
+
pth_files = [f for f in os.listdir(exp_dir) if f.endswith(".pth")]
|
|
77
|
+
|
|
78
|
+
assert (
|
|
79
|
+
len(yaml_files) == 1
|
|
80
|
+
), f"Expected 1 YAML file in {exp_dir}, found {len(yaml_files)}"
|
|
81
|
+
assert (
|
|
82
|
+
len(pth_files) == 1
|
|
83
|
+
), f"Expected 1 PTH file in {exp_dir}, found {len(pth_files)}"
|
|
84
|
+
|
|
85
|
+
exp_cfg_yaml = os.path.join(exp_dir, yaml_files[0])
|
|
86
|
+
cfg = ExpConfig.from_yaml(exp_cfg_yaml)
|
|
87
|
+
ds_label_list = cfg.dataset.get_label_list()
|
|
88
|
+
|
|
89
|
+
try:
|
|
90
|
+
model = build_model(
|
|
91
|
+
cfg.model.name, num_classes=len(ds_label_list), pretrained=True
|
|
92
|
+
)
|
|
93
|
+
model_weights_path = os.path.join(exp_dir, pth_files[0])
|
|
94
|
+
model.load_state_dict(torch.load(model_weights_path, map_location="cpu"))
|
|
95
|
+
model.eval()
|
|
96
|
+
|
|
97
|
+
input_size = timm.data.resolve_data_config(model.default_cfg)["input_size"]
|
|
98
|
+
dummy_input = torch.randn(1, *input_size)
|
|
99
|
+
flops = FlopCountAnalysis(model, dummy_input)
|
|
100
|
+
gflops = flops.total() / 1e9
|
|
101
|
+
mflops = flops.total() / 1e6
|
|
102
|
+
|
|
103
|
+
return str(cfg), cfg.model.name, gflops, mflops
|
|
104
|
+
except Exception as e:
|
|
105
|
+
console.print(f"[red] Error processing {exp_dir}: {e}[/red]")
|
|
106
|
+
return str(cfg), cfg.model.name, -1, -1
|
|
107
|
+
|
|
108
|
+
|
|
109
|
+
# ---------------------------------------------------------------------
|
|
110
|
+
# Main Entry
|
|
111
|
+
# ---------------------------------------------------------------------
|
|
112
|
+
def main():
|
|
113
|
+
args = parse_args()
|
|
114
|
+
|
|
115
|
+
# Case 1: Direct TIMM model input
|
|
116
|
+
if args.model_name:
|
|
117
|
+
_calculate_flops_for_model(args.model_name, args.num_classes)
|
|
118
|
+
return
|
|
119
|
+
|
|
120
|
+
# Case 2: Experiment directory input
|
|
121
|
+
if args.indir is None:
|
|
122
|
+
print("[Error] Either --model_name or --indir must be specified.")
|
|
123
|
+
return
|
|
124
|
+
|
|
125
|
+
proc_dirs = _get_list_of_proc_dirs(args.indir)
|
|
126
|
+
pprint(proc_dirs)
|
|
127
|
+
|
|
128
|
+
dfmk = csvfile.DFCreator()
|
|
129
|
+
TABLE_NAME = "model_flops_results"
|
|
130
|
+
dfmk.create_table(TABLE_NAME, ["exp_name", "model_name", "gflops", "mflops"])
|
|
131
|
+
|
|
132
|
+
console.rule(f"Calculating FLOPs for models in {len(proc_dirs)} dir(s)...")
|
|
133
|
+
rows = []
|
|
134
|
+
for exp_dir in tqdm(proc_dirs):
|
|
135
|
+
dir_name = os.path.basename(exp_dir)
|
|
136
|
+
console.rule(f"{dir_name}")
|
|
137
|
+
exp_name, model_name, gflops, mflops = _calculate_flops_for_experiment(exp_dir)
|
|
138
|
+
rows.append([exp_name, model_name, gflops, mflops])
|
|
139
|
+
|
|
140
|
+
dfmk.insert_rows(TABLE_NAME, rows)
|
|
141
|
+
dfmk.fill_table_from_row_pool(TABLE_NAME)
|
|
142
|
+
|
|
143
|
+
outfile = f"zout/zreport/{now_str()}_model_flops_results.csv"
|
|
144
|
+
dfmk[TABLE_NAME].to_csv(outfile, sep=";", index=False)
|
|
145
|
+
csvfile.fn_display_df(dfmk[TABLE_NAME])
|
|
146
|
+
|
|
147
|
+
if args.o:
|
|
148
|
+
os.system(f"start {outfile}")
|
|
149
|
+
|
|
150
|
+
|
|
151
|
+
# ---------------------------------------------------------------------
|
|
152
|
+
# Script Entry
|
|
153
|
+
# ---------------------------------------------------------------------
|
|
154
|
+
if __name__ == "__main__":
|
|
155
|
+
sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__), "..")))
|
|
156
|
+
main()
|
halib/research/mics.py
CHANGED
|
@@ -1,5 +1,9 @@
|
|
|
1
|
+
from ..common import *
|
|
2
|
+
from ..filetype import csvfile
|
|
3
|
+
import pandas as pd
|
|
1
4
|
import platform
|
|
2
5
|
|
|
6
|
+
|
|
3
7
|
PC_NAME_TO_ABBR = {
|
|
4
8
|
"DESKTOP-JQD9K01": "MainPC",
|
|
5
9
|
"DESKTOP-5IRHU87": "MSI_Laptop",
|
|
@@ -8,9 +12,57 @@ PC_NAME_TO_ABBR = {
|
|
|
8
12
|
"DESKTOP-QNS3DNF": "1GPU_SV"
|
|
9
13
|
}
|
|
10
14
|
|
|
15
|
+
DEFAULT_ABBR_WORKING_DISK = {
|
|
16
|
+
"MainPC": "E:",
|
|
17
|
+
"MSI_Laptop": "D:",
|
|
18
|
+
"4090_SV": "E:",
|
|
19
|
+
"4GPU_SV": "D:",
|
|
20
|
+
}
|
|
21
|
+
|
|
22
|
+
def list_PCs(show=True):
|
|
23
|
+
df = pd.DataFrame(list(PC_NAME_TO_ABBR.items()), columns=["PC Name", "Abbreviation"])
|
|
24
|
+
if show:
|
|
25
|
+
csvfile.fn_display_df(df)
|
|
26
|
+
return df
|
|
27
|
+
|
|
11
28
|
def get_PC_name():
|
|
12
29
|
return platform.node()
|
|
13
30
|
|
|
14
31
|
def get_PC_abbr_name():
|
|
15
32
|
pc_name = get_PC_name()
|
|
16
33
|
return PC_NAME_TO_ABBR.get(pc_name, "Unknown")
|
|
34
|
+
|
|
35
|
+
# ! This funcction search for full paths in the obj and normalize them according to the current platform and working disk
|
|
36
|
+
# ! E.g: "E:/zdataset/DFire", but working_disk: "D:", current_platform: "windows" => "D:/zdataset/DFire"
|
|
37
|
+
# ! E.g: "E:/zdataset/DFire", but working_disk: "D:", current_platform: "linux" => "/mnt/d/zdataset/DFire"
|
|
38
|
+
def normalize_paths(obj, working_disk, current_platform):
|
|
39
|
+
if isinstance(obj, dict):
|
|
40
|
+
for key, value in obj.items():
|
|
41
|
+
obj[key] = normalize_paths(value, working_disk, current_platform)
|
|
42
|
+
return obj
|
|
43
|
+
elif isinstance(obj, list):
|
|
44
|
+
for i, item in enumerate(obj):
|
|
45
|
+
obj[i] = normalize_paths(item, working_disk, current_platform)
|
|
46
|
+
return obj
|
|
47
|
+
elif isinstance(obj, str):
|
|
48
|
+
# Normalize backslashes to forward slashes for consistency
|
|
49
|
+
obj = obj.replace("\\", "/")
|
|
50
|
+
# Regex for Windows-style path: e.g., "E:/zdataset/DFire"
|
|
51
|
+
win_match = re.match(r"^([A-Z]):/(.*)$", obj)
|
|
52
|
+
# Regex for Linux-style path: e.g., "/mnt/e/zdataset/DFire"
|
|
53
|
+
lin_match = re.match(r"^/mnt/([a-z])/(.*)$", obj)
|
|
54
|
+
if win_match or lin_match:
|
|
55
|
+
rest = win_match.group(2) if win_match else lin_match.group(2)
|
|
56
|
+
if current_platform == "windows":
|
|
57
|
+
# working_disk is like "D:", so "D:/" + rest
|
|
58
|
+
new_path = working_disk + "/" + rest
|
|
59
|
+
elif current_platform == "linux":
|
|
60
|
+
# Extract drive letter from working_disk (e.g., "D:" -> "d")
|
|
61
|
+
drive_letter = working_disk[0].lower()
|
|
62
|
+
new_path = "/mnt/" + drive_letter + "/" + rest
|
|
63
|
+
else:
|
|
64
|
+
# Unknown platform, return original
|
|
65
|
+
return obj
|
|
66
|
+
return new_path
|
|
67
|
+
# For non-strings or non-path strings, return as is
|
|
68
|
+
return obj
|
halib/research/perfcalc.py
CHANGED
|
@@ -227,9 +227,9 @@ class PerfCalc(ABC): # Abstract base class for performance calculation
|
|
|
227
227
|
), "No metric columns found in the DataFrame. Ensure that the CSV files contain metric columns starting with 'metric_'."
|
|
228
228
|
final_cols = sticky_cols + metric_cols
|
|
229
229
|
df = df[final_cols]
|
|
230
|
-
# !hahv debug
|
|
231
|
-
pprint("------ Final DataFrame Columns ------")
|
|
232
|
-
csvfile.fn_display_df(df)
|
|
230
|
+
# # !hahv debug
|
|
231
|
+
# pprint("------ Final DataFrame Columns ------")
|
|
232
|
+
# csvfile.fn_display_df(df)
|
|
233
233
|
# ! validate all rows in df before returning
|
|
234
234
|
# make sure all rows will have at least values for REQUIRED_COLS and at least one metric column
|
|
235
235
|
for index, row in df.iterrows():
|
halib/research/perftb.py
CHANGED
|
@@ -308,7 +308,8 @@ class PerfTB:
|
|
|
308
308
|
if save_path:
|
|
309
309
|
export_success = False
|
|
310
310
|
try:
|
|
311
|
-
fig.write_image(save_path, engine="kaleido")
|
|
311
|
+
# fig.write_image(save_path, engine="kaleido")
|
|
312
|
+
fig.write_image(save_path, engine="kaleido", width=width, height=height * len(metric_list))
|
|
312
313
|
export_success = True
|
|
313
314
|
# pprint(f"Saved: {os.path.abspath(save_path)}")
|
|
314
315
|
except Exception as e:
|