haiku.rag 0.9.3__py3-none-any.whl → 0.10.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

Files changed (39) hide show
  1. haiku/rag/app.py +64 -18
  2. haiku/rag/cli.py +67 -30
  3. haiku/rag/client.py +63 -21
  4. haiku/rag/config.py +4 -0
  5. haiku/rag/mcp.py +18 -6
  6. haiku/rag/qa/agent.py +4 -2
  7. haiku/rag/qa/prompts.py +2 -2
  8. haiku/rag/reranking/mxbai.py +1 -1
  9. haiku/rag/research/__init__.py +10 -27
  10. haiku/rag/research/common.py +53 -0
  11. haiku/rag/research/dependencies.py +3 -25
  12. haiku/rag/research/graph.py +29 -0
  13. haiku/rag/research/models.py +70 -0
  14. haiku/rag/research/nodes/evaluate.py +80 -0
  15. haiku/rag/research/nodes/plan.py +63 -0
  16. haiku/rag/research/nodes/search.py +93 -0
  17. haiku/rag/research/nodes/synthesize.py +51 -0
  18. haiku/rag/research/prompts.py +98 -113
  19. haiku/rag/research/state.py +25 -0
  20. haiku/rag/store/engine.py +14 -0
  21. haiku/rag/store/models/chunk.py +1 -0
  22. haiku/rag/store/models/document.py +1 -0
  23. haiku/rag/store/repositories/chunk.py +4 -0
  24. haiku/rag/store/repositories/document.py +3 -0
  25. haiku/rag/store/upgrades/__init__.py +2 -0
  26. haiku/rag/store/upgrades/v0_10_1.py +64 -0
  27. haiku/rag/utils.py +8 -5
  28. {haiku_rag-0.9.3.dist-info → haiku_rag-0.10.1.dist-info}/METADATA +37 -1
  29. haiku_rag-0.10.1.dist-info/RECORD +54 -0
  30. haiku/rag/research/base.py +0 -130
  31. haiku/rag/research/evaluation_agent.py +0 -85
  32. haiku/rag/research/orchestrator.py +0 -170
  33. haiku/rag/research/presearch_agent.py +0 -39
  34. haiku/rag/research/search_agent.py +0 -69
  35. haiku/rag/research/synthesis_agent.py +0 -60
  36. haiku_rag-0.9.3.dist-info/RECORD +0 -51
  37. {haiku_rag-0.9.3.dist-info → haiku_rag-0.10.1.dist-info}/WHEEL +0 -0
  38. {haiku_rag-0.9.3.dist-info → haiku_rag-0.10.1.dist-info}/entry_points.txt +0 -0
  39. {haiku_rag-0.9.3.dist-info → haiku_rag-0.10.1.dist-info}/licenses/LICENSE +0 -0
haiku/rag/qa/agent.py CHANGED
@@ -12,7 +12,9 @@ from haiku.rag.qa.prompts import QA_SYSTEM_PROMPT, QA_SYSTEM_PROMPT_WITH_CITATIO
12
12
  class SearchResult(BaseModel):
13
13
  content: str = Field(description="The document text content")
14
14
  score: float = Field(description="Relevance score (higher is more relevant)")
15
- document_uri: str = Field(description="Source URI/path of the document")
15
+ document_uri: str = Field(
16
+ description="Source title (if available) or URI/path of the document"
17
+ )
16
18
 
17
19
 
18
20
  class Dependencies(BaseModel):
@@ -59,7 +61,7 @@ class QuestionAnswerAgent:
59
61
  SearchResult(
60
62
  content=chunk.content,
61
63
  score=score,
62
- document_uri=chunk.document_uri or "",
64
+ document_uri=(chunk.document_title or chunk.document_uri or ""),
63
65
  )
64
66
  for chunk, score in expanded_results
65
67
  ]
haiku/rag/qa/prompts.py CHANGED
@@ -44,9 +44,9 @@ Guidelines:
44
44
 
45
45
  Citation Format:
46
46
  After your answer, include a "Citations:" section that lists:
47
- - The document URI from each search result used
47
+ - The document title (if available) or URI from each search result used
48
48
  - A brief excerpt (first 50-100 characters) of the content that supported your answer
49
- - Format: "Citations:\n- [document_uri]: [content_excerpt]..."
49
+ - Format: "Citations:\n- [document title or URI]: [content_excerpt]..."
50
50
 
51
51
  Example response format:
52
52
  [Your answer here]
@@ -1,4 +1,4 @@
1
- from mxbai_rerank import MxbaiRerankV2
1
+ from mxbai_rerank import MxbaiRerankV2 # pyright: ignore[reportMissingImports]
2
2
 
3
3
  from haiku.rag.config import Config
4
4
  from haiku.rag.reranking.base import RerankerBase
@@ -1,37 +1,20 @@
1
- """Multi-agent research workflow for advanced RAG queries."""
2
-
3
- from haiku.rag.research.base import (
4
- BaseResearchAgent,
5
- ResearchOutput,
6
- SearchAnswer,
7
- SearchResult,
8
- )
9
1
  from haiku.rag.research.dependencies import ResearchContext, ResearchDependencies
10
- from haiku.rag.research.evaluation_agent import (
11
- AnalysisEvaluationAgent,
12
- EvaluationResult,
2
+ from haiku.rag.research.graph import (
3
+ PlanNode,
4
+ ResearchDeps,
5
+ ResearchState,
6
+ build_research_graph,
13
7
  )
14
- from haiku.rag.research.orchestrator import ResearchOrchestrator, ResearchPlan
15
- from haiku.rag.research.presearch_agent import PresearchSurveyAgent
16
- from haiku.rag.research.search_agent import SearchSpecialistAgent
17
- from haiku.rag.research.synthesis_agent import ResearchReport, SynthesisAgent
8
+ from haiku.rag.research.models import EvaluationResult, ResearchReport, SearchAnswer
18
9
 
19
10
  __all__ = [
20
- # Base classes
21
- "BaseResearchAgent",
22
11
  "ResearchDependencies",
23
12
  "ResearchContext",
24
- "SearchResult",
25
- "ResearchOutput",
26
- # Specialized agents
27
13
  "SearchAnswer",
28
- "SearchSpecialistAgent",
29
- "PresearchSurveyAgent",
30
- "AnalysisEvaluationAgent",
31
14
  "EvaluationResult",
32
- "SynthesisAgent",
33
15
  "ResearchReport",
34
- # Orchestrator
35
- "ResearchOrchestrator",
36
- "ResearchPlan",
16
+ "ResearchDeps",
17
+ "ResearchState",
18
+ "PlanNode",
19
+ "build_research_graph",
37
20
  ]
@@ -0,0 +1,53 @@
1
+ from typing import Any
2
+
3
+ from pydantic_ai import format_as_xml
4
+ from pydantic_ai.models.openai import OpenAIChatModel
5
+ from pydantic_ai.providers.ollama import OllamaProvider
6
+ from pydantic_ai.providers.openai import OpenAIProvider
7
+
8
+ from haiku.rag.config import Config
9
+ from haiku.rag.research.dependencies import ResearchContext
10
+
11
+
12
+ def get_model(provider: str, model: str) -> Any:
13
+ if provider == "ollama":
14
+ return OpenAIChatModel(
15
+ model_name=model,
16
+ provider=OllamaProvider(base_url=f"{Config.OLLAMA_BASE_URL}/v1"),
17
+ )
18
+ elif provider == "vllm":
19
+ return OpenAIChatModel(
20
+ model_name=model,
21
+ provider=OpenAIProvider(
22
+ base_url=f"{Config.VLLM_RESEARCH_BASE_URL or Config.VLLM_QA_BASE_URL}/v1",
23
+ api_key="none",
24
+ ),
25
+ )
26
+ else:
27
+ return f"{provider}:{model}"
28
+
29
+
30
+ def log(console, msg: str) -> None:
31
+ if console:
32
+ console.print(msg)
33
+
34
+
35
+ def format_context_for_prompt(context: ResearchContext) -> str:
36
+ """Format the research context as XML for inclusion in prompts."""
37
+
38
+ context_data = {
39
+ "original_question": context.original_question,
40
+ "unanswered_questions": context.sub_questions,
41
+ "qa_responses": [
42
+ {
43
+ "question": qa.query,
44
+ "answer": qa.answer,
45
+ "context_snippets": qa.context,
46
+ "sources": qa.sources, # pyright: ignore[reportAttributeAccessIssue]
47
+ }
48
+ for qa in context.qa_responses
49
+ ],
50
+ "insights": context.insights,
51
+ "gaps": context.gaps,
52
+ }
53
+ return format_as_xml(context_data, root_tag="research_context")
@@ -1,9 +1,8 @@
1
1
  from pydantic import BaseModel, Field
2
- from pydantic_ai import format_as_xml
3
2
  from rich.console import Console
4
3
 
5
4
  from haiku.rag.client import HaikuRAG
6
- from haiku.rag.research.base import SearchAnswer
5
+ from haiku.rag.research.models import SearchAnswer
7
6
 
8
7
 
9
8
  class ResearchContext(BaseModel):
@@ -13,7 +12,7 @@ class ResearchContext(BaseModel):
13
12
  sub_questions: list[str] = Field(
14
13
  default_factory=list, description="Decomposed sub-questions"
15
14
  )
16
- qa_responses: list["SearchAnswer"] = Field(
15
+ qa_responses: list[SearchAnswer] = Field(
17
16
  default_factory=list, description="Structured QA pairs used during research"
18
17
  )
19
18
  insights: list[str] = Field(
@@ -23,7 +22,7 @@ class ResearchContext(BaseModel):
23
22
  default_factory=list, description="Identified information gaps"
24
23
  )
25
24
 
26
- def add_qa_response(self, qa: "SearchAnswer") -> None:
25
+ def add_qa_response(self, qa: SearchAnswer) -> None:
27
26
  """Add a structured QA response (minimal context already included)."""
28
27
  self.qa_responses.append(qa)
29
28
 
@@ -46,24 +45,3 @@ class ResearchDependencies(BaseModel):
46
45
  client: HaikuRAG = Field(description="RAG client for document operations")
47
46
  context: ResearchContext = Field(description="Shared research context")
48
47
  console: Console | None = None
49
-
50
-
51
- def _format_context_for_prompt(context: ResearchContext) -> str:
52
- """Format the research context as XML for inclusion in prompts."""
53
-
54
- context_data = {
55
- "original_question": context.original_question,
56
- "unanswered_questions": context.sub_questions,
57
- "qa_responses": [
58
- {
59
- "question": qa.query,
60
- "answer": qa.answer,
61
- "context_snippets": qa.context,
62
- "sources": qa.sources,
63
- }
64
- for qa in context.qa_responses
65
- ],
66
- "insights": context.insights,
67
- "gaps": context.gaps,
68
- }
69
- return format_as_xml(context_data, root_tag="research_context")
@@ -0,0 +1,29 @@
1
+ from pydantic_graph import Graph
2
+
3
+ from haiku.rag.research.models import ResearchReport
4
+ from haiku.rag.research.nodes.evaluate import EvaluateNode
5
+ from haiku.rag.research.nodes.plan import PlanNode
6
+ from haiku.rag.research.nodes.search import SearchDispatchNode
7
+ from haiku.rag.research.nodes.synthesize import SynthesizeNode
8
+ from haiku.rag.research.state import ResearchDeps, ResearchState
9
+
10
+ __all__ = [
11
+ "PlanNode",
12
+ "SearchDispatchNode",
13
+ "EvaluateNode",
14
+ "SynthesizeNode",
15
+ "ResearchState",
16
+ "ResearchDeps",
17
+ "build_research_graph",
18
+ ]
19
+
20
+
21
+ def build_research_graph() -> Graph[ResearchState, ResearchDeps, ResearchReport]:
22
+ return Graph(
23
+ nodes=[
24
+ PlanNode,
25
+ SearchDispatchNode,
26
+ EvaluateNode,
27
+ SynthesizeNode,
28
+ ]
29
+ )
@@ -0,0 +1,70 @@
1
+ from pydantic import BaseModel, Field
2
+
3
+
4
+ class ResearchPlan(BaseModel):
5
+ main_question: str
6
+ sub_questions: list[str]
7
+
8
+
9
+ class SearchAnswer(BaseModel):
10
+ """Structured output for the SearchSpecialist agent."""
11
+
12
+ query: str = Field(description="The search query that was performed")
13
+ answer: str = Field(description="The answer generated based on the context")
14
+ context: list[str] = Field(
15
+ description=(
16
+ "Only the minimal set of relevant snippets (verbatim) that directly "
17
+ "support the answer"
18
+ )
19
+ )
20
+ sources: list[str] = Field(
21
+ description=(
22
+ "Document titles (if available) or URIs corresponding to the"
23
+ " snippets actually used in the answer (one per snippet; omit if none)"
24
+ ),
25
+ default_factory=list,
26
+ )
27
+
28
+
29
+ class EvaluationResult(BaseModel):
30
+ """Result of analysis and evaluation."""
31
+
32
+ key_insights: list[str] = Field(
33
+ description="Main insights extracted from the research so far"
34
+ )
35
+ new_questions: list[str] = Field(
36
+ description="New sub-questions to add to the research (max 3)",
37
+ max_length=3,
38
+ default=[],
39
+ )
40
+ confidence_score: float = Field(
41
+ description="Confidence level in the completeness of research (0-1)",
42
+ ge=0.0,
43
+ le=1.0,
44
+ )
45
+ is_sufficient: bool = Field(
46
+ description="Whether the research is sufficient to answer the original question"
47
+ )
48
+ reasoning: str = Field(
49
+ description="Explanation of why the research is or isn't complete"
50
+ )
51
+
52
+
53
+ class ResearchReport(BaseModel):
54
+ """Final research report structure."""
55
+
56
+ title: str = Field(description="Concise title for the research")
57
+ executive_summary: str = Field(description="Brief overview of key findings")
58
+ main_findings: list[str] = Field(
59
+ description="Primary research findings with supporting evidence"
60
+ )
61
+ conclusions: list[str] = Field(description="Evidence-based conclusions")
62
+ limitations: list[str] = Field(
63
+ description="Limitations of the current research", default=[]
64
+ )
65
+ recommendations: list[str] = Field(
66
+ description="Actionable recommendations based on findings", default=[]
67
+ )
68
+ sources_summary: str = Field(
69
+ description="Summary of sources used and their reliability"
70
+ )
@@ -0,0 +1,80 @@
1
+ from dataclasses import dataclass
2
+
3
+ from pydantic_ai import Agent
4
+ from pydantic_graph import BaseNode, GraphRunContext
5
+
6
+ from haiku.rag.research.common import format_context_for_prompt, get_model, log
7
+ from haiku.rag.research.dependencies import (
8
+ ResearchDependencies,
9
+ )
10
+ from haiku.rag.research.models import EvaluationResult, ResearchReport
11
+ from haiku.rag.research.nodes.synthesize import SynthesizeNode
12
+ from haiku.rag.research.prompts import EVALUATION_AGENT_PROMPT
13
+ from haiku.rag.research.state import ResearchDeps, ResearchState
14
+
15
+
16
+ @dataclass
17
+ class EvaluateNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
18
+ provider: str
19
+ model: str
20
+
21
+ async def run(
22
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
23
+ ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
24
+ state = ctx.state
25
+ deps = ctx.deps
26
+
27
+ log(
28
+ deps.console,
29
+ "\n[bold cyan]📊 Analyzing and evaluating research progress...[/bold cyan]",
30
+ )
31
+
32
+ agent = Agent(
33
+ model=get_model(self.provider, self.model),
34
+ output_type=EvaluationResult,
35
+ instructions=EVALUATION_AGENT_PROMPT,
36
+ retries=3,
37
+ deps_type=ResearchDependencies,
38
+ )
39
+
40
+ context_xml = format_context_for_prompt(state.context)
41
+ prompt = (
42
+ "Analyze gathered information and evaluate completeness for the original question.\n\n"
43
+ f"{context_xml}"
44
+ )
45
+ agent_deps = ResearchDependencies(
46
+ client=deps.client, context=state.context, console=deps.console
47
+ )
48
+ eval_result = await agent.run(prompt, deps=agent_deps)
49
+ output = eval_result.output
50
+
51
+ for insight in output.key_insights:
52
+ state.context.add_insight(insight)
53
+ for new_q in output.new_questions:
54
+ if new_q not in state.sub_questions:
55
+ state.sub_questions.append(new_q)
56
+
57
+ state.last_eval = output
58
+ state.iterations += 1
59
+
60
+ if output.key_insights:
61
+ log(deps.console, " [bold]Key insights:[/bold]")
62
+ for ins in output.key_insights:
63
+ log(deps.console, f" • {ins}")
64
+ log(
65
+ deps.console,
66
+ f" Confidence: [yellow]{output.confidence_score:.1%}[/yellow]",
67
+ )
68
+ status = "[green]Yes[/green]" if output.is_sufficient else "[red]No[/red]"
69
+ log(deps.console, f" Sufficient: {status}")
70
+
71
+ from haiku.rag.research.nodes.search import SearchDispatchNode
72
+
73
+ if (
74
+ output.is_sufficient
75
+ and output.confidence_score >= state.confidence_threshold
76
+ ) or state.iterations >= state.max_iterations:
77
+ log(deps.console, "\n[bold green]✅ Stopping research.[/bold green]")
78
+ return SynthesizeNode(self.provider, self.model)
79
+
80
+ return SearchDispatchNode(self.provider, self.model)
@@ -0,0 +1,63 @@
1
+ from dataclasses import dataclass
2
+
3
+ from pydantic_ai import Agent, RunContext
4
+ from pydantic_graph import BaseNode, GraphRunContext
5
+
6
+ from haiku.rag.research.common import get_model, log
7
+ from haiku.rag.research.dependencies import ResearchDependencies
8
+ from haiku.rag.research.models import ResearchPlan, ResearchReport
9
+ from haiku.rag.research.nodes.search import SearchDispatchNode
10
+ from haiku.rag.research.prompts import PLAN_PROMPT
11
+ from haiku.rag.research.state import ResearchDeps, ResearchState
12
+
13
+
14
+ @dataclass
15
+ class PlanNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
16
+ provider: str
17
+ model: str
18
+
19
+ async def run(
20
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
21
+ ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
22
+ state = ctx.state
23
+ deps = ctx.deps
24
+
25
+ log(deps.console, "\n[bold cyan]📋 Creating research plan...[/bold cyan]")
26
+
27
+ plan_agent = Agent(
28
+ model=get_model(self.provider, self.model),
29
+ output_type=ResearchPlan,
30
+ instructions=(
31
+ PLAN_PROMPT
32
+ + "\n\nUse the gather_context tool once on the main question before planning."
33
+ ),
34
+ retries=3,
35
+ deps_type=ResearchDependencies,
36
+ )
37
+
38
+ @plan_agent.tool
39
+ async def gather_context(
40
+ ctx2: RunContext[ResearchDependencies], query: str, limit: int = 6
41
+ ) -> str:
42
+ results = await ctx2.deps.client.search(query, limit=limit)
43
+ expanded = await ctx2.deps.client.expand_context(results)
44
+ return "\n\n".join(chunk.content for chunk, _ in expanded)
45
+
46
+ prompt = (
47
+ "Plan a focused research approach for the main question.\n\n"
48
+ f"Main question: {state.question}"
49
+ )
50
+
51
+ agent_deps = ResearchDependencies(
52
+ client=deps.client, context=state.context, console=deps.console
53
+ )
54
+ plan_result = await plan_agent.run(prompt, deps=agent_deps)
55
+ state.sub_questions = list(plan_result.output.sub_questions)
56
+
57
+ log(deps.console, "\n[bold green]✅ Research Plan Created:[/bold green]")
58
+ log(deps.console, f" [bold]Main Question:[/bold] {state.question}")
59
+ log(deps.console, " [bold]Sub-questions:[/bold]")
60
+ for i, sq in enumerate(state.sub_questions, 1):
61
+ log(deps.console, f" {i}. {sq}")
62
+
63
+ return SearchDispatchNode(self.provider, self.model)
@@ -0,0 +1,93 @@
1
+ import asyncio
2
+ from dataclasses import dataclass
3
+ from typing import Any
4
+
5
+ from pydantic_ai import Agent, RunContext
6
+ from pydantic_ai.format_prompt import format_as_xml
7
+ from pydantic_ai.output import ToolOutput
8
+ from pydantic_graph import BaseNode, GraphRunContext
9
+
10
+ from haiku.rag.research.common import get_model, log
11
+ from haiku.rag.research.dependencies import ResearchDependencies
12
+ from haiku.rag.research.models import ResearchReport, SearchAnswer
13
+ from haiku.rag.research.prompts import SEARCH_AGENT_PROMPT
14
+ from haiku.rag.research.state import ResearchDeps, ResearchState
15
+
16
+
17
+ @dataclass
18
+ class SearchDispatchNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
19
+ provider: str
20
+ model: str
21
+
22
+ async def run(
23
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
24
+ ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
25
+ state = ctx.state
26
+ deps = ctx.deps
27
+ if not state.sub_questions:
28
+ from haiku.rag.research.nodes.evaluate import EvaluateNode
29
+
30
+ return EvaluateNode(self.provider, self.model)
31
+
32
+ # Take up to max_concurrency questions and answer them concurrently
33
+ take = max(1, state.max_concurrency)
34
+ batch: list[str] = []
35
+ while state.sub_questions and len(batch) < take:
36
+ batch.append(state.sub_questions.pop(0))
37
+
38
+ async def answer_one(sub_q: str) -> SearchAnswer | None:
39
+ log(
40
+ deps.console,
41
+ f"\n[bold cyan]🔍 Searching & Answering:[/bold cyan] {sub_q}",
42
+ )
43
+ agent = Agent(
44
+ model=get_model(self.provider, self.model),
45
+ output_type=ToolOutput(SearchAnswer, max_retries=3),
46
+ instructions=SEARCH_AGENT_PROMPT,
47
+ retries=3,
48
+ deps_type=ResearchDependencies,
49
+ )
50
+
51
+ @agent.tool
52
+ async def search_and_answer(
53
+ ctx2: RunContext[ResearchDependencies], query: str, limit: int = 5
54
+ ) -> str:
55
+ search_results = await ctx2.deps.client.search(query, limit=limit)
56
+ expanded = await ctx2.deps.client.expand_context(search_results)
57
+
58
+ entries: list[dict[str, Any]] = [
59
+ {
60
+ "text": chunk.content,
61
+ "score": score,
62
+ "document_uri": (
63
+ chunk.document_title or chunk.document_uri or ""
64
+ ),
65
+ }
66
+ for chunk, score in expanded
67
+ ]
68
+ if not entries:
69
+ return f"No relevant information found in the knowledge base for: {query}"
70
+
71
+ return format_as_xml(entries, root_tag="snippets")
72
+
73
+ agent_deps = ResearchDependencies(
74
+ client=deps.client, context=state.context, console=deps.console
75
+ )
76
+ try:
77
+ result = await agent.run(sub_q, deps=agent_deps)
78
+ except Exception as e:
79
+ log(deps.console, f"[red]Search failed:[/red] {e}")
80
+ return None
81
+
82
+ return result.output
83
+
84
+ answers = await asyncio.gather(*(answer_one(q) for q in batch))
85
+ for ans in answers:
86
+ if ans is None:
87
+ continue
88
+ state.context.add_qa_response(ans)
89
+ if deps.console:
90
+ preview = ans.answer[:150] + ("…" if len(ans.answer) > 150 else "")
91
+ log(deps.console, f" [green]✓[/green] {preview}")
92
+
93
+ return SearchDispatchNode(self.provider, self.model)
@@ -0,0 +1,51 @@
1
+ from dataclasses import dataclass
2
+
3
+ from pydantic_ai import Agent
4
+ from pydantic_graph import BaseNode, End, GraphRunContext
5
+
6
+ from haiku.rag.research.common import format_context_for_prompt, get_model, log
7
+ from haiku.rag.research.dependencies import (
8
+ ResearchDependencies,
9
+ )
10
+ from haiku.rag.research.models import ResearchReport
11
+ from haiku.rag.research.prompts import SYNTHESIS_AGENT_PROMPT
12
+ from haiku.rag.research.state import ResearchDeps, ResearchState
13
+
14
+
15
+ @dataclass
16
+ class SynthesizeNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
17
+ provider: str
18
+ model: str
19
+
20
+ async def run(
21
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
22
+ ) -> End[ResearchReport]:
23
+ state = ctx.state
24
+ deps = ctx.deps
25
+
26
+ log(
27
+ deps.console,
28
+ "\n[bold cyan]📝 Generating final research report...[/bold cyan]",
29
+ )
30
+
31
+ agent = Agent(
32
+ model=get_model(self.provider, self.model),
33
+ output_type=ResearchReport,
34
+ instructions=SYNTHESIS_AGENT_PROMPT,
35
+ retries=3,
36
+ deps_type=ResearchDependencies,
37
+ )
38
+
39
+ context_xml = format_context_for_prompt(state.context)
40
+ prompt = (
41
+ "Generate a comprehensive research report based on all gathered information.\n\n"
42
+ f"{context_xml}\n\n"
43
+ "Create a detailed report that synthesizes all findings into a coherent response."
44
+ )
45
+ agent_deps = ResearchDependencies(
46
+ client=deps.client, context=state.context, console=deps.console
47
+ )
48
+ result = await agent.run(prompt, deps=agent_deps)
49
+
50
+ log(deps.console, "[bold green]✅ Research complete![/bold green]")
51
+ return End(result.output)