haiku.rag 0.4.3__py3-none-any.whl → 0.5.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

haiku/rag/chunker.py CHANGED
@@ -1,6 +1,11 @@
1
+ from io import BytesIO
1
2
  from typing import ClassVar
2
3
 
3
4
  import tiktoken
5
+ from docling.chunking import HybridChunker # type: ignore
6
+ from docling.document_converter import DocumentConverter
7
+ from docling_core.transforms.chunker.tokenizer.openai import OpenAITokenizer
8
+ from docling_core.types.io import DocumentStream
4
9
 
5
10
  from haiku.rag.config import Config
6
11
 
@@ -8,9 +13,11 @@ from haiku.rag.config import Config
8
13
  class Chunker:
9
14
  """A class that chunks text into smaller pieces for embedding and retrieval.
10
15
 
16
+ Uses docling's structure-aware chunking to create semantically meaningful chunks
17
+ that respect document boundaries.
18
+
11
19
  Args:
12
20
  chunk_size: The maximum size of a chunk in tokens.
13
- chunk_overlap: The number of tokens of overlap between chunks.
14
21
  """
15
22
 
16
23
  encoder: ClassVar[tiktoken.Encoding] = tiktoken.encoding_for_model("gpt-4o")
@@ -18,50 +25,36 @@ class Chunker:
18
25
  def __init__(
19
26
  self,
20
27
  chunk_size: int = Config.CHUNK_SIZE,
21
- chunk_overlap: int = Config.CHUNK_OVERLAP,
22
28
  ):
23
29
  self.chunk_size = chunk_size
24
- self.chunk_overlap = chunk_overlap
30
+ tokenizer = OpenAITokenizer(
31
+ tokenizer=tiktoken.encoding_for_model("gpt-4o"), max_tokens=chunk_size
32
+ )
33
+
34
+ self.chunker = HybridChunker(tokenizer=tokenizer) # type: ignore
25
35
 
26
36
  async def chunk(self, text: str) -> list[str]:
27
- """Split the text into chunks based on token boundaries.
37
+ """Split the text into chunks using docling's structure-aware chunking.
28
38
 
29
39
  Args:
30
40
  text: The text to be split into chunks.
31
41
 
32
42
  Returns:
33
- A list of text chunks with token-based boundaries and overlap.
43
+ A list of text chunks with semantic boundaries.
34
44
  """
35
45
  if not text:
36
46
  return []
37
47
 
38
- encoded_tokens = self.encoder.encode(text, disallowed_special=())
39
-
40
- if self.chunk_size > len(encoded_tokens):
41
- return [text]
42
-
43
- chunks = []
44
- i = 0
45
- split_id_counter = 0
46
- while i < len(encoded_tokens):
47
- # Overlap
48
- start_i = i
49
- end_i = min(i + self.chunk_size, len(encoded_tokens))
50
-
51
- chunk_tokens = encoded_tokens[start_i:end_i]
52
- chunk_text = self.encoder.decode(chunk_tokens)
53
-
54
- chunks.append(chunk_text)
55
- split_id_counter += 1
56
-
57
- # Exit loop if this was the last possible chunk
58
- if end_i == len(encoded_tokens):
59
- break
48
+ # Convert to docling document
49
+ bytes_io = BytesIO(text.encode("utf-8"))
50
+ doc_stream = DocumentStream(name="text.md", stream=bytes_io)
51
+ converter = DocumentConverter()
52
+ result = converter.convert(doc_stream)
53
+ doc = result.document
60
54
 
61
- i += (
62
- self.chunk_size - self.chunk_overlap
63
- ) # Step forward, considering overlap
64
- return chunks
55
+ # Chunk using docling's hybrid chunker
56
+ chunks = list(self.chunker.chunk(doc))
57
+ return [self.chunker.contextualize(chunk) for chunk in chunks]
65
58
 
66
59
 
67
60
  chunker = Chunker()
haiku/rag/config.py CHANGED
@@ -27,7 +27,6 @@ class AppConfig(BaseModel):
27
27
  QA_MODEL: str = "qwen3"
28
28
 
29
29
  CHUNK_SIZE: int = 256
30
- CHUNK_OVERLAP: int = 32
31
30
 
32
31
  OLLAMA_BASE_URL: str = "http://localhost:11434"
33
32
 
haiku/rag/reader.py CHANGED
@@ -16,7 +16,8 @@ class FileReader:
16
16
  ".jpeg",
17
17
  ".jpg",
18
18
  ".md",
19
- ".pdf.png",
19
+ ".pdf",
20
+ ".png",
20
21
  ".pptx",
21
22
  ".tiff",
22
23
  ".xlsx",
@@ -63,7 +63,6 @@ class SettingsRepository:
63
63
  "EMBEDDINGS_MODEL",
64
64
  "EMBEDDINGS_VECTOR_DIM",
65
65
  "CHUNK_SIZE",
66
- "CHUNK_OVERLAP",
67
66
  ]
68
67
 
69
68
  errors = []
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: haiku.rag
3
- Version: 0.4.3
3
+ Version: 0.5.0
4
4
  Summary: Retrieval Augmented Generation (RAG) with SQLite
5
5
  Author-email: Yiorgis Gozadinos <ggozadinos@gmail.com>
6
6
  License: MIT
@@ -1,13 +1,13 @@
1
1
  haiku/rag/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
2
  haiku/rag/app.py,sha256=FpLVyP1-zAq_XPmU8CPVLkuIAeuhBOGvMqhYS8RbN40,7649
3
- haiku/rag/chunker.py,sha256=MbCtP66OfTFoIBvqmVT9T9c87fozsYYzAQzJJEfPBVI,1812
3
+ haiku/rag/chunker.py,sha256=P2slbmoABygYRlqjOGzPBEOYsBZNTnNpE6bnW_dkVOE,1850
4
4
  haiku/rag/cli.py,sha256=k7EhLkvTncxsdh5TYrg8BHLYh_lfyzupsWGj1dEEdqY,5992
5
5
  haiku/rag/client.py,sha256=MZNIpMm6MS3P6vjLqiCztT2dBOM7-bZOosX5IpbHJbI,12724
6
- haiku/rag/config.py,sha256=_Ss54kmfxVAJupExLKaYjYUlFxJgb7hEEdbG4-isapY,1662
6
+ haiku/rag/config.py,sha256=GXTWC3vasBMaWju-yh8Es3CidBz1ftqRH6E5PHpgsSQ,1634
7
7
  haiku/rag/logging.py,sha256=zTTGpGq5tPdcd7RpCbd9EGw1IZlQDbYkrCg9t9pqRc4,580
8
8
  haiku/rag/mcp.py,sha256=tMN6fNX7ZtAER1R6DL1GkC9HZozTC4HzuQs199p7icI,4551
9
9
  haiku/rag/monitor.py,sha256=r386nkhdlsU8UECwIuVwnrSlgMk3vNIuUZGNIzkZuec,2770
10
- haiku/rag/reader.py,sha256=dLz3yyc5r8dzdqCc2VViC3fADpScw4lxXueKiu-cI7c,2915
10
+ haiku/rag/reader.py,sha256=s5dinZ-WffioiRH7OWZtE2v7FHRPd1PkqpPYsXtwqtc,2927
11
11
  haiku/rag/utils.py,sha256=Ez_tvNlRO_D8c2CBZ83Hs9Gmzcqdq4cmw_V5GBdKy_8,2214
12
12
  haiku/rag/embeddings/__init__.py,sha256=yFBlxS0jBiVHl_rWz5kb43t6Ha132U1ZGdlIPfhzPdg,1491
13
13
  haiku/rag/embeddings/base.py,sha256=NTQvuzbZPu0LBo5wAu3qGyJ4xXUaRAt1fjBO0ygWn_Y,465
@@ -33,11 +33,11 @@ haiku/rag/store/repositories/__init__.py,sha256=uIBhxjQh-4o3O-ck8b7BQ58qXQTuJdPv
33
33
  haiku/rag/store/repositories/base.py,sha256=cm3VyQXhtxvRfk1uJHpA0fDSxMpYN-mjQmRiDiLsQ68,1008
34
34
  haiku/rag/store/repositories/chunk.py,sha256=UyvHhKb1ESZePoTp2GneAARdfKoocEdfPOwgWPPQ0v8,16878
35
35
  haiku/rag/store/repositories/document.py,sha256=fXIWevJaOe6x2cK4u9cQxiEGD0ntKQb9y3VRqklQypE,7920
36
- haiku/rag/store/repositories/settings.py,sha256=dme3_ulQdQvyF9daavSjAd-SjZ5hh0MJoxP7iXgap-A,2492
36
+ haiku/rag/store/repositories/settings.py,sha256=qZLXvLsErnCWL0nBQQNfRnatHzCKhtUDLvUK9k-W_fU,2463
37
37
  haiku/rag/store/upgrades/__init__.py,sha256=kKS1YWT_P-CYKhKtokOLTIFNKf9jlfjFFr8lyIMeogM,100
38
38
  haiku/rag/store/upgrades/v0_3_4.py,sha256=GLogKZdZ40NX1vBHKdOJju7fFzNUCHoEnjSZg17Hm2U,663
39
- haiku_rag-0.4.3.dist-info/METADATA,sha256=T2ZHdGL_zd1eSfEjFolh3R_zJpuWmUhKsnNkYLKtT7E,4198
40
- haiku_rag-0.4.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
41
- haiku_rag-0.4.3.dist-info/entry_points.txt,sha256=G1U3nAkNd5YDYd4v0tuYFbriz0i-JheCsFuT9kIoGCI,48
42
- haiku_rag-0.4.3.dist-info/licenses/LICENSE,sha256=eXZrWjSk9PwYFNK9yUczl3oPl95Z4V9UXH7bPN46iPo,1065
43
- haiku_rag-0.4.3.dist-info/RECORD,,
39
+ haiku_rag-0.5.0.dist-info/METADATA,sha256=Z29lOzGgaD2PJ6OxZc53QuMzFdosEZCdm7HZYOUNN3M,4198
40
+ haiku_rag-0.5.0.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
41
+ haiku_rag-0.5.0.dist-info/entry_points.txt,sha256=G1U3nAkNd5YDYd4v0tuYFbriz0i-JheCsFuT9kIoGCI,48
42
+ haiku_rag-0.5.0.dist-info/licenses/LICENSE,sha256=eXZrWjSk9PwYFNK9yUczl3oPl95Z4V9UXH7bPN46iPo,1065
43
+ haiku_rag-0.5.0.dist-info/RECORD,,