haiku.rag 0.12.1__py3-none-any.whl → 0.13.1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

haiku/rag/utils.py CHANGED
@@ -176,19 +176,19 @@ def prefetch_models():
176
176
 
177
177
  # Collect Ollama models from config
178
178
  required_models: set[str] = set()
179
- if Config.EMBEDDINGS_PROVIDER == "ollama":
180
- required_models.add(Config.EMBEDDINGS_MODEL)
181
- if Config.QA_PROVIDER == "ollama":
182
- required_models.add(Config.QA_MODEL)
183
- if Config.RESEARCH_PROVIDER == "ollama":
184
- required_models.add(Config.RESEARCH_MODEL)
185
- if Config.RERANK_PROVIDER == "ollama":
186
- required_models.add(Config.RERANK_MODEL)
179
+ if Config.embeddings.provider == "ollama":
180
+ required_models.add(Config.embeddings.model)
181
+ if Config.qa.provider == "ollama":
182
+ required_models.add(Config.qa.model)
183
+ if Config.research.provider == "ollama":
184
+ required_models.add(Config.research.model)
185
+ if Config.reranking.provider == "ollama":
186
+ required_models.add(Config.reranking.model)
187
187
 
188
188
  if not required_models:
189
189
  return
190
190
 
191
- base_url = Config.OLLAMA_BASE_URL
191
+ base_url = Config.providers.ollama.base_url
192
192
 
193
193
  with httpx.Client(timeout=None) as client:
194
194
  for model in sorted(required_models):
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: haiku.rag
3
- Version: 0.12.1
3
+ Version: 0.13.1
4
4
  Summary: Agentic Retrieval Augmented Generation (RAG) with LanceDB
5
5
  Author-email: Yiorgis Gozadinos <ggozadinos@gmail.com>
6
6
  License: MIT
@@ -13,9 +13,8 @@ Classifier: Operating System :: MacOS
13
13
  Classifier: Operating System :: Microsoft :: Windows :: Windows 10
14
14
  Classifier: Operating System :: Microsoft :: Windows :: Windows 11
15
15
  Classifier: Operating System :: POSIX :: Linux
16
- Classifier: Programming Language :: Python :: 3.10
17
- Classifier: Programming Language :: Python :: 3.11
18
16
  Classifier: Programming Language :: Python :: 3.12
17
+ Classifier: Programming Language :: Python :: 3.13
19
18
  Classifier: Typing :: Typed
20
19
  Requires-Python: >=3.12
21
20
  Requires-Dist: docling>=2.56.1
@@ -26,6 +25,7 @@ Requires-Dist: pydantic-ai>=1.0.18
26
25
  Requires-Dist: pydantic-graph>=1.0.18
27
26
  Requires-Dist: pydantic>=2.12.2
28
27
  Requires-Dist: python-dotenv>=1.1.1
28
+ Requires-Dist: pyyaml>=6.0.1
29
29
  Requires-Dist: rich>=14.2.0
30
30
  Requires-Dist: tiktoken>=0.12.0
31
31
  Requires-Dist: typer>=0.19.2
@@ -40,11 +40,13 @@ Description-Content-Type: text/markdown
40
40
 
41
41
  # Haiku RAG
42
42
 
43
+ mcp-name: io.github.ggozad/haiku-rag
44
+
43
45
  Retrieval-Augmented Generation (RAG) library built on LanceDB.
44
46
 
45
47
  `haiku.rag` is a Retrieval-Augmented Generation (RAG) library built to work with LanceDB as a local vector database. It uses LanceDB for storing embeddings and performs semantic (vector) search as well as full-text search combined through native hybrid search with Reciprocal Rank Fusion. Both open-source (Ollama) as well as commercial (OpenAI, VoyageAI) embedding providers are supported.
46
48
 
47
- > **Note**: Starting with version 0.7.0, haiku.rag uses LanceDB instead of SQLite. If you have an existing SQLite database, use `haiku-rag migrate old_database.sqlite` to migrate your data safely.
49
+ > **Note**: Configuration now uses YAML files instead of environment variables. If you're upgrading from an older version, run `haiku-rag init-config --from-env` to migrate your `.env` file to `haiku.rag.yaml`. See [Configuration](https://ggozad.github.io/haiku.rag/configuration/) for details.
48
50
 
49
51
  ## Features
50
52
 
@@ -65,6 +67,7 @@ Retrieval-Augmented Generation (RAG) library built on LanceDB.
65
67
 
66
68
  ```bash
67
69
  # Install
70
+ # Python 3.12 or newer required
68
71
  uv pip install haiku.rag
69
72
 
70
73
  # Add documents
@@ -98,14 +101,12 @@ haiku-rag research \
98
101
  # Rebuild database (re-chunk and re-embed all documents)
99
102
  haiku-rag rebuild
100
103
 
101
- # Migrate from SQLite to LanceDB
102
- haiku-rag migrate old_database.sqlite
103
-
104
104
  # Start server with file monitoring
105
- export MONITOR_DIRECTORIES="/path/to/docs"
106
- haiku-rag serve
105
+ haiku-rag serve --monitor
107
106
  ```
108
107
 
108
+ To customize settings, create a `haiku.rag.yaml` config file (see [Configuration](https://ggozad.github.io/haiku.rag/configuration/)).
109
+
109
110
  ## Python Usage
110
111
 
111
112
  ```python
@@ -197,17 +198,26 @@ haiku-rag a2aclient
197
198
  ```
198
199
 
199
200
  The A2A agent provides:
201
+
200
202
  - Multi-turn dialogue with context
201
203
  - Intelligent multi-search for complex questions
202
204
  - Source citations with titles and URIs
203
205
  - Full document retrieval on request
204
206
 
207
+ ## Examples
208
+
209
+ See the [examples directory](examples/) for working examples:
210
+
211
+ - **[Interactive Research Assistant](examples/ag-ui-research/)** - Full-stack research assistant with Pydantic AI and AG-UI featuring human-in-the-loop approval and real-time state synchronization
212
+ - **[Docker Setup](examples/docker/)** - Complete Docker deployment with file monitoring, MCP server, and A2A agent
213
+ - **[A2A Security](examples/a2a-security/)** - Authentication examples (API key, OAuth2, GitHub)
214
+
205
215
  ## Documentation
206
216
 
207
217
  Full documentation at: https://ggozad.github.io/haiku.rag/
208
218
 
209
219
  - [Installation](https://ggozad.github.io/haiku.rag/installation/) - Provider setup
210
- - [Configuration](https://ggozad.github.io/haiku.rag/configuration/) - Environment variables
220
+ - [Configuration](https://ggozad.github.io/haiku.rag/configuration/) - YAML configuration
211
221
  - [CLI](https://ggozad.github.io/haiku.rag/cli/) - Command reference
212
222
  - [Python API](https://ggozad.github.io/haiku.rag/python/) - Complete API docs
213
223
  - [Agents](https://ggozad.github.io/haiku.rag/agents/) - QA agent and multi-agent research
@@ -1,16 +1,14 @@
1
1
  haiku/rag/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
2
- haiku/rag/app.py,sha256=nrfg3iGWP_HJBfwUFPv60_1Do8YK3WQYWZhq22r001s,21548
3
- haiku/rag/chunker.py,sha256=PVe6ysv8UlacUd4Zb3_8RFWIaWDXnzBAy2VDJ4TaUsE,1555
4
- haiku/rag/cli.py,sha256=ghmfvCmoitgySZsF6t5UQjsm3_rul0KUh0L774BzeuI,13196
5
- haiku/rag/client.py,sha256=GVXHq9weIaFdcZvO9a4YO1WnrroJJUXVVriDGdMxpH4,25855
6
- haiku/rag/config.py,sha256=FBsMMijl5PxIfPGifk_AJVRjL4omb03jfoZm0P_VqxI,2743
2
+ haiku/rag/app.py,sha256=lNPYYWQLOPlOLYiwIR4yQuwzl-LrRNQn7n2nacgdq_k,21594
3
+ haiku/rag/chunker.py,sha256=pA0S0fFKAuvzGm2dGyp7FAkeFZA0YTCm_ata83Pnflw,1566
4
+ haiku/rag/cli.py,sha256=Y42tnlVFGvCZVjBcLWrIVgM0A7KjNYX9MAuk9-zQvvE,14523
5
+ haiku/rag/client.py,sha256=cG6DAhzJJ4vdo8QFn9p8iA6YTa0arMrTtIswoZc7sY0,26816
7
6
  haiku/rag/logging.py,sha256=dm65AwADpcQsH5OAPtRA-4hsw0w5DK-sGOvzYkj6jzw,1720
8
- haiku/rag/mcp.py,sha256=DZk-IJgVjAesu-vvqVd5BYnfDWKWNR6TQugKgdoFrvg,8976
9
- haiku/rag/migration.py,sha256=XldX0CTHPXNGrkdQ-gocr4kQGBsz-316WcE0ZDRfb48,11076
10
- haiku/rag/monitor.py,sha256=VP3bqY0mEodOP60eN4RMldgrL1ti5gMjuDuQ-_vBvFc,2759
7
+ haiku/rag/mcp.py,sha256=txuEnrUMWvs_shQBk15gEkJD7xNdSYzp3z75UUWaHFM,9328
8
+ haiku/rag/monitor.py,sha256=d92oRufhI8oYXH7oF6oYVf1_AcpFUafjM6tl4VhAupI,3322
11
9
  haiku/rag/reader.py,sha256=aW8LG0X31kVWS7kU2tKVpe8RqP3Ne_oIidd_X3UDLH0,3307
12
- haiku/rag/utils.py,sha256=dBzhKaOHI9KRiJqHErcXUnqtnXY2AgOK8PCLA3rhO0A,6115
13
- haiku/rag/a2a/__init__.py,sha256=4SlJBr9GUVZ0879o5VI6-qpcBKpieP2hW4hmNbm8NGg,5933
10
+ haiku/rag/utils.py,sha256=47ehVYJlLz6Of_Ua89qj94JclO5ZPBFU9eyonifvnVg,6131
11
+ haiku/rag/a2a/__init__.py,sha256=tY_jLSUM0zKzyBctMkjpqmDWpxWc9QVEK1qAsb-plGs,5933
14
12
  haiku/rag/a2a/client.py,sha256=awuiHXgVHn1uzaEXE98RIqqKHj1JjszOvn9WI3Jtth8,8760
15
13
  haiku/rag/a2a/context.py,sha256=SofkFUZcGonoJcgZh-RGqHTh0UWT4J7Zl4Mz6WDkMl4,2053
16
14
  haiku/rag/a2a/models.py,sha256=XhGYj2g3rgVM4JoCDXlll0YjaysqdalybJrBqFXSwl4,689
@@ -18,15 +16,18 @@ haiku/rag/a2a/prompts.py,sha256=yCla8x0hbOhKrkuaqVrF1upn-YjQM3-2NsE2TSnet0M,3030
18
16
  haiku/rag/a2a/skills.py,sha256=dwyD2Bn493eL3Vf4uQzmyxj_9IUSb66kQ-085FBAuCs,2701
19
17
  haiku/rag/a2a/storage.py,sha256=c8vmGCiZ3nuV9wUuTnwpoRD2HVVvK2JPySQOc5PVMvg,2759
20
18
  haiku/rag/a2a/worker.py,sha256=S9hiA1ncpJPdtN0eEmMjsvr5LQ4wMVN5R8CjYkTeohU,12367
21
- haiku/rag/embeddings/__init__.py,sha256=44IfDITGIFTflGT6UEmiYOwpWFVbYv5smLY59D0YeCs,1419
22
- haiku/rag/embeddings/base.py,sha256=Aw4kjfVn2can0R17pdiAgpPRyk5BpdBgMXuor5mstDY,682
23
- haiku/rag/embeddings/ollama.py,sha256=KXq-eJ58co5rwYchIO3kpvIv0OBwMJkwMXq1xDsETz0,823
19
+ haiku/rag/config/__init__.py,sha256=PSHsc7gXjvRxpzN4rxR083-WYU-pocqm0hf2uhkr9Vw,1019
20
+ haiku/rag/config/loader.py,sha256=eWkD8uVTa19nf7d7yyZImk7t5k0-SagYH4RSBqfkPxQ,4848
21
+ haiku/rag/config/models.py,sha256=vkq2WyJfuY1cm8YEFlox0Cd8sVyXb4l1XX2fkBjI6I4,2169
22
+ haiku/rag/embeddings/__init__.py,sha256=zwWRU9S5YGEJxlgPv5haHBgj3LUJMe-dEwr3LKLa9RY,1731
23
+ haiku/rag/embeddings/base.py,sha256=kzca54e2HGzS_0YKt9OLESM9lrFKpBm_97V07jx0aas,783
24
+ haiku/rag/embeddings/ollama.py,sha256=_uIIObbZX9QVU1lcgWQFooA3b-AeZRNncM7yQ2TxlEU,825
24
25
  haiku/rag/embeddings/openai.py,sha256=BfmPni567DH8KqwLCPiOmr3q-dpzpOJkvFFoUuTR5as,731
25
- haiku/rag/embeddings/vllm.py,sha256=wgul0nMWTn6Q1aKA4DJe03EktsRoBxEgtB7gfpWVOyQ,854
26
+ haiku/rag/embeddings/vllm.py,sha256=IZFS3pbvLXkhvdT7pFVi2csFlNTSza5bpybwz7ud3Po,847
26
27
  haiku/rag/embeddings/voyageai.py,sha256=6vEuk6q510AJv-K2lL93P2dVrziAjELTOe_w_Zp5YT4,917
27
28
  haiku/rag/graph/__init__.py,sha256=BHfMchuUO_UhHKpjjGHjd6xPxNkrIwJzHn4YJiLqG1g,62
28
29
  haiku/rag/graph/base.py,sha256=DepZqLF9E64YCCkjmbqmgyp28oNp69WfJCXp614xzh0,819
29
- haiku/rag/graph/common.py,sha256=xTejucXei3x9tqbal3ZS_64lZAC6Bw3-QfXPniZcZEw,986
30
+ haiku/rag/graph/common.py,sha256=-Pdao6ZiTgv4ppNctrRpwLG0U6za-66aScQWZ0uCUjc,1016
30
31
  haiku/rag/graph/models.py,sha256=sgL5_wSbQJrNOITH615jryPBhTE8J3ZiZWVxO9Ty-JI,755
31
32
  haiku/rag/graph/prompts.py,sha256=xJgAHjUVczxCgk7YLPyy6DdQFi0lwj42vJqIFnPqcYw,2221
32
33
  haiku/rag/graph/nodes/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
@@ -34,8 +35,8 @@ haiku/rag/graph/nodes/analysis.py,sha256=g-Aw3nPuCHWo0CXM96Ixa4vQI4TpI6tg6ooHT_J
34
35
  haiku/rag/graph/nodes/plan.py,sha256=Bb6Fva9vwArCU-5xBr24N4pM3wfLP-Vwufgss8HfXMQ,2622
35
36
  haiku/rag/graph/nodes/search.py,sha256=DdHhEY7fmWUqis6Nk0bj-di56-ML262B51N9zytzKYk,3699
36
37
  haiku/rag/graph/nodes/synthesize.py,sha256=WF0D44SwLP1OK8C6ViOAhFOtGQ0mj3aO54z5bemJb4E,1828
37
- haiku/rag/qa/__init__.py,sha256=eFRV5GFwe1UsqniEqOLdzAMT2J6QhSiHq5_Li7c6Fs4,520
38
- haiku/rag/qa/agent.py,sha256=sN2SVpaQAxg5Hm47LhrHpbo3ELVi1ev9DxKu_ec1c-Y,3123
38
+ haiku/rag/qa/__init__.py,sha256=Q18B5cjgYSuOdzwsJkXDeqcclAI2pu3tBIcWLcMTT5M,949
39
+ haiku/rag/qa/agent.py,sha256=ReuvluxVzaH82PhrFLNAAM3rVrSj-sKHkhki266SsGI,3181
39
40
  haiku/rag/qa/prompts.py,sha256=Lqwn3m4zCsu_CJiC4s9cLsuPNbb9nq6j2PqEF3lw1eA,3380
40
41
  haiku/rag/qa/deep/__init__.py,sha256=SnCpWxWip-TaFzVKlFyrOgYeXEqT_gpIlaSItEEJ6r0,50
41
42
  haiku/rag/qa/deep/dependencies.py,sha256=AKFqcC1D3N1VPudnFmLH29K5eJWEC5wtwUGkO4FM4jc,998
@@ -44,11 +45,11 @@ haiku/rag/qa/deep/models.py,sha256=siZMQXD21_3nk8kaLCv0BCuD9TydLYo-yC4-9CxQy3E,6
44
45
  haiku/rag/qa/deep/nodes.py,sha256=XbDujD_xg-NsJS2oYm3LqkfxeHZCzT2f9wBNhVh0wns,10442
45
46
  haiku/rag/qa/deep/prompts.py,sha256=t1fEvoD5Rdab92eAOvefv2wBVmkPFuR0BQ8Kh4X0-mY,2565
46
47
  haiku/rag/qa/deep/state.py,sha256=ICFIX0oRtBs6Sdq9YnmnP04BkGiQYwucfS3Mf8XLcCU,570
47
- haiku/rag/reranking/__init__.py,sha256=95ApqN51rcog9MLkTh_uNE69qOVozO1Z6KMbZZj8nH0,963
48
- haiku/rag/reranking/base.py,sha256=LM9yUSSJ414UgBZhFTgxGprlRqzfTe4I1vgjricz2JY,405
49
- haiku/rag/reranking/cohere.py,sha256=1iTdiaa8vvb6oHVB2qpWzUOVkyfUcimVSZp6Qr4aq4c,1049
50
- haiku/rag/reranking/mxbai.py,sha256=uveGFIdmNmepd2EQsvYr64wv0ra2_wB845hdSZXy5Cw,908
51
- haiku/rag/reranking/vllm.py,sha256=xVGH9ss-ISWdJ5SKUUHUbTqBo7PIEmA_SQv0ScdJ6XA,1479
48
+ haiku/rag/reranking/__init__.py,sha256=34xH2YZ7OCC3H8Yb-zyPuehTRQdijMSY9TC8AmZDOGQ,1296
49
+ haiku/rag/reranking/base.py,sha256=Yji15nAR8LyIJGqZvEZifTWmortNQ4k_7ZHst_5mRYk,408
50
+ haiku/rag/reranking/cohere.py,sha256=BhBPPnaSnDoVlkL_MHF74kegXQBrsZGKnWqC40ztiAk,1050
51
+ haiku/rag/reranking/mxbai.py,sha256=qR55dmpaBz15lSN_wXD3-Z6Kqr_bmNKU9q4Pwef_wB8,911
52
+ haiku/rag/reranking/vllm.py,sha256=Ip83qzV2RM7qXTj0mE2St66hvXykovoNW8Hu3AUebDc,1489
52
53
  haiku/rag/research/__init__.py,sha256=xfVzYkt8QETjZaP8v4LdK8MC2R_JmxKDD34LefvrJbo,201
53
54
  haiku/rag/research/common.py,sha256=mrKXolTnDxcONjodmSPVAtXYWqbU0Bie2W-4lOTclGY,2988
54
55
  haiku/rag/research/dependencies.py,sha256=hiGImk7HyJF4LRYnTmsLFGzY1QrGjAyPW5vb_2JQRDo,8148
@@ -58,19 +59,19 @@ haiku/rag/research/prompts.py,sha256=opz4MXjoDHH1wjG6bPyiqT0LVzk3pBA6y_a9zpBW8yM
58
59
  haiku/rag/research/state.py,sha256=P8RXJMi3wA3l1j6yo8dsAyso6S27FgqS7fvZUUY447A,917
59
60
  haiku/rag/research/stream.py,sha256=amyGDimkNp_FHYUXCqtpbeDOx7sC1jQ-7DwoxuNOL1g,5576
60
61
  haiku/rag/store/__init__.py,sha256=R2IRcxtkFDxqa2sgMirqLq3l2-FPdWr6ydYStaqm5OQ,104
61
- haiku/rag/store/engine.py,sha256=n2IxztyN2UpLLSUVXurjL-e_ANthKUpWyB1gdHfgBMM,11468
62
+ haiku/rag/store/engine.py,sha256=FP1-9LOxoEvQBswYcM2GS_E2RpvSZct49vVktL-oPlo,11697
62
63
  haiku/rag/store/models/__init__.py,sha256=kc7Ctf53Jr483tk4QTIrcgqBbXDz4ZoeYSkFXfPnpks,89
63
64
  haiku/rag/store/models/chunk.py,sha256=3EuZav4QekJIeHBCub48EM8SjNX8HEJ6wVDXGot4PEQ,421
64
65
  haiku/rag/store/models/document.py,sha256=cZXy_jEti-hnhq7FKhuhCfd99ccY9fIHMLovB_Thbb8,425
65
66
  haiku/rag/store/repositories/__init__.py,sha256=Olv5dLfBQINRV3HrsfUpjzkZ7Qm7goEYyMNykgo_DaY,291
66
- haiku/rag/store/repositories/chunk.py,sha256=B0CowrBNy0fd8GLnVJVfqDaLoWxEPPJK3SODya0I0OI,14093
67
- haiku/rag/store/repositories/document.py,sha256=EtgD5pDjghXf6dloBOOEVJp8DI9O_celc_FbYzOywAE,8125
68
- haiku/rag/store/repositories/settings.py,sha256=ObrDrzxHn-yA1WcbgIoJoVmAbVvQHAFvEdRyJFt5Opc,5685
67
+ haiku/rag/store/repositories/chunk.py,sha256=bXa-NBfLdLKJuFLGEKQhFlsLi-XNbojhQYVyBjwUxz8,14205
68
+ haiku/rag/store/repositories/document.py,sha256=UOC_5QEUl-3RnGPJzn92KjrCnhmh5TmWln4yd5cJ4Ss,8133
69
+ haiku/rag/store/repositories/settings.py,sha256=15gS7Xj7cG4qetv_ioxZO_r31by7GuSqtpowOsMkHmc,6129
69
70
  haiku/rag/store/upgrades/__init__.py,sha256=RQ8A6rEXBASLb5PD9vdDnEas_m_GgRzzdVu4B88Snqc,1975
70
71
  haiku/rag/store/upgrades/v0_10_1.py,sha256=qNGnxj6hoHaHJ1rKTiALfw0c9NQOi0KAK-VZCD_073A,1959
71
72
  haiku/rag/store/upgrades/v0_9_3.py,sha256=NrjNilQSgDtFWRbL3ZUtzQzJ8tf9u0dDRJtnDFwwbdw,3322
72
- haiku_rag-0.12.1.dist-info/METADATA,sha256=POFHzbGYiVj7UkX_1VSA8zUByIiQEG1dPePWO55T7nU,7477
73
- haiku_rag-0.12.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
74
- haiku_rag-0.12.1.dist-info/entry_points.txt,sha256=G1U3nAkNd5YDYd4v0tuYFbriz0i-JheCsFuT9kIoGCI,48
75
- haiku_rag-0.12.1.dist-info/licenses/LICENSE,sha256=eXZrWjSk9PwYFNK9yUczl3oPl95Z4V9UXH7bPN46iPo,1065
76
- haiku_rag-0.12.1.dist-info/RECORD,,
73
+ haiku_rag-0.13.1.dist-info/METADATA,sha256=xoojNWUahlMw6gWdujYr_VNti4ss4We0mL0rkTOkxgo,8139
74
+ haiku_rag-0.13.1.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
75
+ haiku_rag-0.13.1.dist-info/entry_points.txt,sha256=G1U3nAkNd5YDYd4v0tuYFbriz0i-JheCsFuT9kIoGCI,48
76
+ haiku_rag-0.13.1.dist-info/licenses/LICENSE,sha256=eXZrWjSk9PwYFNK9yUczl3oPl95Z4V9UXH7bPN46iPo,1065
77
+ haiku_rag-0.13.1.dist-info/RECORD,,
haiku/rag/config.py DELETED
@@ -1,90 +0,0 @@
1
- import os
2
- from pathlib import Path
3
-
4
- from dotenv import load_dotenv
5
- from pydantic import BaseModel, field_validator
6
-
7
- from haiku.rag.utils import get_default_data_dir
8
-
9
- load_dotenv()
10
-
11
-
12
- class AppConfig(BaseModel):
13
- ENV: str = "production"
14
-
15
- LANCEDB_API_KEY: str = ""
16
- LANCEDB_URI: str = ""
17
- LANCEDB_REGION: str = ""
18
-
19
- DEFAULT_DATA_DIR: Path = get_default_data_dir()
20
- MONITOR_DIRECTORIES: list[Path] = []
21
-
22
- EMBEDDINGS_PROVIDER: str = "ollama"
23
- EMBEDDINGS_MODEL: str = "qwen3-embedding"
24
- EMBEDDINGS_VECTOR_DIM: int = 4096
25
-
26
- RERANK_PROVIDER: str = ""
27
- RERANK_MODEL: str = ""
28
-
29
- QA_PROVIDER: str = "ollama"
30
- QA_MODEL: str = "gpt-oss"
31
-
32
- # Research defaults (fallback to QA if not provided via env)
33
- RESEARCH_PROVIDER: str = "ollama"
34
- RESEARCH_MODEL: str = "gpt-oss"
35
-
36
- CHUNK_SIZE: int = 256
37
- CONTEXT_CHUNK_RADIUS: int = 0
38
-
39
- # Optional dotted path or file path to a callable that preprocesses
40
- # markdown content before chunking. Examples:
41
- MARKDOWN_PREPROCESSOR: str = ""
42
-
43
- OLLAMA_BASE_URL: str = "http://localhost:11434"
44
-
45
- VLLM_EMBEDDINGS_BASE_URL: str = ""
46
- VLLM_RERANK_BASE_URL: str = ""
47
- VLLM_QA_BASE_URL: str = ""
48
- VLLM_RESEARCH_BASE_URL: str = ""
49
-
50
- # Provider keys
51
- VOYAGE_API_KEY: str = ""
52
- OPENAI_API_KEY: str = ""
53
- ANTHROPIC_API_KEY: str = ""
54
- COHERE_API_KEY: str = ""
55
-
56
- # If true, refuse to auto-create a new LanceDB database or tables
57
- # and error out when the database does not already exist.
58
- DISABLE_DB_AUTOCREATE: bool = False
59
-
60
- # Vacuum retention threshold in seconds. Only versions older than this
61
- # threshold will be removed during vacuum operations. Default is 60 seconds
62
- # to allow concurrent connections to safely use recent versions.
63
- VACUUM_RETENTION_SECONDS: int = 60
64
-
65
- # Maximum number of A2A contexts to keep in memory. When exceeded, least
66
- # recently used contexts will be evicted. Default is 1000.
67
- A2A_MAX_CONTEXTS: int = 1000
68
-
69
- @field_validator("MONITOR_DIRECTORIES", mode="before")
70
- @classmethod
71
- def parse_monitor_directories(cls, v):
72
- if isinstance(v, str):
73
- if not v.strip():
74
- return []
75
- return [
76
- Path(path.strip()).absolute() for path in v.split(",") if path.strip()
77
- ]
78
- return v
79
-
80
-
81
- # Expose Config object for app to import
82
- Config = AppConfig.model_validate(os.environ)
83
- if Config.OPENAI_API_KEY:
84
- os.environ["OPENAI_API_KEY"] = Config.OPENAI_API_KEY
85
- if Config.VOYAGE_API_KEY:
86
- os.environ["VOYAGE_API_KEY"] = Config.VOYAGE_API_KEY
87
- if Config.ANTHROPIC_API_KEY:
88
- os.environ["ANTHROPIC_API_KEY"] = Config.ANTHROPIC_API_KEY
89
- if Config.COHERE_API_KEY:
90
- os.environ["CO_API_KEY"] = Config.COHERE_API_KEY
haiku/rag/migration.py DELETED
@@ -1,316 +0,0 @@
1
- import json
2
- import sqlite3
3
- import struct
4
- from pathlib import Path
5
- from uuid import uuid4
6
-
7
- from rich.console import Console
8
- from rich.progress import Progress, TaskID
9
-
10
- from haiku.rag.store.engine import Store
11
-
12
-
13
- def deserialize_sqlite_embedding(data: bytes) -> list[float]:
14
- """Deserialize sqlite-vec embedding from bytes."""
15
- if not data:
16
- return []
17
- # sqlite-vec stores embeddings as float32 arrays
18
- num_floats = len(data) // 4
19
- return list(struct.unpack(f"{num_floats}f", data))
20
-
21
-
22
- class SQLiteToLanceDBMigrator:
23
- """Migrates data from SQLite to LanceDB."""
24
-
25
- def __init__(self, sqlite_path: Path, lancedb_path: Path):
26
- self.sqlite_path = sqlite_path
27
- self.lancedb_path = lancedb_path
28
- self.console = Console()
29
-
30
- async def migrate(self) -> bool:
31
- """Perform the migration."""
32
- try:
33
- self.console.print(
34
- f"[blue]Starting migration from {self.sqlite_path} to {self.lancedb_path}[/blue]"
35
- )
36
-
37
- # Check if SQLite database exists
38
- if not self.sqlite_path.exists():
39
- self.console.print(
40
- f"[red]SQLite database not found: {self.sqlite_path}[/red]"
41
- )
42
- return False
43
-
44
- # Connect to SQLite database
45
- sqlite_conn = sqlite3.connect(self.sqlite_path)
46
- sqlite_conn.row_factory = sqlite3.Row
47
-
48
- # Load the sqlite-vec extension
49
- try:
50
- import sqlite_vec # type: ignore
51
-
52
- sqlite_conn.enable_load_extension(True)
53
- sqlite_vec.load(sqlite_conn)
54
- self.console.print("[cyan]Loaded sqlite-vec extension[/cyan]")
55
- except Exception as e:
56
- self.console.print(
57
- f"[yellow]Warning: Could not load sqlite-vec extension: {e}[/yellow]"
58
- )
59
- self.console.print(
60
- "[yellow]Install sqlite-vec with[/yellow]\n[green]uv pip install sqlite-vec [/green]"
61
- )
62
- exit(1)
63
-
64
- # Create LanceDB store
65
- lance_store = Store(self.lancedb_path, skip_validation=True)
66
-
67
- with Progress() as progress:
68
- # Migrate documents
69
- doc_task = progress.add_task(
70
- "[green]Migrating documents...", total=None
71
- )
72
- document_id_mapping = self._migrate_documents(
73
- sqlite_conn, lance_store, progress, doc_task
74
- )
75
-
76
- # Migrate chunks and embeddings
77
- chunk_task = progress.add_task(
78
- "[yellow]Migrating chunks and embeddings...", total=None
79
- )
80
- self._migrate_chunks(
81
- sqlite_conn, lance_store, progress, chunk_task, document_id_mapping
82
- )
83
-
84
- # Migrate settings
85
- settings_task = progress.add_task(
86
- "[blue]Migrating settings...", total=None
87
- )
88
- self._migrate_settings(
89
- sqlite_conn, lance_store, progress, settings_task
90
- )
91
-
92
- sqlite_conn.close()
93
-
94
- # Optimize and cleanup using centralized vacuum
95
- self.console.print("[cyan]Optimizing LanceDB...[/cyan]")
96
- try:
97
- await lance_store.vacuum()
98
- self.console.print("[green]✅ Optimization completed[/green]")
99
- except Exception as e:
100
- self.console.print(
101
- f"[yellow]Warning: Optimization failed: {e}[/yellow]"
102
- )
103
-
104
- lance_store.close()
105
-
106
- self.console.print("[green]✅ Migration completed successfully![/green]")
107
- self.console.print(
108
- f"[green]✅ Migrated {len(document_id_mapping)} documents[/green]"
109
- )
110
- return True
111
-
112
- except Exception as e:
113
- self.console.print(f"[red]❌ Migration failed: {e}[/red]")
114
- import traceback
115
-
116
- self.console.print(f"[red]{traceback.format_exc()}[/red]")
117
- return False
118
-
119
- def _migrate_documents(
120
- self,
121
- sqlite_conn: sqlite3.Connection,
122
- lance_store: Store,
123
- progress: Progress,
124
- task: TaskID,
125
- ) -> dict[int, str]:
126
- """Migrate documents from SQLite to LanceDB and return ID mapping."""
127
- cursor = sqlite_conn.cursor()
128
- cursor.execute(
129
- "SELECT id, content, uri, metadata, created_at, updated_at FROM documents ORDER BY id"
130
- )
131
-
132
- documents = []
133
- id_mapping = {} # Maps old integer ID to new UUID
134
-
135
- for row in cursor.fetchall():
136
- new_uuid = str(uuid4())
137
- id_mapping[row["id"]] = new_uuid
138
-
139
- doc_data = {
140
- "id": new_uuid,
141
- "content": row["content"],
142
- "uri": row["uri"],
143
- "metadata": json.loads(row["metadata"]) if row["metadata"] else {},
144
- "created_at": row["created_at"],
145
- "updated_at": row["updated_at"],
146
- }
147
- documents.append(doc_data)
148
-
149
- # Batch insert documents to LanceDB
150
- if documents:
151
- from haiku.rag.store.engine import DocumentRecord
152
-
153
- doc_records = [
154
- DocumentRecord(
155
- id=doc["id"],
156
- content=doc["content"],
157
- uri=doc["uri"],
158
- metadata=json.dumps(doc["metadata"]),
159
- created_at=doc["created_at"],
160
- updated_at=doc["updated_at"],
161
- )
162
- for doc in documents
163
- ]
164
- lance_store.documents_table.add(doc_records)
165
-
166
- progress.update(task, completed=len(documents), total=len(documents))
167
- return id_mapping
168
-
169
- def _migrate_chunks(
170
- self,
171
- sqlite_conn: sqlite3.Connection,
172
- lance_store: Store,
173
- progress: Progress,
174
- task: TaskID,
175
- document_id_mapping: dict[int, str],
176
- ):
177
- """Migrate chunks and embeddings from SQLite to LanceDB."""
178
- cursor = sqlite_conn.cursor()
179
-
180
- # Get chunks first
181
- cursor.execute("""
182
- SELECT id, document_id, content, metadata
183
- FROM chunks
184
- ORDER BY id
185
- """)
186
-
187
- chunks_data = cursor.fetchall()
188
-
189
- # Get embeddings using the sqlite-vec virtual table
190
- embeddings_map = {}
191
- try:
192
- # Use the virtual table to get embeddings properly
193
- cursor.execute("""
194
- SELECT chunk_id, embedding
195
- FROM chunk_embeddings
196
- """)
197
-
198
- for row in cursor.fetchall():
199
- chunk_id = row[0]
200
- embedding_blob = row[1]
201
- if embedding_blob and chunk_id not in embeddings_map:
202
- embeddings_map[chunk_id] = embedding_blob
203
-
204
- except sqlite3.OperationalError as e:
205
- self.console.print(
206
- f"[yellow]Warning: Could not extract embeddings from virtual table: {e}[/yellow]"
207
- )
208
-
209
- chunks = []
210
- for row in chunks_data:
211
- # Generate new UUID for chunk
212
- chunk_uuid = str(uuid4())
213
-
214
- # Map the old document_id to new UUID
215
- document_uuid = document_id_mapping.get(row["document_id"])
216
- if not document_uuid:
217
- self.console.print(
218
- f"[yellow]Warning: Document ID {row['document_id']} not found in mapping for chunk {row['id']}[/yellow]"
219
- )
220
- continue
221
-
222
- # Get embedding for this chunk
223
- embedding = []
224
- embedding_blob = embeddings_map.get(row["id"])
225
- if embedding_blob:
226
- try:
227
- embedding = deserialize_sqlite_embedding(embedding_blob)
228
- except Exception as e:
229
- self.console.print(
230
- f"[yellow]Warning: Failed to deserialize embedding for chunk {row['id']}: {e}[/yellow]"
231
- )
232
- # Generate a zero vector of the expected dimension
233
- embedding = [0.0] * lance_store.embedder._vector_dim
234
- else:
235
- # No embedding found, generate zero vector
236
- embedding = [0.0] * lance_store.embedder._vector_dim
237
-
238
- chunk_data = {
239
- "id": chunk_uuid,
240
- "document_id": document_uuid,
241
- "content": row["content"],
242
- "metadata": json.loads(row["metadata"]) if row["metadata"] else {},
243
- "vector": embedding,
244
- }
245
- chunks.append(chunk_data)
246
-
247
- # Batch insert chunks to LanceDB
248
- if chunks:
249
- chunk_records = [
250
- lance_store.ChunkRecord(
251
- id=chunk["id"],
252
- document_id=chunk["document_id"],
253
- content=chunk["content"],
254
- metadata=json.dumps(chunk["metadata"]),
255
- vector=chunk["vector"],
256
- )
257
- for chunk in chunks
258
- ]
259
- lance_store.chunks_table.add(chunk_records)
260
-
261
- progress.update(task, completed=len(chunks), total=len(chunks))
262
-
263
- def _migrate_settings(
264
- self,
265
- sqlite_conn: sqlite3.Connection,
266
- lance_store: Store,
267
- progress: Progress,
268
- task: TaskID,
269
- ):
270
- """Migrate settings from SQLite to LanceDB."""
271
- cursor = sqlite_conn.cursor()
272
-
273
- try:
274
- cursor.execute("SELECT id, settings FROM settings WHERE id = 1")
275
- row = cursor.fetchone()
276
-
277
- if row:
278
- settings_data = json.loads(row["settings"]) if row["settings"] else {}
279
-
280
- # Update the existing settings in LanceDB (use string ID)
281
- lance_store.settings_table.update(
282
- where="id = 'settings'",
283
- values={"settings": json.dumps(settings_data)},
284
- )
285
-
286
- progress.update(task, completed=1, total=1)
287
- else:
288
- progress.update(task, completed=0, total=0)
289
-
290
- except sqlite3.OperationalError:
291
- # Settings table doesn't exist in old SQLite database
292
- self.console.print(
293
- "[yellow]No settings table found in SQLite database[/yellow]"
294
- )
295
- progress.update(task, completed=0, total=0)
296
-
297
-
298
- async def migrate_sqlite_to_lancedb(
299
- sqlite_path: Path, lancedb_path: Path | None = None
300
- ) -> bool:
301
- """
302
- Migrate an existing SQLite database to LanceDB.
303
-
304
- Args:
305
- sqlite_path: Path to the existing SQLite database
306
- lancedb_path: Path for the new LanceDB database (optional, will auto-generate if not provided)
307
-
308
- Returns:
309
- True if migration was successful, False otherwise
310
- """
311
- if lancedb_path is None:
312
- # Auto-generate LanceDB path
313
- lancedb_path = sqlite_path.parent / (sqlite_path.stem + ".lancedb")
314
-
315
- migrator = SQLiteToLanceDBMigrator(sqlite_path, lancedb_path)
316
- return await migrator.migrate()