haiku.rag 0.10.2__py3-none-any.whl → 0.19.3__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (56) hide show
  1. README.md +172 -0
  2. {haiku_rag-0.10.2.dist-info → haiku_rag-0.19.3.dist-info}/METADATA +79 -51
  3. haiku_rag-0.19.3.dist-info/RECORD +6 -0
  4. {haiku_rag-0.10.2.dist-info → haiku_rag-0.19.3.dist-info}/WHEEL +1 -1
  5. haiku/rag/__init__.py +0 -0
  6. haiku/rag/app.py +0 -437
  7. haiku/rag/chunker.py +0 -51
  8. haiku/rag/cli.py +0 -466
  9. haiku/rag/client.py +0 -605
  10. haiku/rag/config.py +0 -81
  11. haiku/rag/embeddings/__init__.py +0 -35
  12. haiku/rag/embeddings/base.py +0 -15
  13. haiku/rag/embeddings/ollama.py +0 -17
  14. haiku/rag/embeddings/openai.py +0 -16
  15. haiku/rag/embeddings/vllm.py +0 -19
  16. haiku/rag/embeddings/voyageai.py +0 -17
  17. haiku/rag/logging.py +0 -56
  18. haiku/rag/mcp.py +0 -156
  19. haiku/rag/migration.py +0 -316
  20. haiku/rag/monitor.py +0 -73
  21. haiku/rag/qa/__init__.py +0 -15
  22. haiku/rag/qa/agent.py +0 -91
  23. haiku/rag/qa/prompts.py +0 -60
  24. haiku/rag/reader.py +0 -115
  25. haiku/rag/reranking/__init__.py +0 -34
  26. haiku/rag/reranking/base.py +0 -13
  27. haiku/rag/reranking/cohere.py +0 -34
  28. haiku/rag/reranking/mxbai.py +0 -28
  29. haiku/rag/reranking/vllm.py +0 -44
  30. haiku/rag/research/__init__.py +0 -20
  31. haiku/rag/research/common.py +0 -53
  32. haiku/rag/research/dependencies.py +0 -47
  33. haiku/rag/research/graph.py +0 -29
  34. haiku/rag/research/models.py +0 -70
  35. haiku/rag/research/nodes/evaluate.py +0 -80
  36. haiku/rag/research/nodes/plan.py +0 -63
  37. haiku/rag/research/nodes/search.py +0 -93
  38. haiku/rag/research/nodes/synthesize.py +0 -51
  39. haiku/rag/research/prompts.py +0 -114
  40. haiku/rag/research/state.py +0 -25
  41. haiku/rag/store/__init__.py +0 -4
  42. haiku/rag/store/engine.py +0 -269
  43. haiku/rag/store/models/__init__.py +0 -4
  44. haiku/rag/store/models/chunk.py +0 -17
  45. haiku/rag/store/models/document.py +0 -17
  46. haiku/rag/store/repositories/__init__.py +0 -9
  47. haiku/rag/store/repositories/chunk.py +0 -424
  48. haiku/rag/store/repositories/document.py +0 -237
  49. haiku/rag/store/repositories/settings.py +0 -155
  50. haiku/rag/store/upgrades/__init__.py +0 -62
  51. haiku/rag/store/upgrades/v0_10_1.py +0 -64
  52. haiku/rag/store/upgrades/v0_9_3.py +0 -112
  53. haiku/rag/utils.py +0 -199
  54. haiku_rag-0.10.2.dist-info/RECORD +0 -54
  55. {haiku_rag-0.10.2.dist-info → haiku_rag-0.19.3.dist-info}/entry_points.txt +0 -0
  56. {haiku_rag-0.10.2.dist-info → haiku_rag-0.19.3.dist-info}/licenses/LICENSE +0 -0
haiku/rag/client.py DELETED
@@ -1,605 +0,0 @@
1
- import hashlib
2
- import mimetypes
3
- import tempfile
4
- from collections.abc import AsyncGenerator
5
- from pathlib import Path
6
- from urllib.parse import urlparse
7
-
8
- import httpx
9
-
10
- from haiku.rag.config import Config
11
- from haiku.rag.reader import FileReader
12
- from haiku.rag.reranking import get_reranker
13
- from haiku.rag.store.engine import Store
14
- from haiku.rag.store.models.chunk import Chunk
15
- from haiku.rag.store.models.document import Document
16
- from haiku.rag.store.repositories.chunk import ChunkRepository
17
- from haiku.rag.store.repositories.document import DocumentRepository
18
- from haiku.rag.store.repositories.settings import SettingsRepository
19
- from haiku.rag.utils import text_to_docling_document
20
-
21
-
22
- class HaikuRAG:
23
- """High-level haiku-rag client."""
24
-
25
- def __init__(
26
- self,
27
- db_path: Path = Config.DEFAULT_DATA_DIR / "haiku.rag.lancedb",
28
- skip_validation: bool = False,
29
- ):
30
- """Initialize the RAG client with a database path.
31
-
32
- Args:
33
- db_path: Path to the database file.
34
- skip_validation: Whether to skip configuration validation on database load.
35
- """
36
- self.store = Store(db_path, skip_validation=skip_validation)
37
- self.document_repository = DocumentRepository(self.store)
38
- self.chunk_repository = ChunkRepository(self.store)
39
-
40
- async def __aenter__(self):
41
- """Async context manager entry."""
42
- return self
43
-
44
- async def __aexit__(self, exc_type, exc_val, exc_tb): # noqa: ARG002
45
- """Async context manager exit."""
46
- self.close()
47
- return False
48
-
49
- async def _create_document_with_docling(
50
- self,
51
- docling_document,
52
- uri: str | None = None,
53
- title: str | None = None,
54
- metadata: dict | None = None,
55
- chunks: list[Chunk] | None = None,
56
- ) -> Document:
57
- """Create a new document from DoclingDocument."""
58
- content = docling_document.export_to_markdown()
59
- document = Document(
60
- content=content,
61
- uri=uri,
62
- title=title,
63
- metadata=metadata or {},
64
- )
65
- return await self.document_repository._create_with_docling(
66
- document, docling_document, chunks
67
- )
68
-
69
- async def create_document(
70
- self,
71
- content: str,
72
- uri: str | None = None,
73
- title: str | None = None,
74
- metadata: dict | None = None,
75
- chunks: list[Chunk] | None = None,
76
- ) -> Document:
77
- """Create a new document with optional URI and metadata.
78
-
79
- Args:
80
- content: The text content of the document.
81
- uri: Optional URI identifier for the document.
82
- metadata: Optional metadata dictionary.
83
- chunks: Optional list of pre-created chunks to use instead of generating new ones.
84
-
85
- Returns:
86
- The created Document instance.
87
- """
88
- # Convert content to DoclingDocument for processing
89
- docling_document = text_to_docling_document(content)
90
-
91
- document = Document(
92
- content=content,
93
- uri=uri,
94
- title=title,
95
- metadata=metadata or {},
96
- )
97
- return await self.document_repository._create_with_docling(
98
- document, docling_document, chunks
99
- )
100
-
101
- async def create_document_from_source(
102
- self, source: str | Path, title: str | None = None, metadata: dict | None = None
103
- ) -> Document:
104
- """Create or update a document from a file path or URL.
105
-
106
- Checks if a document with the same URI already exists:
107
- - If MD5 is unchanged, returns existing document
108
- - If MD5 changed, updates the document
109
- - If no document exists, creates a new one
110
-
111
- Args:
112
- source: File path (as string or Path) or URL to parse
113
- metadata: Optional metadata dictionary
114
-
115
- Returns:
116
- Document instance (created, updated, or existing)
117
-
118
- Raises:
119
- ValueError: If the file/URL cannot be parsed or doesn't exist
120
- httpx.RequestError: If URL request fails
121
- """
122
-
123
- # Normalize metadata
124
- metadata = metadata or {}
125
-
126
- # Check if it's a URL
127
- source_str = str(source)
128
- parsed_url = urlparse(source_str)
129
- if parsed_url.scheme in ("http", "https"):
130
- return await self._create_or_update_document_from_url(
131
- source_str, title=title, metadata=metadata
132
- )
133
- elif parsed_url.scheme == "file":
134
- # Handle file:// URI by converting to path
135
- source_path = Path(parsed_url.path)
136
- else:
137
- # Handle as regular file path
138
- source_path = Path(source) if isinstance(source, str) else source
139
- if source_path.suffix.lower() not in FileReader.extensions:
140
- raise ValueError(f"Unsupported file extension: {source_path.suffix}")
141
-
142
- if not source_path.exists():
143
- raise ValueError(f"File does not exist: {source_path}")
144
-
145
- uri = source_path.absolute().as_uri()
146
- md5_hash = hashlib.md5(source_path.read_bytes()).hexdigest()
147
-
148
- # Get content type from file extension (do before early return)
149
- content_type, _ = mimetypes.guess_type(str(source_path))
150
- if not content_type:
151
- content_type = "application/octet-stream"
152
- # Merge metadata with contentType and md5
153
- metadata.update({"contentType": content_type, "md5": md5_hash})
154
-
155
- # Check if document already exists
156
- existing_doc = await self.get_document_by_uri(uri)
157
- if existing_doc and existing_doc.metadata.get("md5") == md5_hash:
158
- # MD5 unchanged; update title/metadata if provided
159
- updated = False
160
- if title is not None and title != existing_doc.title:
161
- existing_doc.title = title
162
- updated = True
163
- if metadata:
164
- existing_doc.metadata = {**(existing_doc.metadata or {}), **metadata}
165
- updated = True
166
- if updated:
167
- return await self.document_repository.update(existing_doc)
168
- return existing_doc
169
-
170
- # Parse file only when content changed or new document
171
- docling_document = FileReader.parse_file(source_path)
172
-
173
- if existing_doc:
174
- # Update existing document
175
- existing_doc.content = docling_document.export_to_markdown()
176
- existing_doc.metadata = metadata
177
- if title is not None:
178
- existing_doc.title = title
179
- return await self.document_repository._update_with_docling(
180
- existing_doc, docling_document
181
- )
182
- else:
183
- # Create new document using DoclingDocument
184
- return await self._create_document_with_docling(
185
- docling_document=docling_document,
186
- uri=uri,
187
- title=title,
188
- metadata=metadata,
189
- )
190
-
191
- async def _create_or_update_document_from_url(
192
- self, url: str, title: str | None = None, metadata: dict | None = None
193
- ) -> Document:
194
- """Create or update a document from a URL by downloading and parsing the content.
195
-
196
- Checks if a document with the same URI already exists:
197
- - If MD5 is unchanged, returns existing document
198
- - If MD5 changed, updates the document
199
- - If no document exists, creates a new one
200
-
201
- Args:
202
- url: URL to download and parse
203
- metadata: Optional metadata dictionary
204
-
205
- Returns:
206
- Document instance (created, updated, or existing)
207
-
208
- Raises:
209
- ValueError: If the content cannot be parsed
210
- httpx.RequestError: If URL request fails
211
- """
212
- metadata = metadata or {}
213
-
214
- async with httpx.AsyncClient() as client:
215
- response = await client.get(url)
216
- response.raise_for_status()
217
-
218
- md5_hash = hashlib.md5(response.content).hexdigest()
219
-
220
- # Get content type early (used for potential no-op update)
221
- content_type = response.headers.get("content-type", "").lower()
222
-
223
- # Check if document already exists
224
- existing_doc = await self.get_document_by_uri(url)
225
- if existing_doc and existing_doc.metadata.get("md5") == md5_hash:
226
- # MD5 unchanged; update title/metadata if provided
227
- updated = False
228
- if title is not None and title != existing_doc.title:
229
- existing_doc.title = title
230
- updated = True
231
- metadata.update({"contentType": content_type, "md5": md5_hash})
232
- if metadata:
233
- existing_doc.metadata = {
234
- **(existing_doc.metadata or {}),
235
- **metadata,
236
- }
237
- updated = True
238
- if updated:
239
- return await self.document_repository.update(existing_doc)
240
- return existing_doc
241
- file_extension = self._get_extension_from_content_type_or_url(
242
- url, content_type
243
- )
244
-
245
- if file_extension not in FileReader.extensions:
246
- raise ValueError(
247
- f"Unsupported content type/extension: {content_type}/{file_extension}"
248
- )
249
-
250
- # Create a temporary file with the appropriate extension
251
- with tempfile.NamedTemporaryFile(
252
- mode="wb", suffix=file_extension
253
- ) as temp_file:
254
- temp_file.write(response.content)
255
- temp_file.flush() # Ensure content is written to disk
256
- temp_path = Path(temp_file.name)
257
-
258
- # Parse the content using FileReader
259
- docling_document = FileReader.parse_file(temp_path)
260
-
261
- # Merge metadata with contentType and md5
262
- metadata.update({"contentType": content_type, "md5": md5_hash})
263
-
264
- if existing_doc:
265
- existing_doc.content = docling_document.export_to_markdown()
266
- existing_doc.metadata = metadata
267
- if title is not None:
268
- existing_doc.title = title
269
- return await self.document_repository._update_with_docling(
270
- existing_doc, docling_document
271
- )
272
- else:
273
- return await self._create_document_with_docling(
274
- docling_document=docling_document,
275
- uri=url,
276
- title=title,
277
- metadata=metadata,
278
- )
279
-
280
- def _get_extension_from_content_type_or_url(
281
- self, url: str, content_type: str
282
- ) -> str:
283
- """Determine file extension from content type or URL."""
284
- # Common content type mappings
285
- content_type_map = {
286
- "text/html": ".html",
287
- "text/plain": ".txt",
288
- "text/markdown": ".md",
289
- "application/pdf": ".pdf",
290
- "application/json": ".json",
291
- "text/csv": ".csv",
292
- "application/vnd.openxmlformats-officedocument.wordprocessingml.document": ".docx",
293
- "application/vnd.openxmlformats-officedocument.presentationml.presentation": ".pptx",
294
- "application/vnd.openxmlformats-officedocument.spreadsheetml.sheet": ".xlsx",
295
- }
296
-
297
- # Try content type first
298
- for ct, ext in content_type_map.items():
299
- if ct in content_type:
300
- return ext
301
-
302
- # Try URL extension
303
- parsed_url = urlparse(url)
304
- path = Path(parsed_url.path)
305
- if path.suffix:
306
- return path.suffix.lower()
307
-
308
- # Default to .html for web content
309
- return ".html"
310
-
311
- async def get_document_by_id(self, document_id: str) -> Document | None:
312
- """Get a document by its ID.
313
-
314
- Args:
315
- document_id: The unique identifier of the document.
316
-
317
- Returns:
318
- The Document instance if found, None otherwise.
319
- """
320
- return await self.document_repository.get_by_id(document_id)
321
-
322
- async def get_document_by_uri(self, uri: str) -> Document | None:
323
- """Get a document by its URI.
324
-
325
- Args:
326
- uri: The URI identifier of the document.
327
-
328
- Returns:
329
- The Document instance if found, None otherwise.
330
- """
331
- return await self.document_repository.get_by_uri(uri)
332
-
333
- async def update_document(self, document: Document) -> Document:
334
- """Update an existing document."""
335
- # Convert content to DoclingDocument
336
- docling_document = text_to_docling_document(document.content)
337
-
338
- return await self.document_repository._update_with_docling(
339
- document, docling_document
340
- )
341
-
342
- async def delete_document(self, document_id: str) -> bool:
343
- """Delete a document by its ID."""
344
- return await self.document_repository.delete(document_id)
345
-
346
- async def list_documents(
347
- self, limit: int | None = None, offset: int | None = None
348
- ) -> list[Document]:
349
- """List all documents with optional pagination.
350
-
351
- Args:
352
- limit: Maximum number of documents to return.
353
- offset: Number of documents to skip.
354
-
355
- Returns:
356
- List of Document instances.
357
- """
358
- return await self.document_repository.list_all(limit=limit, offset=offset)
359
-
360
- async def search(
361
- self, query: str, limit: int = 5, search_type: str = "hybrid"
362
- ) -> list[tuple[Chunk, float]]:
363
- """Search for relevant chunks using the specified search method with optional reranking.
364
-
365
- Args:
366
- query: The search query string.
367
- limit: Maximum number of results to return.
368
- search_type: Type of search - "vector", "fts", or "hybrid" (default).
369
-
370
- Returns:
371
- List of (chunk, score) tuples ordered by relevance.
372
- """
373
- # Get reranker if available
374
- reranker = get_reranker()
375
-
376
- if reranker is None:
377
- # No reranking - return direct search results
378
- return await self.chunk_repository.search(query, limit, search_type)
379
-
380
- # Get more initial results (3X) for reranking
381
- search_limit = limit * 3
382
- search_results = await self.chunk_repository.search(
383
- query, search_limit, search_type
384
- )
385
-
386
- # Apply reranking
387
- chunks = [chunk for chunk, _ in search_results]
388
- reranked_results = await reranker.rerank(query, chunks, top_n=limit)
389
-
390
- # Return reranked results with scores from reranker
391
- return reranked_results
392
-
393
- async def expand_context(
394
- self,
395
- search_results: list[tuple[Chunk, float]],
396
- radius: int = Config.CONTEXT_CHUNK_RADIUS,
397
- ) -> list[tuple[Chunk, float]]:
398
- """Expand search results with adjacent chunks, merging overlapping chunks.
399
-
400
- Args:
401
- search_results: List of (chunk, score) tuples from search.
402
- radius: Number of adjacent chunks to include before/after each chunk.
403
- Defaults to CONTEXT_CHUNK_RADIUS config setting.
404
-
405
- Returns:
406
- List of (chunk, score) tuples with expanded and merged context chunks.
407
- """
408
- if radius == 0:
409
- return search_results
410
-
411
- # Group chunks by document_id to handle merging within documents
412
- document_groups = {}
413
- for chunk, score in search_results:
414
- doc_id = chunk.document_id
415
- if doc_id not in document_groups:
416
- document_groups[doc_id] = []
417
- document_groups[doc_id].append((chunk, score))
418
-
419
- results = []
420
-
421
- for doc_id, doc_chunks in document_groups.items():
422
- # Get all expanded ranges for this document
423
- expanded_ranges = []
424
- for chunk, score in doc_chunks:
425
- adjacent_chunks = await self.chunk_repository.get_adjacent_chunks(
426
- chunk, radius
427
- )
428
-
429
- all_chunks = adjacent_chunks + [chunk]
430
-
431
- # Get the range of orders for this expanded chunk
432
- orders = [c.order for c in all_chunks]
433
- min_order = min(orders)
434
- max_order = max(orders)
435
-
436
- expanded_ranges.append(
437
- {
438
- "original_chunk": chunk,
439
- "score": score,
440
- "min_order": min_order,
441
- "max_order": max_order,
442
- "all_chunks": sorted(all_chunks, key=lambda c: c.order),
443
- }
444
- )
445
-
446
- # Merge overlapping/adjacent ranges
447
- merged_ranges = self._merge_overlapping_ranges(expanded_ranges)
448
-
449
- # Create merged chunks
450
- for merged_range in merged_ranges:
451
- combined_content_parts = [c.content for c in merged_range["all_chunks"]]
452
-
453
- # Use the first original chunk for metadata
454
- original_chunk = merged_range["original_chunks"][0]
455
-
456
- merged_chunk = Chunk(
457
- id=original_chunk.id,
458
- document_id=original_chunk.document_id,
459
- content="".join(combined_content_parts),
460
- metadata=original_chunk.metadata,
461
- document_uri=original_chunk.document_uri,
462
- document_title=original_chunk.document_title,
463
- document_meta=original_chunk.document_meta,
464
- )
465
-
466
- # Use the highest score from merged chunks
467
- best_score = max(merged_range["scores"])
468
- results.append((merged_chunk, best_score))
469
-
470
- return results
471
-
472
- def _merge_overlapping_ranges(self, expanded_ranges):
473
- """Merge overlapping or adjacent expanded ranges."""
474
- if not expanded_ranges:
475
- return []
476
-
477
- # Sort by min_order
478
- sorted_ranges = sorted(expanded_ranges, key=lambda x: x["min_order"])
479
- merged = []
480
-
481
- current = {
482
- "min_order": sorted_ranges[0]["min_order"],
483
- "max_order": sorted_ranges[0]["max_order"],
484
- "original_chunks": [sorted_ranges[0]["original_chunk"]],
485
- "scores": [sorted_ranges[0]["score"]],
486
- "all_chunks": sorted_ranges[0]["all_chunks"],
487
- }
488
-
489
- for range_info in sorted_ranges[1:]:
490
- # Check if ranges overlap or are adjacent (max_order + 1 >= min_order)
491
- if current["max_order"] >= range_info["min_order"] - 1:
492
- # Merge ranges
493
- current["max_order"] = max(
494
- current["max_order"], range_info["max_order"]
495
- )
496
- current["original_chunks"].append(range_info["original_chunk"])
497
- current["scores"].append(range_info["score"])
498
-
499
- # Merge all_chunks and deduplicate by order
500
- all_chunks_dict = {}
501
- for chunk in current["all_chunks"] + range_info["all_chunks"]:
502
- order = chunk.order
503
- all_chunks_dict[order] = chunk
504
- current["all_chunks"] = [
505
- all_chunks_dict[order] for order in sorted(all_chunks_dict.keys())
506
- ]
507
- else:
508
- # No overlap, add current to merged and start new
509
- merged.append(current)
510
- current = {
511
- "min_order": range_info["min_order"],
512
- "max_order": range_info["max_order"],
513
- "original_chunks": [range_info["original_chunk"]],
514
- "scores": [range_info["score"]],
515
- "all_chunks": range_info["all_chunks"],
516
- }
517
-
518
- # Add the last range
519
- merged.append(current)
520
- return merged
521
-
522
- async def ask(self, question: str, cite: bool = False) -> str:
523
- """Ask a question using the configured QA agent.
524
-
525
- Args:
526
- question: The question to ask.
527
- cite: Whether to include citations in the response.
528
-
529
- Returns:
530
- The generated answer as a string.
531
- """
532
- from haiku.rag.qa import get_qa_agent
533
-
534
- qa_agent = get_qa_agent(self, use_citations=cite)
535
- return await qa_agent.answer(question)
536
-
537
- async def rebuild_database(self) -> AsyncGenerator[str, None]:
538
- """Rebuild the database by deleting all chunks and re-indexing all documents.
539
-
540
- For documents with URIs:
541
- - Deletes the document and re-adds it from source if source exists
542
- - Skips documents where source no longer exists
543
-
544
- For documents without URIs:
545
- - Re-creates chunks from existing content
546
-
547
- Yields:
548
- int: The ID of the document currently being processed
549
- """
550
- await self.chunk_repository.delete_all()
551
- self.store.recreate_embeddings_table()
552
-
553
- # Update settings to current config
554
- settings_repo = SettingsRepository(self.store)
555
- settings_repo.save_current_settings()
556
-
557
- documents = await self.list_documents()
558
-
559
- for doc in documents:
560
- assert doc.id is not None, "Document ID should not be None"
561
- if doc.uri:
562
- # Document has a URI - delete and try to re-add from source
563
- try:
564
- # Delete the old document first
565
- await self.delete_document(doc.id)
566
-
567
- # Try to re-create from source (this creates the document with chunks)
568
- new_doc = await self.create_document_from_source(
569
- source=doc.uri, metadata=doc.metadata or {}
570
- )
571
-
572
- assert new_doc.id is not None, "New document ID should not be None"
573
- yield new_doc.id
574
-
575
- except (FileNotFoundError, ValueError, OSError) as e:
576
- # Source doesn't exist or can't be accessed - document already deleted, skip
577
- print(f"Skipping document with URI {doc.uri}: {e}")
578
- continue
579
- except Exception as e:
580
- # Unexpected error - log it and skip
581
- print(
582
- f"Unexpected error processing document with URI {doc.uri}: {e}"
583
- )
584
- continue
585
- else:
586
- # Document without URI - re-create chunks from existing content
587
- docling_document = text_to_docling_document(doc.content)
588
- await self.chunk_repository.create_chunks_for_document(
589
- doc.id, docling_document
590
- )
591
- yield doc.id
592
-
593
- # Final maintenance: centralized vacuum to curb disk usage
594
- try:
595
- self.store.vacuum()
596
- except Exception:
597
- pass
598
-
599
- async def vacuum(self) -> None:
600
- """Optimize and clean up old versions across all tables."""
601
- self.store.vacuum()
602
-
603
- def close(self):
604
- """Close the underlying store connection."""
605
- self.store.close()
haiku/rag/config.py DELETED
@@ -1,81 +0,0 @@
1
- import os
2
- from pathlib import Path
3
-
4
- from dotenv import load_dotenv
5
- from pydantic import BaseModel, field_validator
6
-
7
- from haiku.rag.utils import get_default_data_dir
8
-
9
- load_dotenv()
10
-
11
-
12
- class AppConfig(BaseModel):
13
- ENV: str = "production"
14
-
15
- LANCEDB_API_KEY: str = ""
16
- LANCEDB_URI: str = ""
17
- LANCEDB_REGION: str = ""
18
-
19
- DEFAULT_DATA_DIR: Path = get_default_data_dir()
20
- MONITOR_DIRECTORIES: list[Path] = []
21
-
22
- EMBEDDINGS_PROVIDER: str = "ollama"
23
- EMBEDDINGS_MODEL: str = "mxbai-embed-large"
24
- EMBEDDINGS_VECTOR_DIM: int = 1024
25
-
26
- RERANK_PROVIDER: str = ""
27
- RERANK_MODEL: str = ""
28
-
29
- QA_PROVIDER: str = "ollama"
30
- QA_MODEL: str = "gpt-oss"
31
-
32
- # Research defaults (fallback to QA if not provided via env)
33
- RESEARCH_PROVIDER: str = "ollama"
34
- RESEARCH_MODEL: str = "gpt-oss"
35
-
36
- CHUNK_SIZE: int = 256
37
- CONTEXT_CHUNK_RADIUS: int = 0
38
-
39
- # Optional dotted path or file path to a callable that preprocesses
40
- # markdown content before chunking. Examples:
41
- MARKDOWN_PREPROCESSOR: str = ""
42
-
43
- OLLAMA_BASE_URL: str = "http://localhost:11434"
44
-
45
- VLLM_EMBEDDINGS_BASE_URL: str = ""
46
- VLLM_RERANK_BASE_URL: str = ""
47
- VLLM_QA_BASE_URL: str = ""
48
- VLLM_RESEARCH_BASE_URL: str = ""
49
-
50
- # Provider keys
51
- VOYAGE_API_KEY: str = ""
52
- OPENAI_API_KEY: str = ""
53
- ANTHROPIC_API_KEY: str = ""
54
- COHERE_API_KEY: str = ""
55
-
56
- # If true, refuse to auto-create a new LanceDB database or tables
57
- # and error out when the database does not already exist.
58
- DISABLE_DB_AUTOCREATE: bool = False
59
-
60
- @field_validator("MONITOR_DIRECTORIES", mode="before")
61
- @classmethod
62
- def parse_monitor_directories(cls, v):
63
- if isinstance(v, str):
64
- if not v.strip():
65
- return []
66
- return [
67
- Path(path.strip()).absolute() for path in v.split(",") if path.strip()
68
- ]
69
- return v
70
-
71
-
72
- # Expose Config object for app to import
73
- Config = AppConfig.model_validate(os.environ)
74
- if Config.OPENAI_API_KEY:
75
- os.environ["OPENAI_API_KEY"] = Config.OPENAI_API_KEY
76
- if Config.VOYAGE_API_KEY:
77
- os.environ["VOYAGE_API_KEY"] = Config.VOYAGE_API_KEY
78
- if Config.ANTHROPIC_API_KEY:
79
- os.environ["ANTHROPIC_API_KEY"] = Config.ANTHROPIC_API_KEY
80
- if Config.COHERE_API_KEY:
81
- os.environ["CO_API_KEY"] = Config.COHERE_API_KEY