haiku.rag 0.10.1__py3-none-any.whl → 0.11.0__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.

Potentially problematic release.


This version of haiku.rag might be problematic. Click here for more details.

@@ -1,8 +1,16 @@
1
+ from collections.abc import Iterable
2
+
1
3
  from pydantic import BaseModel, Field
2
4
  from rich.console import Console
3
5
 
4
6
  from haiku.rag.client import HaikuRAG
5
- from haiku.rag.research.models import SearchAnswer
7
+ from haiku.rag.research.models import (
8
+ GapRecord,
9
+ InsightAnalysis,
10
+ InsightRecord,
11
+ SearchAnswer,
12
+ )
13
+ from haiku.rag.research.stream import ResearchStream
6
14
 
7
15
 
8
16
  class ResearchContext(BaseModel):
@@ -15,10 +23,10 @@ class ResearchContext(BaseModel):
15
23
  qa_responses: list[SearchAnswer] = Field(
16
24
  default_factory=list, description="Structured QA pairs used during research"
17
25
  )
18
- insights: list[str] = Field(
26
+ insights: list[InsightRecord] = Field(
19
27
  default_factory=list, description="Key insights discovered"
20
28
  )
21
- gaps: list[str] = Field(
29
+ gaps: list[GapRecord] = Field(
22
30
  default_factory=list, description="Identified information gaps"
23
31
  )
24
32
 
@@ -26,15 +34,147 @@ class ResearchContext(BaseModel):
26
34
  """Add a structured QA response (minimal context already included)."""
27
35
  self.qa_responses.append(qa)
28
36
 
29
- def add_insight(self, insight: str) -> None:
30
- """Add a key insight."""
31
- if insight not in self.insights:
32
- self.insights.append(insight)
37
+ def upsert_insights(self, records: Iterable[InsightRecord]) -> list[InsightRecord]:
38
+ """Merge one or more insights into the shared context with deduplication."""
39
+
40
+ merged: list[InsightRecord] = []
41
+ for record in records:
42
+ candidate = InsightRecord.model_validate(record)
43
+ existing = next(
44
+ (ins for ins in self.insights if ins.id == candidate.id), None
45
+ )
46
+ if not existing:
47
+ existing = next(
48
+ (ins for ins in self.insights if ins.summary == candidate.summary),
49
+ None,
50
+ )
51
+
52
+ if existing:
53
+ existing.summary = candidate.summary
54
+ existing.status = candidate.status
55
+ if candidate.notes:
56
+ existing.notes = candidate.notes
57
+ existing.supporting_sources = _merge_unique(
58
+ existing.supporting_sources, candidate.supporting_sources
59
+ )
60
+ existing.originating_questions = _merge_unique(
61
+ existing.originating_questions, candidate.originating_questions
62
+ )
63
+ merged.append(existing)
64
+ else:
65
+ candidate = candidate.model_copy(deep=True)
66
+ if candidate.id is None: # pragma: no cover - defensive
67
+ raise ValueError(
68
+ "InsightRecord.id must be populated after validation"
69
+ )
70
+ candidate_id: str = candidate.id
71
+ candidate.id = self._allocate_insight_id(candidate_id)
72
+ self.insights.append(candidate)
73
+ merged.append(candidate)
74
+
75
+ return merged
76
+
77
+ def upsert_gaps(self, records: Iterable[GapRecord]) -> list[GapRecord]:
78
+ """Merge one or more gap records into the shared context with deduplication."""
79
+
80
+ merged: list[GapRecord] = []
81
+ for record in records:
82
+ candidate = GapRecord.model_validate(record)
83
+ existing = next((gap for gap in self.gaps if gap.id == candidate.id), None)
84
+ if not existing:
85
+ existing = next(
86
+ (
87
+ gap
88
+ for gap in self.gaps
89
+ if gap.description == candidate.description
90
+ ),
91
+ None,
92
+ )
93
+
94
+ if existing:
95
+ existing.description = candidate.description
96
+ existing.severity = candidate.severity
97
+ existing.blocking = candidate.blocking
98
+ existing.resolved = candidate.resolved
99
+ if candidate.notes:
100
+ existing.notes = candidate.notes
101
+ existing.supporting_sources = _merge_unique(
102
+ existing.supporting_sources, candidate.supporting_sources
103
+ )
104
+ existing.resolved_by = _merge_unique(
105
+ existing.resolved_by, candidate.resolved_by
106
+ )
107
+ merged.append(existing)
108
+ else:
109
+ candidate = candidate.model_copy(deep=True)
110
+ if candidate.id is None: # pragma: no cover - defensive
111
+ raise ValueError("GapRecord.id must be populated after validation")
112
+ candidate_id: str = candidate.id
113
+ candidate.id = self._allocate_gap_id(candidate_id)
114
+ self.gaps.append(candidate)
115
+ merged.append(candidate)
116
+
117
+ return merged
118
+
119
+ def mark_gap_resolved(
120
+ self, identifier: str, resolved_by: Iterable[str] | None = None
121
+ ) -> GapRecord | None:
122
+ """Mark a gap as resolved by identifier (id or description)."""
123
+
124
+ gap = self._find_gap(identifier)
125
+ if gap is None:
126
+ return None
127
+
128
+ gap.resolved = True
129
+ gap.blocking = False
130
+ if resolved_by:
131
+ gap.resolved_by = _merge_unique(gap.resolved_by, list(resolved_by))
132
+ return gap
33
133
 
34
- def add_gap(self, gap: str) -> None:
35
- """Identify an information gap."""
36
- if gap not in self.gaps:
37
- self.gaps.append(gap)
134
+ def integrate_analysis(self, analysis: InsightAnalysis) -> None:
135
+ """Apply an analysis result to the shared context."""
136
+
137
+ merged_insights: list[InsightRecord] = []
138
+ if analysis.highlights:
139
+ merged_insights = self.upsert_insights(analysis.highlights)
140
+ analysis.highlights = merged_insights
141
+ if analysis.gap_assessments:
142
+ merged_gaps = self.upsert_gaps(analysis.gap_assessments)
143
+ analysis.gap_assessments = merged_gaps
144
+ if analysis.resolved_gaps:
145
+ resolved_by_list = (
146
+ [ins.id for ins in merged_insights if ins.id is not None]
147
+ if merged_insights
148
+ else None
149
+ )
150
+ for resolved in analysis.resolved_gaps:
151
+ self.mark_gap_resolved(resolved, resolved_by=resolved_by_list)
152
+ for question in analysis.new_questions:
153
+ if question not in self.sub_questions:
154
+ self.sub_questions.append(question)
155
+
156
+ def _allocate_insight_id(self, candidate_id: str) -> str:
157
+ taken: set[str] = set()
158
+ for ins in self.insights:
159
+ if ins.id is not None:
160
+ taken.add(ins.id)
161
+ return _allocate_sequential_id(candidate_id, taken)
162
+
163
+ def _allocate_gap_id(self, candidate_id: str) -> str:
164
+ taken: set[str] = set()
165
+ for gap in self.gaps:
166
+ if gap.id is not None:
167
+ taken.add(gap.id)
168
+ return _allocate_sequential_id(candidate_id, taken)
169
+
170
+ def _find_gap(self, identifier: str) -> GapRecord | None:
171
+ normalized = identifier.lower().strip()
172
+ for gap in self.gaps:
173
+ if gap.id is not None and gap.id == normalized:
174
+ return gap
175
+ if gap.description.lower().strip() == normalized:
176
+ return gap
177
+ return None
38
178
 
39
179
 
40
180
  class ResearchDependencies(BaseModel):
@@ -45,3 +185,31 @@ class ResearchDependencies(BaseModel):
45
185
  client: HaikuRAG = Field(description="RAG client for document operations")
46
186
  context: ResearchContext = Field(description="Shared research context")
47
187
  console: Console | None = None
188
+ stream: ResearchStream | None = Field(
189
+ default=None, description="Optional research event stream"
190
+ )
191
+
192
+
193
+ def _merge_unique(existing: list[str], incoming: Iterable[str]) -> list[str]:
194
+ """Merge two iterables preserving order while removing duplicates."""
195
+
196
+ merged = list(existing)
197
+ seen = {item for item in existing if item}
198
+ for item in incoming:
199
+ if item and item not in seen:
200
+ merged.append(item)
201
+ seen.add(item)
202
+ return merged
203
+
204
+
205
+ def _allocate_sequential_id(candidate: str, taken: set[str]) -> str:
206
+ slug = candidate
207
+ if slug not in taken:
208
+ return slug
209
+ base = slug
210
+ counter = 2
211
+ while True:
212
+ slug = f"{base}-{counter}"
213
+ if slug not in taken:
214
+ return slug
215
+ counter += 1
@@ -1,7 +1,7 @@
1
1
  from pydantic_graph import Graph
2
2
 
3
3
  from haiku.rag.research.models import ResearchReport
4
- from haiku.rag.research.nodes.evaluate import EvaluateNode
4
+ from haiku.rag.research.nodes.analysis import AnalyzeInsightsNode, DecisionNode
5
5
  from haiku.rag.research.nodes.plan import PlanNode
6
6
  from haiku.rag.research.nodes.search import SearchDispatchNode
7
7
  from haiku.rag.research.nodes.synthesize import SynthesizeNode
@@ -10,7 +10,8 @@ from haiku.rag.research.state import ResearchDeps, ResearchState
10
10
  __all__ = [
11
11
  "PlanNode",
12
12
  "SearchDispatchNode",
13
- "EvaluateNode",
13
+ "AnalyzeInsightsNode",
14
+ "DecisionNode",
14
15
  "SynthesizeNode",
15
16
  "ResearchState",
16
17
  "ResearchDeps",
@@ -23,7 +24,8 @@ def build_research_graph() -> Graph[ResearchState, ResearchDeps, ResearchReport]
23
24
  nodes=[
24
25
  PlanNode,
25
26
  SearchDispatchNode,
26
- EvaluateNode,
27
+ AnalyzeInsightsNode,
28
+ DecisionNode,
27
29
  SynthesizeNode,
28
30
  ]
29
31
  )
@@ -1,4 +1,134 @@
1
- from pydantic import BaseModel, Field
1
+ import re
2
+ from enum import Enum
3
+
4
+ from pydantic import BaseModel, Field, model_validator
5
+
6
+ _SLUG_RE = re.compile(r"[^a-z0-9]+")
7
+
8
+
9
+ def _make_slug(text: str, prefix: str) -> str:
10
+ """Generate a lowercase slug with the given prefix as fallback."""
11
+
12
+ base = _SLUG_RE.sub("-", text.lower()).strip("-")
13
+ if not base:
14
+ base = prefix
15
+ # Trim overly long slugs but keep enough entropy for readability
16
+ return base[:48]
17
+
18
+
19
+ class InsightStatus(str, Enum):
20
+ OPEN = "open"
21
+ VALIDATED = "validated"
22
+ TENTATIVE = "tentative"
23
+
24
+
25
+ class GapSeverity(str, Enum):
26
+ LOW = "low"
27
+ MEDIUM = "medium"
28
+ HIGH = "high"
29
+
30
+
31
+ class InsightRecord(BaseModel):
32
+ """Structured insight with provenance and lifecycle metadata."""
33
+
34
+ id: str | None = Field(
35
+ default=None,
36
+ description="Stable slug identifier for the insight (auto-generated if omitted)",
37
+ )
38
+ summary: str = Field(description="Concise description of the insight")
39
+ status: InsightStatus = Field(
40
+ default=InsightStatus.OPEN,
41
+ description="Lifecycle status for the insight",
42
+ )
43
+ supporting_sources: list[str] = Field(
44
+ default_factory=list,
45
+ description="Source identifiers backing the insight",
46
+ )
47
+ originating_questions: list[str] = Field(
48
+ default_factory=list,
49
+ description="Research sub-questions that produced this insight",
50
+ )
51
+ notes: str | None = Field(
52
+ default=None,
53
+ description="Optional elaboration or caveats for the insight",
54
+ )
55
+
56
+ @model_validator(mode="after")
57
+ def _set_defaults(self) -> "InsightRecord":
58
+ if not self.id:
59
+ self.id = _make_slug(self.summary, "insight")
60
+ self.id = self.id.lower()
61
+ self.supporting_sources = list(dict.fromkeys(self.supporting_sources))
62
+ self.originating_questions = list(dict.fromkeys(self.originating_questions))
63
+ return self
64
+
65
+
66
+ class GapRecord(BaseModel):
67
+ """Structured representation of an identified research gap."""
68
+
69
+ id: str | None = Field(
70
+ default=None,
71
+ description="Stable slug identifier for the gap (auto-generated if omitted)",
72
+ )
73
+ description: str = Field(description="Concrete statement of what is missing")
74
+ severity: GapSeverity = Field(
75
+ default=GapSeverity.MEDIUM,
76
+ description="Severity of the gap for answering the main question",
77
+ )
78
+ blocking: bool = Field(
79
+ default=True,
80
+ description="Whether this gap blocks a confident answer",
81
+ )
82
+ resolved: bool = Field(
83
+ default=False,
84
+ description="Flag indicating if the gap has been resolved",
85
+ )
86
+ resolved_by: list[str] = Field(
87
+ default_factory=list,
88
+ description="Insight IDs or notes explaining how the gap was closed",
89
+ )
90
+ supporting_sources: list[str] = Field(
91
+ default_factory=list,
92
+ description="Sources confirming the gap status (e.g., evidence of absence)",
93
+ )
94
+ notes: str | None = Field(
95
+ default=None,
96
+ description="Optional clarification about the gap or follow-up actions",
97
+ )
98
+
99
+ @model_validator(mode="after")
100
+ def _set_defaults(self) -> "GapRecord":
101
+ if not self.id:
102
+ self.id = _make_slug(self.description, "gap")
103
+ self.id = self.id.lower()
104
+ self.resolved_by = list(dict.fromkeys(self.resolved_by))
105
+ self.supporting_sources = list(dict.fromkeys(self.supporting_sources))
106
+ return self
107
+
108
+
109
+ class InsightAnalysis(BaseModel):
110
+ """Output of the insight aggregation agent."""
111
+
112
+ highlights: list[InsightRecord] = Field(
113
+ default_factory=list,
114
+ description="New or updated insights discovered this iteration",
115
+ )
116
+ gap_assessments: list[GapRecord] = Field(
117
+ default_factory=list,
118
+ description="New or updated gap records based on current evidence",
119
+ )
120
+ resolved_gaps: list[str] = Field(
121
+ default_factory=list,
122
+ description="Gap identifiers or descriptions considered resolved",
123
+ )
124
+ new_questions: list[str] = Field(
125
+ default_factory=list,
126
+ max_length=3,
127
+ description="Up to three follow-up sub-questions to pursue next",
128
+ )
129
+ commentary: str = Field(
130
+ description="Short narrative summary of the incremental findings",
131
+ )
2
132
 
3
133
 
4
134
  class ResearchPlan(BaseModel):
@@ -37,6 +167,9 @@ class EvaluationResult(BaseModel):
37
167
  max_length=3,
38
168
  default=[],
39
169
  )
170
+ gaps: list[str] = Field(
171
+ description="Concrete information gaps that remain", default_factory=list
172
+ )
40
173
  confidence_score: float = Field(
41
174
  description="Confidence level in the completeness of research (0-1)",
42
175
  ge=0.0,
@@ -0,0 +1,181 @@
1
+ from dataclasses import dataclass
2
+
3
+ from pydantic_ai import Agent
4
+ from pydantic_graph import BaseNode, GraphRunContext
5
+
6
+ from haiku.rag.research.common import (
7
+ format_analysis_for_prompt,
8
+ format_context_for_prompt,
9
+ get_model,
10
+ log,
11
+ )
12
+ from haiku.rag.research.dependencies import ResearchDependencies
13
+ from haiku.rag.research.models import EvaluationResult, InsightAnalysis, ResearchReport
14
+ from haiku.rag.research.nodes.synthesize import SynthesizeNode
15
+ from haiku.rag.research.prompts import DECISION_AGENT_PROMPT, INSIGHT_AGENT_PROMPT
16
+ from haiku.rag.research.state import ResearchDeps, ResearchState
17
+
18
+
19
+ @dataclass
20
+ class AnalyzeInsightsNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
21
+ provider: str
22
+ model: str
23
+
24
+ async def run(
25
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
26
+ ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
27
+ state = ctx.state
28
+ deps = ctx.deps
29
+
30
+ log(
31
+ deps,
32
+ state,
33
+ "\n[bold cyan]🧭 Synthesizing new insights and gap status...[/bold cyan]",
34
+ )
35
+
36
+ agent = Agent(
37
+ model=get_model(self.provider, self.model),
38
+ output_type=InsightAnalysis,
39
+ instructions=INSIGHT_AGENT_PROMPT,
40
+ retries=3,
41
+ deps_type=ResearchDependencies,
42
+ )
43
+
44
+ context_xml = format_context_for_prompt(state.context)
45
+ prompt = (
46
+ "Review the latest research context and update the shared ledger of insights, gaps,"
47
+ " and follow-up questions.\n\n"
48
+ f"{context_xml}"
49
+ )
50
+ agent_deps = ResearchDependencies(
51
+ client=deps.client,
52
+ context=state.context,
53
+ console=deps.console,
54
+ stream=deps.stream,
55
+ )
56
+ result = await agent.run(prompt, deps=agent_deps)
57
+ analysis: InsightAnalysis = result.output
58
+
59
+ state.context.integrate_analysis(analysis)
60
+ state.last_analysis = analysis
61
+
62
+ if analysis.commentary:
63
+ log(deps, state, f" Summary: {analysis.commentary}")
64
+ if analysis.highlights:
65
+ log(deps, state, " [bold]Updated insights:[/bold]")
66
+ for insight in analysis.highlights:
67
+ label = insight.status.value
68
+ log(
69
+ deps,
70
+ state,
71
+ f" • ({label}) {insight.summary}",
72
+ )
73
+ if analysis.gap_assessments:
74
+ log(deps, state, " [bold yellow]Gap updates:[/bold yellow]")
75
+ for gap in analysis.gap_assessments:
76
+ status = "resolved" if gap.resolved else "open"
77
+ severity = gap.severity.value
78
+ log(
79
+ deps,
80
+ state,
81
+ f" • ({severity}/{status}) {gap.description}",
82
+ )
83
+ if analysis.resolved_gaps:
84
+ log(deps, state, " [green]Resolved gaps:[/green]")
85
+ for resolved in analysis.resolved_gaps:
86
+ log(deps, state, f" • {resolved}")
87
+ if analysis.new_questions:
88
+ log(deps, state, " [cyan]Proposed follow-ups:[/cyan]")
89
+ for question in analysis.new_questions:
90
+ log(deps, state, f" • {question}")
91
+
92
+ return DecisionNode(self.provider, self.model)
93
+
94
+
95
+ @dataclass
96
+ class DecisionNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
97
+ provider: str
98
+ model: str
99
+
100
+ async def run(
101
+ self, ctx: GraphRunContext[ResearchState, ResearchDeps]
102
+ ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
103
+ state = ctx.state
104
+ deps = ctx.deps
105
+
106
+ log(
107
+ deps,
108
+ state,
109
+ "\n[bold cyan]📊 Evaluating research sufficiency...[/bold cyan]",
110
+ )
111
+
112
+ agent = Agent(
113
+ model=get_model(self.provider, self.model),
114
+ output_type=EvaluationResult,
115
+ instructions=DECISION_AGENT_PROMPT,
116
+ retries=3,
117
+ deps_type=ResearchDependencies,
118
+ )
119
+
120
+ context_xml = format_context_for_prompt(state.context)
121
+ analysis_xml = format_analysis_for_prompt(state.last_analysis)
122
+ prompt_parts = [
123
+ "Assess whether the research now answers the original question with adequate confidence.",
124
+ context_xml,
125
+ analysis_xml,
126
+ ]
127
+ if state.last_eval is not None:
128
+ prev = state.last_eval
129
+ prompt_parts.append(
130
+ "<previous_evaluation>"
131
+ f"<confidence>{prev.confidence_score:.2f}</confidence>"
132
+ f"<is_sufficient>{str(prev.is_sufficient).lower()}</is_sufficient>"
133
+ f"<reasoning>{prev.reasoning}</reasoning>"
134
+ "</previous_evaluation>"
135
+ )
136
+ prompt = "\n\n".join(part for part in prompt_parts if part)
137
+
138
+ agent_deps = ResearchDependencies(
139
+ client=deps.client,
140
+ context=state.context,
141
+ console=deps.console,
142
+ stream=deps.stream,
143
+ )
144
+ decision_result = await agent.run(prompt, deps=agent_deps)
145
+ output = decision_result.output
146
+
147
+ state.last_eval = output
148
+ state.iterations += 1
149
+
150
+ for new_q in output.new_questions:
151
+ if new_q not in state.context.sub_questions:
152
+ state.context.sub_questions.append(new_q)
153
+
154
+ if output.key_insights:
155
+ log(deps, state, " [bold]Key insights:[/bold]")
156
+ for insight in output.key_insights:
157
+ log(deps, state, f" • {insight}")
158
+
159
+ if output.gaps:
160
+ log(deps, state, " [bold yellow]Remaining gaps:[/bold yellow]")
161
+ for gap in output.gaps:
162
+ log(deps, state, f" • {gap}")
163
+
164
+ log(
165
+ deps,
166
+ state,
167
+ f" Confidence: [yellow]{output.confidence_score:.1%}[/yellow]",
168
+ )
169
+ status = "[green]Yes[/green]" if output.is_sufficient else "[red]No[/red]"
170
+ log(deps, state, f" Sufficient: {status}")
171
+
172
+ from haiku.rag.research.nodes.search import SearchDispatchNode
173
+
174
+ if (
175
+ output.is_sufficient
176
+ and output.confidence_score >= state.confidence_threshold
177
+ ) or state.iterations >= state.max_iterations:
178
+ log(deps, state, "\n[bold green]✅ Stopping research.[/bold green]")
179
+ return SynthesizeNode(self.provider, self.model)
180
+
181
+ return SearchDispatchNode(self.provider, self.model)
@@ -22,7 +22,7 @@ class PlanNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
22
22
  state = ctx.state
23
23
  deps = ctx.deps
24
24
 
25
- log(deps.console, "\n[bold cyan]📋 Creating research plan...[/bold cyan]")
25
+ log(deps, state, "\n[bold cyan]📋 Creating research plan...[/bold cyan]")
26
26
 
27
27
  plan_agent = Agent(
28
28
  model=get_model(self.provider, self.model),
@@ -45,19 +45,26 @@ class PlanNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
45
45
 
46
46
  prompt = (
47
47
  "Plan a focused research approach for the main question.\n\n"
48
- f"Main question: {state.question}"
48
+ f"Main question: {state.context.original_question}"
49
49
  )
50
50
 
51
51
  agent_deps = ResearchDependencies(
52
- client=deps.client, context=state.context, console=deps.console
52
+ client=deps.client,
53
+ context=state.context,
54
+ console=deps.console,
55
+ stream=deps.stream,
53
56
  )
54
57
  plan_result = await plan_agent.run(prompt, deps=agent_deps)
55
- state.sub_questions = list(plan_result.output.sub_questions)
58
+ state.context.sub_questions = list(plan_result.output.sub_questions)
56
59
 
57
- log(deps.console, "\n[bold green]✅ Research Plan Created:[/bold green]")
58
- log(deps.console, f" [bold]Main Question:[/bold] {state.question}")
59
- log(deps.console, " [bold]Sub-questions:[/bold]")
60
- for i, sq in enumerate(state.sub_questions, 1):
61
- log(deps.console, f" {i}. {sq}")
60
+ log(deps, state, "\n[bold green]✅ Research Plan Created:[/bold green]")
61
+ log(
62
+ deps,
63
+ state,
64
+ f" [bold]Main Question:[/bold] {state.context.original_question}",
65
+ )
66
+ log(deps, state, " [bold]Sub-questions:[/bold]")
67
+ for i, sq in enumerate(state.context.sub_questions, 1):
68
+ log(deps, state, f" {i}. {sq}")
62
69
 
63
70
  return SearchDispatchNode(self.provider, self.model)
@@ -24,20 +24,21 @@ class SearchDispatchNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
24
24
  ) -> BaseNode[ResearchState, ResearchDeps, ResearchReport]:
25
25
  state = ctx.state
26
26
  deps = ctx.deps
27
- if not state.sub_questions:
28
- from haiku.rag.research.nodes.evaluate import EvaluateNode
27
+ if not state.context.sub_questions:
28
+ from haiku.rag.research.nodes.analysis import AnalyzeInsightsNode
29
29
 
30
- return EvaluateNode(self.provider, self.model)
30
+ return AnalyzeInsightsNode(self.provider, self.model)
31
31
 
32
32
  # Take up to max_concurrency questions and answer them concurrently
33
33
  take = max(1, state.max_concurrency)
34
34
  batch: list[str] = []
35
- while state.sub_questions and len(batch) < take:
36
- batch.append(state.sub_questions.pop(0))
35
+ while state.context.sub_questions and len(batch) < take:
36
+ batch.append(state.context.sub_questions.pop(0))
37
37
 
38
38
  async def answer_one(sub_q: str) -> SearchAnswer | None:
39
39
  log(
40
- deps.console,
40
+ deps,
41
+ state,
41
42
  f"\n[bold cyan]🔍 Searching & Answering:[/bold cyan] {sub_q}",
42
43
  )
43
44
  agent = Agent(
@@ -71,12 +72,15 @@ class SearchDispatchNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
71
72
  return format_as_xml(entries, root_tag="snippets")
72
73
 
73
74
  agent_deps = ResearchDependencies(
74
- client=deps.client, context=state.context, console=deps.console
75
+ client=deps.client,
76
+ context=state.context,
77
+ console=deps.console,
78
+ stream=deps.stream,
75
79
  )
76
80
  try:
77
81
  result = await agent.run(sub_q, deps=agent_deps)
78
82
  except Exception as e:
79
- log(deps.console, f"[red]Search failed:[/red] {e}")
83
+ log(deps, state, f"[red]Search failed:[/red] {e}")
80
84
  return None
81
85
 
82
86
  return result.output
@@ -86,8 +90,7 @@ class SearchDispatchNode(BaseNode[ResearchState, ResearchDeps, ResearchReport]):
86
90
  if ans is None:
87
91
  continue
88
92
  state.context.add_qa_response(ans)
89
- if deps.console:
90
- preview = ans.answer[:150] + ("…" if len(ans.answer) > 150 else "")
91
- log(deps.console, f" [green]✓[/green] {preview}")
93
+ preview = ans.answer[:150] + ("…" if len(ans.answer) > 150 else "")
94
+ log(deps, state, f" [green]✓[/green] {preview}")
92
95
 
93
96
  return SearchDispatchNode(self.provider, self.model)