haiku.rag-slim 0.16.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Potentially problematic release.
This version of haiku.rag-slim might be problematic. Click here for more details.
- haiku/rag/__init__.py +0 -0
- haiku/rag/app.py +542 -0
- haiku/rag/chunker.py +65 -0
- haiku/rag/cli.py +466 -0
- haiku/rag/client.py +731 -0
- haiku/rag/config/__init__.py +74 -0
- haiku/rag/config/loader.py +94 -0
- haiku/rag/config/models.py +99 -0
- haiku/rag/embeddings/__init__.py +49 -0
- haiku/rag/embeddings/base.py +25 -0
- haiku/rag/embeddings/ollama.py +28 -0
- haiku/rag/embeddings/openai.py +26 -0
- haiku/rag/embeddings/vllm.py +29 -0
- haiku/rag/embeddings/voyageai.py +27 -0
- haiku/rag/graph/__init__.py +26 -0
- haiku/rag/graph/agui/__init__.py +53 -0
- haiku/rag/graph/agui/cli_renderer.py +135 -0
- haiku/rag/graph/agui/emitter.py +197 -0
- haiku/rag/graph/agui/events.py +254 -0
- haiku/rag/graph/agui/server.py +310 -0
- haiku/rag/graph/agui/state.py +34 -0
- haiku/rag/graph/agui/stream.py +86 -0
- haiku/rag/graph/common/__init__.py +5 -0
- haiku/rag/graph/common/models.py +42 -0
- haiku/rag/graph/common/nodes.py +265 -0
- haiku/rag/graph/common/prompts.py +46 -0
- haiku/rag/graph/common/utils.py +44 -0
- haiku/rag/graph/deep_qa/__init__.py +1 -0
- haiku/rag/graph/deep_qa/dependencies.py +27 -0
- haiku/rag/graph/deep_qa/graph.py +243 -0
- haiku/rag/graph/deep_qa/models.py +20 -0
- haiku/rag/graph/deep_qa/prompts.py +59 -0
- haiku/rag/graph/deep_qa/state.py +56 -0
- haiku/rag/graph/research/__init__.py +3 -0
- haiku/rag/graph/research/common.py +87 -0
- haiku/rag/graph/research/dependencies.py +151 -0
- haiku/rag/graph/research/graph.py +295 -0
- haiku/rag/graph/research/models.py +166 -0
- haiku/rag/graph/research/prompts.py +107 -0
- haiku/rag/graph/research/state.py +85 -0
- haiku/rag/logging.py +56 -0
- haiku/rag/mcp.py +245 -0
- haiku/rag/monitor.py +194 -0
- haiku/rag/qa/__init__.py +33 -0
- haiku/rag/qa/agent.py +93 -0
- haiku/rag/qa/prompts.py +60 -0
- haiku/rag/reader.py +135 -0
- haiku/rag/reranking/__init__.py +63 -0
- haiku/rag/reranking/base.py +13 -0
- haiku/rag/reranking/cohere.py +34 -0
- haiku/rag/reranking/mxbai.py +28 -0
- haiku/rag/reranking/vllm.py +44 -0
- haiku/rag/reranking/zeroentropy.py +59 -0
- haiku/rag/store/__init__.py +4 -0
- haiku/rag/store/engine.py +309 -0
- haiku/rag/store/models/__init__.py +4 -0
- haiku/rag/store/models/chunk.py +17 -0
- haiku/rag/store/models/document.py +17 -0
- haiku/rag/store/repositories/__init__.py +9 -0
- haiku/rag/store/repositories/chunk.py +442 -0
- haiku/rag/store/repositories/document.py +261 -0
- haiku/rag/store/repositories/settings.py +165 -0
- haiku/rag/store/upgrades/__init__.py +62 -0
- haiku/rag/store/upgrades/v0_10_1.py +64 -0
- haiku/rag/store/upgrades/v0_9_3.py +112 -0
- haiku/rag/utils.py +211 -0
- haiku_rag_slim-0.16.0.dist-info/METADATA +128 -0
- haiku_rag_slim-0.16.0.dist-info/RECORD +71 -0
- haiku_rag_slim-0.16.0.dist-info/WHEEL +4 -0
- haiku_rag_slim-0.16.0.dist-info/entry_points.txt +2 -0
- haiku_rag_slim-0.16.0.dist-info/licenses/LICENSE +7 -0
|
@@ -0,0 +1,442 @@
|
|
|
1
|
+
import inspect
|
|
2
|
+
import json
|
|
3
|
+
import logging
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
5
|
+
from uuid import uuid4
|
|
6
|
+
|
|
7
|
+
if TYPE_CHECKING:
|
|
8
|
+
import pandas as pd
|
|
9
|
+
from lancedb.query import LanceQueryBuilder
|
|
10
|
+
|
|
11
|
+
from lancedb.rerankers import RRFReranker
|
|
12
|
+
|
|
13
|
+
from haiku.rag.store.engine import DocumentRecord, Store
|
|
14
|
+
from haiku.rag.store.models.chunk import Chunk
|
|
15
|
+
from haiku.rag.utils import load_callable
|
|
16
|
+
|
|
17
|
+
if TYPE_CHECKING:
|
|
18
|
+
from docling_core.types.doc.document import DoclingDocument
|
|
19
|
+
|
|
20
|
+
logger = logging.getLogger(__name__)
|
|
21
|
+
|
|
22
|
+
|
|
23
|
+
class ChunkRepository:
|
|
24
|
+
"""Repository for Chunk operations."""
|
|
25
|
+
|
|
26
|
+
def __init__(self, store: Store) -> None:
|
|
27
|
+
self.store = store
|
|
28
|
+
self.embedder = store.embedder
|
|
29
|
+
|
|
30
|
+
def _ensure_fts_index(self) -> None:
|
|
31
|
+
"""Ensure FTS index exists on the content column."""
|
|
32
|
+
try:
|
|
33
|
+
self.store.chunks_table.create_fts_index(
|
|
34
|
+
"content", replace=True, with_position=True, remove_stop_words=False
|
|
35
|
+
)
|
|
36
|
+
except Exception as e:
|
|
37
|
+
# Log the error but don't fail - FTS might already exist
|
|
38
|
+
logger.debug(f"FTS index creation skipped: {e}")
|
|
39
|
+
|
|
40
|
+
async def create(self, entity: Chunk) -> Chunk:
|
|
41
|
+
"""Create a chunk in the database."""
|
|
42
|
+
assert entity.document_id, "Chunk must have a document_id to be created"
|
|
43
|
+
|
|
44
|
+
chunk_id = str(uuid4())
|
|
45
|
+
|
|
46
|
+
# Generate embedding if not provided
|
|
47
|
+
if entity.embedding is not None:
|
|
48
|
+
embedding = entity.embedding
|
|
49
|
+
else:
|
|
50
|
+
embedding = await self.embedder.embed(entity.content)
|
|
51
|
+
order_val = int(entity.order)
|
|
52
|
+
|
|
53
|
+
chunk_record = self.store.ChunkRecord(
|
|
54
|
+
id=chunk_id,
|
|
55
|
+
document_id=entity.document_id,
|
|
56
|
+
content=entity.content,
|
|
57
|
+
metadata=json.dumps(
|
|
58
|
+
{k: v for k, v in entity.metadata.items() if k != "order"}
|
|
59
|
+
),
|
|
60
|
+
order=order_val,
|
|
61
|
+
vector=embedding,
|
|
62
|
+
)
|
|
63
|
+
|
|
64
|
+
self.store.chunks_table.add([chunk_record])
|
|
65
|
+
|
|
66
|
+
entity.id = chunk_id
|
|
67
|
+
return entity
|
|
68
|
+
|
|
69
|
+
async def get_by_id(self, entity_id: str) -> Chunk | None:
|
|
70
|
+
"""Get a chunk by its ID."""
|
|
71
|
+
results = list(
|
|
72
|
+
self.store.chunks_table.search()
|
|
73
|
+
.where(f"id = '{entity_id}'")
|
|
74
|
+
.limit(1)
|
|
75
|
+
.to_pydantic(self.store.ChunkRecord)
|
|
76
|
+
)
|
|
77
|
+
|
|
78
|
+
if not results:
|
|
79
|
+
return None
|
|
80
|
+
|
|
81
|
+
chunk_record = results[0]
|
|
82
|
+
md = json.loads(chunk_record.metadata)
|
|
83
|
+
return Chunk(
|
|
84
|
+
id=chunk_record.id,
|
|
85
|
+
document_id=chunk_record.document_id,
|
|
86
|
+
content=chunk_record.content,
|
|
87
|
+
metadata=md,
|
|
88
|
+
order=chunk_record.order,
|
|
89
|
+
)
|
|
90
|
+
|
|
91
|
+
async def update(self, entity: Chunk) -> Chunk:
|
|
92
|
+
"""Update an existing chunk."""
|
|
93
|
+
assert entity.id, "Chunk ID is required for update"
|
|
94
|
+
|
|
95
|
+
embedding = await self.embedder.embed(entity.content)
|
|
96
|
+
order_val = int(entity.order)
|
|
97
|
+
|
|
98
|
+
self.store.chunks_table.update(
|
|
99
|
+
where=f"id = '{entity.id}'",
|
|
100
|
+
values={
|
|
101
|
+
"document_id": entity.document_id,
|
|
102
|
+
"content": entity.content,
|
|
103
|
+
"metadata": json.dumps(
|
|
104
|
+
{k: v for k, v in entity.metadata.items() if k != "order"}
|
|
105
|
+
),
|
|
106
|
+
"order": order_val,
|
|
107
|
+
"vector": embedding,
|
|
108
|
+
},
|
|
109
|
+
)
|
|
110
|
+
return entity
|
|
111
|
+
|
|
112
|
+
async def delete(self, entity_id: str) -> bool:
|
|
113
|
+
"""Delete a chunk by its ID."""
|
|
114
|
+
chunk = await self.get_by_id(entity_id)
|
|
115
|
+
if chunk is None:
|
|
116
|
+
return False
|
|
117
|
+
|
|
118
|
+
self.store.chunks_table.delete(f"id = '{entity_id}'")
|
|
119
|
+
return True
|
|
120
|
+
|
|
121
|
+
async def list_all(
|
|
122
|
+
self, limit: int | None = None, offset: int | None = None
|
|
123
|
+
) -> list[Chunk]:
|
|
124
|
+
"""List all chunks with optional pagination."""
|
|
125
|
+
query = self.store.chunks_table.search()
|
|
126
|
+
|
|
127
|
+
if offset is not None:
|
|
128
|
+
query = query.offset(offset)
|
|
129
|
+
if limit is not None:
|
|
130
|
+
query = query.limit(limit)
|
|
131
|
+
|
|
132
|
+
results = list(query.to_pydantic(self.store.ChunkRecord))
|
|
133
|
+
|
|
134
|
+
chunks: list[Chunk] = []
|
|
135
|
+
for rec in results:
|
|
136
|
+
md = json.loads(rec.metadata)
|
|
137
|
+
chunks.append(
|
|
138
|
+
Chunk(
|
|
139
|
+
id=rec.id,
|
|
140
|
+
document_id=rec.document_id,
|
|
141
|
+
content=rec.content,
|
|
142
|
+
metadata=md,
|
|
143
|
+
order=rec.order,
|
|
144
|
+
)
|
|
145
|
+
)
|
|
146
|
+
return chunks
|
|
147
|
+
|
|
148
|
+
async def create_chunks_for_document(
|
|
149
|
+
self, document_id: str, document: "DoclingDocument"
|
|
150
|
+
) -> list[Chunk]:
|
|
151
|
+
"""Create chunks and embeddings for a document from DoclingDocument."""
|
|
152
|
+
# Lazy imports to avoid loading docling during module import
|
|
153
|
+
from haiku.rag.chunker import chunker
|
|
154
|
+
from haiku.rag.utils import text_to_docling_document
|
|
155
|
+
|
|
156
|
+
# Optionally preprocess markdown before chunking
|
|
157
|
+
processed_document = document
|
|
158
|
+
preprocessor_path = self.store._config.processing.markdown_preprocessor
|
|
159
|
+
if preprocessor_path:
|
|
160
|
+
try:
|
|
161
|
+
pre_fn = load_callable(preprocessor_path)
|
|
162
|
+
markdown = document.export_to_markdown()
|
|
163
|
+
result = pre_fn(markdown)
|
|
164
|
+
if inspect.isawaitable(result):
|
|
165
|
+
result = await result # type: ignore[assignment]
|
|
166
|
+
processed_markdown = result
|
|
167
|
+
if not isinstance(processed_markdown, str):
|
|
168
|
+
raise ValueError("Preprocessor must return a markdown string")
|
|
169
|
+
processed_document = text_to_docling_document(
|
|
170
|
+
processed_markdown, name="content.md"
|
|
171
|
+
)
|
|
172
|
+
except Exception as e:
|
|
173
|
+
logger.error(
|
|
174
|
+
f"Failed to apply MARKDOWN_PREPROCESSOR '{preprocessor_path}': {e}. Proceeding without preprocessing."
|
|
175
|
+
)
|
|
176
|
+
raise e
|
|
177
|
+
|
|
178
|
+
chunk_texts = await chunker.chunk(processed_document)
|
|
179
|
+
|
|
180
|
+
embeddings = await self.embedder.embed(chunk_texts)
|
|
181
|
+
|
|
182
|
+
# Prepare all chunk records for batch insertion
|
|
183
|
+
chunk_records = []
|
|
184
|
+
created_chunks = []
|
|
185
|
+
|
|
186
|
+
for order, (chunk_text, embedding) in enumerate(zip(chunk_texts, embeddings)):
|
|
187
|
+
chunk_id = str(uuid4())
|
|
188
|
+
|
|
189
|
+
chunk_record = self.store.ChunkRecord(
|
|
190
|
+
id=chunk_id,
|
|
191
|
+
document_id=document_id,
|
|
192
|
+
content=chunk_text,
|
|
193
|
+
metadata=json.dumps({}),
|
|
194
|
+
order=order,
|
|
195
|
+
vector=embedding,
|
|
196
|
+
)
|
|
197
|
+
chunk_records.append(chunk_record)
|
|
198
|
+
|
|
199
|
+
chunk = Chunk(
|
|
200
|
+
id=chunk_id,
|
|
201
|
+
document_id=document_id,
|
|
202
|
+
content=chunk_text,
|
|
203
|
+
metadata={},
|
|
204
|
+
order=order,
|
|
205
|
+
)
|
|
206
|
+
created_chunks.append(chunk)
|
|
207
|
+
|
|
208
|
+
# Batch insert all chunks at once
|
|
209
|
+
if chunk_records:
|
|
210
|
+
self.store.chunks_table.add(chunk_records)
|
|
211
|
+
|
|
212
|
+
return created_chunks
|
|
213
|
+
|
|
214
|
+
async def delete_all(self) -> None:
|
|
215
|
+
"""Delete all chunks from the database."""
|
|
216
|
+
# Drop and recreate table to clear all data
|
|
217
|
+
self.store.db.drop_table("chunks")
|
|
218
|
+
self.store.chunks_table = self.store.db.create_table(
|
|
219
|
+
"chunks", schema=self.store.ChunkRecord
|
|
220
|
+
)
|
|
221
|
+
# Create FTS index on the new table with phrase query support
|
|
222
|
+
self.store.chunks_table.create_fts_index(
|
|
223
|
+
"content", replace=True, with_position=True, remove_stop_words=False
|
|
224
|
+
)
|
|
225
|
+
|
|
226
|
+
async def delete_by_document_id(self, document_id: str) -> bool:
|
|
227
|
+
"""Delete all chunks for a document."""
|
|
228
|
+
chunks = await self.get_by_document_id(document_id)
|
|
229
|
+
|
|
230
|
+
if not chunks:
|
|
231
|
+
return False
|
|
232
|
+
|
|
233
|
+
self.store.chunks_table.delete(f"document_id = '{document_id}'")
|
|
234
|
+
return True
|
|
235
|
+
|
|
236
|
+
async def search(
|
|
237
|
+
self,
|
|
238
|
+
query: str,
|
|
239
|
+
limit: int = 5,
|
|
240
|
+
search_type: str = "hybrid",
|
|
241
|
+
filter: str | None = None,
|
|
242
|
+
) -> list[tuple[Chunk, float]]:
|
|
243
|
+
"""Search for relevant chunks using the specified search method.
|
|
244
|
+
|
|
245
|
+
Args:
|
|
246
|
+
query: The search query string.
|
|
247
|
+
limit: Maximum number of results to return.
|
|
248
|
+
search_type: Type of search - "vector", "fts", or "hybrid" (default).
|
|
249
|
+
filter: Optional SQL WHERE clause to filter documents before searching chunks.
|
|
250
|
+
|
|
251
|
+
Returns:
|
|
252
|
+
List of (chunk, score) tuples ordered by relevance.
|
|
253
|
+
"""
|
|
254
|
+
if not query.strip():
|
|
255
|
+
return []
|
|
256
|
+
filtered_doc_ids = None
|
|
257
|
+
if filter:
|
|
258
|
+
# We perform filtering as a two-step process, first filtering documents, then
|
|
259
|
+
# filtering chunks based on those document IDs.
|
|
260
|
+
# This is because LanceDB does not support joins directly in search queries.
|
|
261
|
+
docs_df = (
|
|
262
|
+
self.store.documents_table.search()
|
|
263
|
+
.select(["id"])
|
|
264
|
+
.where(filter)
|
|
265
|
+
.to_pandas()
|
|
266
|
+
)
|
|
267
|
+
# Early exit if no documents match the filter
|
|
268
|
+
if docs_df.empty:
|
|
269
|
+
return []
|
|
270
|
+
# Keep as pandas Series for efficient vectorized operations
|
|
271
|
+
filtered_doc_ids = docs_df["id"]
|
|
272
|
+
|
|
273
|
+
# Prepare search query based on search type
|
|
274
|
+
if search_type == "vector":
|
|
275
|
+
query_embedding = await self.embedder.embed(query)
|
|
276
|
+
results = self.store.chunks_table.search(
|
|
277
|
+
query_embedding, query_type="vector", vector_column_name="vector"
|
|
278
|
+
)
|
|
279
|
+
|
|
280
|
+
elif search_type == "fts":
|
|
281
|
+
results = self.store.chunks_table.search(query, query_type="fts")
|
|
282
|
+
|
|
283
|
+
else: # hybrid (default)
|
|
284
|
+
query_embedding = await self.embedder.embed(query)
|
|
285
|
+
# Create RRF reranker
|
|
286
|
+
reranker = RRFReranker()
|
|
287
|
+
# Perform native hybrid search with RRF reranking
|
|
288
|
+
results = (
|
|
289
|
+
self.store.chunks_table.search(query_type="hybrid")
|
|
290
|
+
.vector(query_embedding)
|
|
291
|
+
.text(query)
|
|
292
|
+
.rerank(reranker)
|
|
293
|
+
)
|
|
294
|
+
|
|
295
|
+
# Apply filtering if needed (common for all search types)
|
|
296
|
+
if filtered_doc_ids is not None:
|
|
297
|
+
chunks_df = results.to_pandas()
|
|
298
|
+
filtered_chunks_df = chunks_df.loc[
|
|
299
|
+
chunks_df["document_id"].isin(filtered_doc_ids)
|
|
300
|
+
].head(limit)
|
|
301
|
+
return await self._process_search_results(filtered_chunks_df)
|
|
302
|
+
|
|
303
|
+
# No filtering needed, apply limit and return
|
|
304
|
+
results = results.limit(limit)
|
|
305
|
+
return await self._process_search_results(results)
|
|
306
|
+
|
|
307
|
+
async def get_by_document_id(self, document_id: str) -> list[Chunk]:
|
|
308
|
+
"""Get all chunks for a specific document."""
|
|
309
|
+
results = list(
|
|
310
|
+
self.store.chunks_table.search()
|
|
311
|
+
.where(f"document_id = '{document_id}'")
|
|
312
|
+
.to_pydantic(self.store.ChunkRecord)
|
|
313
|
+
)
|
|
314
|
+
|
|
315
|
+
# Get document info
|
|
316
|
+
doc_results = list(
|
|
317
|
+
self.store.documents_table.search()
|
|
318
|
+
.where(f"id = '{document_id}'")
|
|
319
|
+
.limit(1)
|
|
320
|
+
.to_pydantic(DocumentRecord)
|
|
321
|
+
)
|
|
322
|
+
|
|
323
|
+
doc_uri = doc_results[0].uri if doc_results else None
|
|
324
|
+
doc_title = doc_results[0].title if doc_results else None
|
|
325
|
+
doc_meta = doc_results[0].metadata if doc_results else "{}"
|
|
326
|
+
|
|
327
|
+
chunks: list[Chunk] = []
|
|
328
|
+
for rec in results:
|
|
329
|
+
md = json.loads(rec.metadata)
|
|
330
|
+
chunks.append(
|
|
331
|
+
Chunk(
|
|
332
|
+
id=rec.id,
|
|
333
|
+
document_id=rec.document_id,
|
|
334
|
+
content=rec.content,
|
|
335
|
+
metadata=md,
|
|
336
|
+
order=rec.order,
|
|
337
|
+
document_uri=doc_uri,
|
|
338
|
+
document_title=doc_title,
|
|
339
|
+
document_meta=json.loads(doc_meta),
|
|
340
|
+
)
|
|
341
|
+
)
|
|
342
|
+
|
|
343
|
+
chunks.sort(key=lambda c: c.order)
|
|
344
|
+
return chunks
|
|
345
|
+
|
|
346
|
+
async def get_adjacent_chunks(self, chunk: Chunk, num_adjacent: int) -> list[Chunk]:
|
|
347
|
+
"""Get adjacent chunks before and after the given chunk within the same document."""
|
|
348
|
+
assert chunk.document_id, "Document id is required for adjacent chunk finding"
|
|
349
|
+
|
|
350
|
+
chunk_order = chunk.order
|
|
351
|
+
|
|
352
|
+
# Fetch chunks for the same document and filter by order proximity
|
|
353
|
+
all_chunks = await self.get_by_document_id(chunk.document_id)
|
|
354
|
+
|
|
355
|
+
adjacent_chunks: list[Chunk] = []
|
|
356
|
+
for c in all_chunks:
|
|
357
|
+
c_order = c.order
|
|
358
|
+
if c.id != chunk.id and abs(c_order - chunk_order) <= num_adjacent:
|
|
359
|
+
adjacent_chunks.append(c)
|
|
360
|
+
|
|
361
|
+
return adjacent_chunks
|
|
362
|
+
|
|
363
|
+
async def _process_search_results(
|
|
364
|
+
self, query_result: "pd.DataFrame | LanceQueryBuilder"
|
|
365
|
+
) -> list[tuple[Chunk, float]]:
|
|
366
|
+
"""Process search results into chunks with document info and scores.
|
|
367
|
+
|
|
368
|
+
Args:
|
|
369
|
+
query_result: Either a pandas DataFrame or a LanceDB query result
|
|
370
|
+
"""
|
|
371
|
+
import pandas as pd
|
|
372
|
+
|
|
373
|
+
def extract_scores(df: pd.DataFrame) -> list[float]:
|
|
374
|
+
"""Extract scores from DataFrame columns based on search type."""
|
|
375
|
+
if "_distance" in df.columns:
|
|
376
|
+
# Vector search - convert distance to similarity
|
|
377
|
+
return ((df["_distance"] + 1).rdiv(1)).clip(lower=0.0).tolist()
|
|
378
|
+
elif "_relevance_score" in df.columns:
|
|
379
|
+
# Hybrid search - relevance score (higher is better)
|
|
380
|
+
return df["_relevance_score"].tolist()
|
|
381
|
+
elif "_score" in df.columns:
|
|
382
|
+
# FTS search - score (higher is better)
|
|
383
|
+
return df["_score"].tolist()
|
|
384
|
+
else:
|
|
385
|
+
raise ValueError("Unknown search result format, cannot extract scores")
|
|
386
|
+
|
|
387
|
+
# Convert everything to DataFrame for uniform processing
|
|
388
|
+
if isinstance(query_result, pd.DataFrame):
|
|
389
|
+
df = query_result
|
|
390
|
+
else:
|
|
391
|
+
# Convert LanceDB query result to DataFrame
|
|
392
|
+
df = query_result.to_pandas()
|
|
393
|
+
|
|
394
|
+
# Extract scores
|
|
395
|
+
scores = extract_scores(df)
|
|
396
|
+
|
|
397
|
+
# Convert DataFrame rows to ChunkRecords
|
|
398
|
+
pydantic_results = [
|
|
399
|
+
self.store.ChunkRecord(
|
|
400
|
+
id=str(row["id"]),
|
|
401
|
+
document_id=str(row["document_id"]),
|
|
402
|
+
content=str(row["content"]),
|
|
403
|
+
metadata=str(row["metadata"]),
|
|
404
|
+
order=int(row["order"]) if "order" in row else 0,
|
|
405
|
+
)
|
|
406
|
+
for _, row in df.iterrows()
|
|
407
|
+
]
|
|
408
|
+
|
|
409
|
+
# Collect all unique document IDs for batch lookup
|
|
410
|
+
document_ids = list(set(chunk.document_id for chunk in pydantic_results))
|
|
411
|
+
|
|
412
|
+
# Batch fetch all documents at once
|
|
413
|
+
documents_map = {}
|
|
414
|
+
if document_ids:
|
|
415
|
+
# Use IN clause for efficient batch lookup
|
|
416
|
+
id_list = "', '".join(document_ids)
|
|
417
|
+
where_clause = f"id IN ('{id_list}')"
|
|
418
|
+
doc_results = list(
|
|
419
|
+
self.store.documents_table.search()
|
|
420
|
+
.where(where_clause)
|
|
421
|
+
.to_pydantic(DocumentRecord)
|
|
422
|
+
)
|
|
423
|
+
documents_map = {doc.id: doc for doc in doc_results}
|
|
424
|
+
|
|
425
|
+
# Build final results with document info
|
|
426
|
+
chunks_with_scores = []
|
|
427
|
+
for i, chunk_record in enumerate(pydantic_results):
|
|
428
|
+
doc = documents_map.get(chunk_record.document_id)
|
|
429
|
+
chunk = Chunk(
|
|
430
|
+
id=chunk_record.id,
|
|
431
|
+
document_id=chunk_record.document_id,
|
|
432
|
+
content=chunk_record.content,
|
|
433
|
+
metadata=json.loads(chunk_record.metadata),
|
|
434
|
+
order=chunk_record.order,
|
|
435
|
+
document_uri=doc.uri if doc else None,
|
|
436
|
+
document_title=doc.title if doc else None,
|
|
437
|
+
document_meta=json.loads(doc.metadata if doc else "{}"),
|
|
438
|
+
)
|
|
439
|
+
score = scores[i] if i < len(scores) else 1.0
|
|
440
|
+
chunks_with_scores.append((chunk, score))
|
|
441
|
+
|
|
442
|
+
return chunks_with_scores
|
|
@@ -0,0 +1,261 @@
|
|
|
1
|
+
import asyncio
|
|
2
|
+
import json
|
|
3
|
+
from datetime import datetime
|
|
4
|
+
from typing import TYPE_CHECKING
|
|
5
|
+
from uuid import uuid4
|
|
6
|
+
|
|
7
|
+
from haiku.rag.store.engine import DocumentRecord, Store
|
|
8
|
+
from haiku.rag.store.models.document import Document
|
|
9
|
+
|
|
10
|
+
if TYPE_CHECKING:
|
|
11
|
+
from docling_core.types.doc.document import DoclingDocument
|
|
12
|
+
|
|
13
|
+
from haiku.rag.store.models.chunk import Chunk
|
|
14
|
+
|
|
15
|
+
|
|
16
|
+
class DocumentRepository:
|
|
17
|
+
"""Repository for Document operations."""
|
|
18
|
+
|
|
19
|
+
def __init__(self, store: Store) -> None:
|
|
20
|
+
self.store = store
|
|
21
|
+
self._chunk_repository = None
|
|
22
|
+
|
|
23
|
+
@property
|
|
24
|
+
def chunk_repository(self):
|
|
25
|
+
"""Lazy-load ChunkRepository when needed."""
|
|
26
|
+
if self._chunk_repository is None:
|
|
27
|
+
from haiku.rag.store.repositories.chunk import ChunkRepository
|
|
28
|
+
|
|
29
|
+
self._chunk_repository = ChunkRepository(self.store)
|
|
30
|
+
return self._chunk_repository
|
|
31
|
+
|
|
32
|
+
def _record_to_document(self, record: DocumentRecord) -> Document:
|
|
33
|
+
"""Convert a DocumentRecord to a Document model."""
|
|
34
|
+
return Document(
|
|
35
|
+
id=record.id,
|
|
36
|
+
content=record.content,
|
|
37
|
+
uri=record.uri,
|
|
38
|
+
title=record.title,
|
|
39
|
+
metadata=json.loads(record.metadata),
|
|
40
|
+
created_at=datetime.fromisoformat(record.created_at)
|
|
41
|
+
if record.created_at
|
|
42
|
+
else datetime.now(),
|
|
43
|
+
updated_at=datetime.fromisoformat(record.updated_at)
|
|
44
|
+
if record.updated_at
|
|
45
|
+
else datetime.now(),
|
|
46
|
+
)
|
|
47
|
+
|
|
48
|
+
async def create(self, entity: Document) -> Document:
|
|
49
|
+
"""Create a document in the database."""
|
|
50
|
+
# Generate new UUID
|
|
51
|
+
doc_id = str(uuid4())
|
|
52
|
+
|
|
53
|
+
# Create timestamp
|
|
54
|
+
now = datetime.now().isoformat()
|
|
55
|
+
|
|
56
|
+
# Create document record
|
|
57
|
+
doc_record = DocumentRecord(
|
|
58
|
+
id=doc_id,
|
|
59
|
+
content=entity.content,
|
|
60
|
+
uri=entity.uri,
|
|
61
|
+
title=entity.title,
|
|
62
|
+
metadata=json.dumps(entity.metadata),
|
|
63
|
+
created_at=now,
|
|
64
|
+
updated_at=now,
|
|
65
|
+
)
|
|
66
|
+
|
|
67
|
+
# Add to table
|
|
68
|
+
self.store.documents_table.add([doc_record])
|
|
69
|
+
|
|
70
|
+
entity.id = doc_id
|
|
71
|
+
entity.created_at = datetime.fromisoformat(now)
|
|
72
|
+
entity.updated_at = datetime.fromisoformat(now)
|
|
73
|
+
return entity
|
|
74
|
+
|
|
75
|
+
async def get_by_id(self, entity_id: str) -> Document | None:
|
|
76
|
+
"""Get a document by its ID."""
|
|
77
|
+
results = list(
|
|
78
|
+
self.store.documents_table.search()
|
|
79
|
+
.where(f"id = '{entity_id}'")
|
|
80
|
+
.limit(1)
|
|
81
|
+
.to_pydantic(DocumentRecord)
|
|
82
|
+
)
|
|
83
|
+
|
|
84
|
+
if not results:
|
|
85
|
+
return None
|
|
86
|
+
|
|
87
|
+
return self._record_to_document(results[0])
|
|
88
|
+
|
|
89
|
+
async def update(self, entity: Document) -> Document:
|
|
90
|
+
"""Update an existing document."""
|
|
91
|
+
assert entity.id, "Document ID is required for update"
|
|
92
|
+
|
|
93
|
+
# Update timestamp
|
|
94
|
+
now = datetime.now().isoformat()
|
|
95
|
+
entity.updated_at = datetime.fromisoformat(now)
|
|
96
|
+
|
|
97
|
+
# Update the record
|
|
98
|
+
self.store.documents_table.update(
|
|
99
|
+
where=f"id = '{entity.id}'",
|
|
100
|
+
values={
|
|
101
|
+
"content": entity.content,
|
|
102
|
+
"uri": entity.uri,
|
|
103
|
+
"title": entity.title,
|
|
104
|
+
"metadata": json.dumps(entity.metadata),
|
|
105
|
+
"updated_at": now,
|
|
106
|
+
},
|
|
107
|
+
)
|
|
108
|
+
|
|
109
|
+
return entity
|
|
110
|
+
|
|
111
|
+
async def delete(self, entity_id: str) -> bool:
|
|
112
|
+
"""Delete a document by its ID."""
|
|
113
|
+
# Check if document exists
|
|
114
|
+
doc = await self.get_by_id(entity_id)
|
|
115
|
+
if doc is None:
|
|
116
|
+
return False
|
|
117
|
+
|
|
118
|
+
# Delete associated chunks first
|
|
119
|
+
await self.chunk_repository.delete_by_document_id(entity_id)
|
|
120
|
+
|
|
121
|
+
# Delete the document
|
|
122
|
+
self.store.documents_table.delete(f"id = '{entity_id}'")
|
|
123
|
+
return True
|
|
124
|
+
|
|
125
|
+
async def list_all(
|
|
126
|
+
self,
|
|
127
|
+
limit: int | None = None,
|
|
128
|
+
offset: int | None = None,
|
|
129
|
+
filter: str | None = None,
|
|
130
|
+
) -> list[Document]:
|
|
131
|
+
"""List all documents with optional pagination and filtering.
|
|
132
|
+
|
|
133
|
+
Args:
|
|
134
|
+
limit: Maximum number of documents to return.
|
|
135
|
+
offset: Number of documents to skip.
|
|
136
|
+
filter: Optional SQL WHERE clause to filter documents.
|
|
137
|
+
|
|
138
|
+
Returns:
|
|
139
|
+
List of Document instances matching the criteria.
|
|
140
|
+
"""
|
|
141
|
+
query = self.store.documents_table.search()
|
|
142
|
+
|
|
143
|
+
if filter is not None:
|
|
144
|
+
query = query.where(filter)
|
|
145
|
+
if offset is not None:
|
|
146
|
+
query = query.offset(offset)
|
|
147
|
+
if limit is not None:
|
|
148
|
+
query = query.limit(limit)
|
|
149
|
+
|
|
150
|
+
results = list(query.to_pydantic(DocumentRecord))
|
|
151
|
+
return [self._record_to_document(doc) for doc in results]
|
|
152
|
+
|
|
153
|
+
async def get_by_uri(self, uri: str) -> Document | None:
|
|
154
|
+
"""Get a document by its URI."""
|
|
155
|
+
results = list(
|
|
156
|
+
self.store.documents_table.search()
|
|
157
|
+
.where(f"uri = '{uri}'")
|
|
158
|
+
.limit(1)
|
|
159
|
+
.to_pydantic(DocumentRecord)
|
|
160
|
+
)
|
|
161
|
+
|
|
162
|
+
if not results:
|
|
163
|
+
return None
|
|
164
|
+
|
|
165
|
+
return self._record_to_document(results[0])
|
|
166
|
+
|
|
167
|
+
async def delete_all(self) -> None:
|
|
168
|
+
"""Delete all documents from the database."""
|
|
169
|
+
# Delete all chunks first
|
|
170
|
+
await self.chunk_repository.delete_all()
|
|
171
|
+
|
|
172
|
+
# Get count before deletion
|
|
173
|
+
count = len(
|
|
174
|
+
list(
|
|
175
|
+
self.store.documents_table.search().limit(1).to_pydantic(DocumentRecord)
|
|
176
|
+
)
|
|
177
|
+
)
|
|
178
|
+
if count > 0:
|
|
179
|
+
# Drop and recreate table to clear all data
|
|
180
|
+
self.store.db.drop_table("documents")
|
|
181
|
+
self.store.documents_table = self.store.db.create_table(
|
|
182
|
+
"documents", schema=DocumentRecord
|
|
183
|
+
)
|
|
184
|
+
|
|
185
|
+
async def _create_and_chunk(
|
|
186
|
+
self,
|
|
187
|
+
entity: Document,
|
|
188
|
+
docling_document: "DoclingDocument | None",
|
|
189
|
+
chunks: list["Chunk"] | None = None,
|
|
190
|
+
) -> Document:
|
|
191
|
+
"""Create a document with its chunks and embeddings."""
|
|
192
|
+
# Snapshot table versions for versioned rollback (if supported)
|
|
193
|
+
versions = self.store.current_table_versions()
|
|
194
|
+
|
|
195
|
+
# Create the document
|
|
196
|
+
created_doc = await self.create(entity)
|
|
197
|
+
|
|
198
|
+
# Attempt to create chunks; on failure, prefer version rollback
|
|
199
|
+
try:
|
|
200
|
+
# Create chunks if not provided
|
|
201
|
+
if chunks is None:
|
|
202
|
+
assert docling_document is not None, (
|
|
203
|
+
"docling_document is required when chunks are not provided"
|
|
204
|
+
)
|
|
205
|
+
assert created_doc.id is not None, (
|
|
206
|
+
"Document ID should not be None after creation"
|
|
207
|
+
)
|
|
208
|
+
await self.chunk_repository.create_chunks_for_document(
|
|
209
|
+
created_doc.id, docling_document
|
|
210
|
+
)
|
|
211
|
+
else:
|
|
212
|
+
# Use provided chunks, set order from list position
|
|
213
|
+
assert created_doc.id is not None, (
|
|
214
|
+
"Document ID should not be None after creation"
|
|
215
|
+
)
|
|
216
|
+
for order, chunk in enumerate(chunks):
|
|
217
|
+
chunk.document_id = created_doc.id
|
|
218
|
+
chunk.order = order
|
|
219
|
+
await self.chunk_repository.create(chunk)
|
|
220
|
+
|
|
221
|
+
# Vacuum old versions in background (non-blocking)
|
|
222
|
+
asyncio.create_task(self.store.vacuum())
|
|
223
|
+
|
|
224
|
+
return created_doc
|
|
225
|
+
except Exception:
|
|
226
|
+
# Roll back to the captured versions and re-raise
|
|
227
|
+
self.store.restore_table_versions(versions)
|
|
228
|
+
raise
|
|
229
|
+
|
|
230
|
+
async def _update_and_rechunk(
|
|
231
|
+
self, entity: Document, docling_document: "DoclingDocument"
|
|
232
|
+
) -> Document:
|
|
233
|
+
"""Update a document and regenerate its chunks."""
|
|
234
|
+
assert entity.id is not None, "Document ID is required for update"
|
|
235
|
+
|
|
236
|
+
# Snapshot table versions for versioned rollback
|
|
237
|
+
versions = self.store.current_table_versions()
|
|
238
|
+
|
|
239
|
+
# Delete existing chunks before writing new ones
|
|
240
|
+
await self.chunk_repository.delete_by_document_id(entity.id)
|
|
241
|
+
|
|
242
|
+
try:
|
|
243
|
+
# Update the document
|
|
244
|
+
updated_doc = await self.update(entity)
|
|
245
|
+
|
|
246
|
+
# Create new chunks
|
|
247
|
+
assert updated_doc.id is not None, (
|
|
248
|
+
"Document ID should not be None after update"
|
|
249
|
+
)
|
|
250
|
+
await self.chunk_repository.create_chunks_for_document(
|
|
251
|
+
updated_doc.id, docling_document
|
|
252
|
+
)
|
|
253
|
+
|
|
254
|
+
# Vacuum old versions in background (non-blocking)
|
|
255
|
+
asyncio.create_task(self.store.vacuum())
|
|
256
|
+
|
|
257
|
+
return updated_doc
|
|
258
|
+
except Exception:
|
|
259
|
+
# Roll back to the captured versions and re-raise
|
|
260
|
+
self.store.restore_table_versions(versions)
|
|
261
|
+
raise
|