hafnia 0.2.1__py3-none-any.whl → 0.2.3__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli/__main__.py +6 -10
- cli/config.py +19 -5
- cli/profile_cmds.py +2 -1
- hafnia/dataset/dataset_helpers.py +39 -6
- hafnia/dataset/dataset_recipe/dataset_recipe.py +59 -1
- hafnia/dataset/dataset_recipe/recipe_types.py +4 -0
- hafnia/dataset/hafnia_dataset.py +7 -21
- hafnia/platform/datasets.py +12 -5
- {hafnia-0.2.1.dist-info → hafnia-0.2.3.dist-info}/METADATA +1 -1
- {hafnia-0.2.1.dist-info → hafnia-0.2.3.dist-info}/RECORD +13 -14
- hafnia/helper_testing.py +0 -108
- {hafnia-0.2.1.dist-info → hafnia-0.2.3.dist-info}/WHEEL +0 -0
- {hafnia-0.2.1.dist-info → hafnia-0.2.3.dist-info}/entry_points.txt +0 -0
- {hafnia-0.2.1.dist-info → hafnia-0.2.3.dist-info}/licenses/LICENSE +0 -0
cli/__main__.py
CHANGED
|
@@ -20,19 +20,15 @@ def configure(cfg: Config) -> None:
|
|
|
20
20
|
|
|
21
21
|
profile_name = click.prompt("Profile Name", type=str, default=consts.DEFAULT_PROFILE_NAME)
|
|
22
22
|
profile_name = profile_name.strip()
|
|
23
|
-
|
|
24
|
-
|
|
25
|
-
except ValueError:
|
|
26
|
-
raise click.ClickException(consts.ERROR_CREATE_PROFILE)
|
|
23
|
+
|
|
24
|
+
cfg.check_profile_name(profile_name)
|
|
27
25
|
|
|
28
26
|
api_key = click.prompt("Hafnia API Key", type=str, hide_input=True)
|
|
29
|
-
|
|
30
|
-
cfg.api_key = api_key.strip()
|
|
31
|
-
except ValueError as e:
|
|
32
|
-
click.echo(f"Error: {str(e)}", err=True)
|
|
33
|
-
return
|
|
27
|
+
|
|
34
28
|
platform_url = click.prompt("Hafnia Platform URL", type=str, default=consts.DEFAULT_API_URL)
|
|
35
|
-
|
|
29
|
+
|
|
30
|
+
cfg_profile = ConfigSchema(api_key=api_key, platform_url=platform_url)
|
|
31
|
+
cfg.add_profile(profile_name, cfg_profile, set_active=True)
|
|
36
32
|
cfg.save_config()
|
|
37
33
|
profile_cmds.profile_show(cfg)
|
|
38
34
|
|
cli/config.py
CHANGED
|
@@ -6,7 +6,7 @@ from typing import Dict, List, Optional
|
|
|
6
6
|
from pydantic import BaseModel, field_validator
|
|
7
7
|
|
|
8
8
|
import cli.consts as consts
|
|
9
|
-
from hafnia.log import user_logger
|
|
9
|
+
from hafnia.log import sys_logger, user_logger
|
|
10
10
|
|
|
11
11
|
PLATFORM_API_MAPPING = {
|
|
12
12
|
"recipes": "/api/v1/recipes",
|
|
@@ -23,9 +23,17 @@ class ConfigSchema(BaseModel):
|
|
|
23
23
|
api_key: Optional[str] = None
|
|
24
24
|
|
|
25
25
|
@field_validator("api_key")
|
|
26
|
-
def validate_api_key(cls, value: str) -> str:
|
|
27
|
-
if value is
|
|
26
|
+
def validate_api_key(cls, value: Optional[str]) -> Optional[str]:
|
|
27
|
+
if value is None:
|
|
28
|
+
return value
|
|
29
|
+
|
|
30
|
+
if len(value) < 10:
|
|
28
31
|
raise ValueError("API key is too short.")
|
|
32
|
+
|
|
33
|
+
if not value.startswith("ApiKey "):
|
|
34
|
+
sys_logger.warning("API key is missing the 'ApiKey ' prefix. Prefix is being added automatically.")
|
|
35
|
+
value = f"ApiKey {value}"
|
|
36
|
+
|
|
29
37
|
return value
|
|
30
38
|
|
|
31
39
|
|
|
@@ -51,6 +59,7 @@ class Config:
|
|
|
51
59
|
if profile_name not in self.config_data.profiles:
|
|
52
60
|
raise ValueError(f"Profile '{profile_name}' does not exist.")
|
|
53
61
|
self.config_data.active_profile = profile_name
|
|
62
|
+
self.save_config()
|
|
54
63
|
|
|
55
64
|
@property
|
|
56
65
|
def config(self) -> ConfigSchema:
|
|
@@ -92,13 +101,18 @@ class Config:
|
|
|
92
101
|
|
|
93
102
|
return Path.home() / ".hafnia" / "config.json"
|
|
94
103
|
|
|
95
|
-
def
|
|
96
|
-
profile_name
|
|
104
|
+
def check_profile_name(self, profile_name: str) -> None:
|
|
105
|
+
if not profile_name or not isinstance(profile_name, str):
|
|
106
|
+
raise ValueError("Profile name must be a non-empty string.")
|
|
107
|
+
|
|
97
108
|
if profile_name in self.config_data.profiles:
|
|
98
109
|
user_logger.warning(
|
|
99
110
|
f"Profile with name '{profile_name}' already exists, it will be overwritten by the new one."
|
|
100
111
|
)
|
|
101
112
|
|
|
113
|
+
def add_profile(self, profile_name: str, profile: ConfigSchema, set_active: bool = False) -> None:
|
|
114
|
+
profile_name = profile_name.strip()
|
|
115
|
+
self.check_profile_name(profile_name)
|
|
102
116
|
self.config_data.profiles[profile_name] = profile
|
|
103
117
|
if set_active:
|
|
104
118
|
self.config_data.active_profile = profile_name
|
cli/profile_cmds.py
CHANGED
|
@@ -56,6 +56,7 @@ def profile_create(cfg: Config, name: str, api_url: str, api_key: str, activate:
|
|
|
56
56
|
cfg_profile = ConfigSchema(platform_url=api_url, api_key=api_key)
|
|
57
57
|
|
|
58
58
|
cfg.add_profile(profile_name=name, profile=cfg_profile, set_active=activate)
|
|
59
|
+
profile_show(cfg)
|
|
59
60
|
|
|
60
61
|
|
|
61
62
|
@profile.command("rm")
|
|
@@ -87,7 +88,7 @@ def profile_active(cfg: Config) -> None:
|
|
|
87
88
|
|
|
88
89
|
|
|
89
90
|
def profile_show(cfg: Config) -> None:
|
|
90
|
-
masked_key = f"{cfg.api_key[:
|
|
91
|
+
masked_key = f"{cfg.api_key[:11]}...{cfg.api_key[-4:]}" if len(cfg.api_key) > 20 else "****"
|
|
91
92
|
console = Console()
|
|
92
93
|
|
|
93
94
|
table = Table(title=f"{consts.PROFILE_TABLE_HEADER} {cfg.active_profile}", show_header=False)
|
|
@@ -1,6 +1,7 @@
|
|
|
1
1
|
import io
|
|
2
2
|
import math
|
|
3
3
|
import random
|
|
4
|
+
import shutil
|
|
4
5
|
from pathlib import Path
|
|
5
6
|
from typing import Dict, List
|
|
6
7
|
|
|
@@ -21,7 +22,7 @@ def create_split_name_list_from_ratios(split_ratios: Dict[str, float], n_items:
|
|
|
21
22
|
|
|
22
23
|
|
|
23
24
|
def hash_file_xxhash(path: Path, chunk_size: int = 262144) -> str:
|
|
24
|
-
hasher = xxhash.
|
|
25
|
+
hasher = xxhash.xxh3_128()
|
|
25
26
|
|
|
26
27
|
with open(path, "rb") as f:
|
|
27
28
|
for chunk in iter(lambda: f.read(chunk_size), b""): # 8192, 16384, 32768, 65536
|
|
@@ -30,7 +31,7 @@ def hash_file_xxhash(path: Path, chunk_size: int = 262144) -> str:
|
|
|
30
31
|
|
|
31
32
|
|
|
32
33
|
def hash_from_bytes(data: bytes) -> str:
|
|
33
|
-
hasher = xxhash.
|
|
34
|
+
hasher = xxhash.xxh3_128()
|
|
34
35
|
hasher.update(data)
|
|
35
36
|
return hasher.hexdigest()
|
|
36
37
|
|
|
@@ -40,14 +41,46 @@ def save_image_with_hash_name(image: np.ndarray, path_folder: Path) -> Path:
|
|
|
40
41
|
buffer = io.BytesIO()
|
|
41
42
|
pil_image.save(buffer, format="PNG")
|
|
42
43
|
hash_value = hash_from_bytes(buffer.getvalue())
|
|
43
|
-
path_image = Path(path_folder) /
|
|
44
|
+
path_image = Path(path_folder) / relative_path_from_hash(hash=hash_value, suffix=".png")
|
|
45
|
+
path_image.parent.mkdir(parents=True, exist_ok=True)
|
|
44
46
|
pil_image.save(path_image)
|
|
45
47
|
return path_image
|
|
46
48
|
|
|
47
49
|
|
|
48
|
-
def
|
|
49
|
-
|
|
50
|
-
|
|
50
|
+
def copy_and_rename_file_to_hash_value(path_source: Path, path_dataset_root: Path) -> Path:
|
|
51
|
+
"""
|
|
52
|
+
Copies a file to a dataset root directory with a hash-based name and sub-directory structure.
|
|
53
|
+
|
|
54
|
+
E.g. for an "image.png" with hash "dfe8f3b1c2a4f5b6c7d8e9f0a1b2c3d4", the image will be copied to
|
|
55
|
+
'path_dataset_root / "data" / "dfe" / "dfe8f3b1c2a4f5b6c7d8e9f0a1b2c3d4.png"'
|
|
56
|
+
Notice that the hash is used for both the filename and the subfolder name.
|
|
57
|
+
|
|
58
|
+
Placing image/video files into multiple sub-folders (instead of one large folder) is seemingly
|
|
59
|
+
unnecessary, but it is actually a requirement when the dataset is later downloaded from S3.
|
|
60
|
+
|
|
61
|
+
The reason is that AWS has a rate limit of 3500 ops/sec per prefix (sub-folder) in S3 - meaning we can "only"
|
|
62
|
+
download 3500 files per second from a single folder (prefix) in S3.
|
|
63
|
+
|
|
64
|
+
For even a single user, we found that this limit was being reached when files are stored in single folder (prefix)
|
|
65
|
+
in S3. To support multiple users and concurrent experiments, we are required to separate files into
|
|
66
|
+
multiple sub-folders (prefixes) in S3 to not hit the rate limit.
|
|
67
|
+
"""
|
|
68
|
+
|
|
69
|
+
if not path_source.exists():
|
|
70
|
+
raise FileNotFoundError(f"Source file {path_source} does not exist.")
|
|
71
|
+
|
|
72
|
+
hash_value = hash_file_xxhash(path_source)
|
|
73
|
+
path_file = path_dataset_root / relative_path_from_hash(hash=hash_value, suffix=path_source.suffix)
|
|
74
|
+
path_file.parent.mkdir(parents=True, exist_ok=True)
|
|
75
|
+
if not path_file.exists():
|
|
76
|
+
shutil.copy2(path_source, path_file)
|
|
77
|
+
|
|
78
|
+
return path_file
|
|
79
|
+
|
|
80
|
+
|
|
81
|
+
def relative_path_from_hash(hash: str, suffix: str) -> Path:
|
|
82
|
+
path_file = Path("data") / hash[:3] / f"{hash}{suffix}"
|
|
83
|
+
return path_file
|
|
51
84
|
|
|
52
85
|
|
|
53
86
|
def split_sizes_from_ratios(n_items: int, split_ratios: Dict[str, float]) -> Dict[str, int]:
|
|
@@ -216,6 +216,16 @@ class DatasetRecipe(Serializable):
|
|
|
216
216
|
json_str = self.as_json_str(indent=indent)
|
|
217
217
|
path_json.write_text(json_str, encoding="utf-8")
|
|
218
218
|
|
|
219
|
+
### Helper methods ###
|
|
220
|
+
def get_dataset_names(self) -> List[str]:
|
|
221
|
+
"""
|
|
222
|
+
Get all dataset names added with 'from_name'.
|
|
223
|
+
Function recursively gathers dataset names.
|
|
224
|
+
"""
|
|
225
|
+
if self.creation is None:
|
|
226
|
+
return []
|
|
227
|
+
return self.creation.get_dataset_names()
|
|
228
|
+
|
|
219
229
|
### Validation and Serialization ###
|
|
220
230
|
@field_validator("creation", mode="plain")
|
|
221
231
|
@classmethod
|
|
@@ -282,7 +292,10 @@ class FromPath(RecipeCreation):
|
|
|
282
292
|
return HafniaDataset.from_path
|
|
283
293
|
|
|
284
294
|
def as_short_name(self) -> str:
|
|
285
|
-
return f"'{self.path_folder}'".replace(os.sep, "
|
|
295
|
+
return f"'{self.path_folder}'".replace(os.sep, "-")
|
|
296
|
+
|
|
297
|
+
def get_dataset_names(self) -> List[str]:
|
|
298
|
+
return [] # Only counts 'from_name' datasets
|
|
286
299
|
|
|
287
300
|
|
|
288
301
|
class FromName(RecipeCreation):
|
|
@@ -297,6 +310,9 @@ class FromName(RecipeCreation):
|
|
|
297
310
|
def as_short_name(self) -> str:
|
|
298
311
|
return self.name
|
|
299
312
|
|
|
313
|
+
def get_dataset_names(self) -> List[str]:
|
|
314
|
+
return [self.name]
|
|
315
|
+
|
|
300
316
|
|
|
301
317
|
class FromMerge(RecipeCreation):
|
|
302
318
|
recipe0: DatasetRecipe
|
|
@@ -310,6 +326,11 @@ class FromMerge(RecipeCreation):
|
|
|
310
326
|
merger = FromMerger(recipes=[self.recipe0, self.recipe1])
|
|
311
327
|
return merger.as_short_name()
|
|
312
328
|
|
|
329
|
+
def get_dataset_names(self) -> List[str]:
|
|
330
|
+
"""Get the dataset names from the merged recipes."""
|
|
331
|
+
names = [*self.recipe0.creation.get_dataset_names(), *self.recipe1.creation.get_dataset_names()]
|
|
332
|
+
return names
|
|
333
|
+
|
|
313
334
|
|
|
314
335
|
class FromMerger(RecipeCreation):
|
|
315
336
|
recipes: List[DatasetRecipe]
|
|
@@ -325,3 +346,40 @@ class FromMerger(RecipeCreation):
|
|
|
325
346
|
|
|
326
347
|
def as_short_name(self) -> str:
|
|
327
348
|
return f"Merger({','.join(recipe.as_short_name() for recipe in self.recipes)})"
|
|
349
|
+
|
|
350
|
+
def get_dataset_names(self) -> List[str]:
|
|
351
|
+
"""Get the dataset names from the merged recipes."""
|
|
352
|
+
names = []
|
|
353
|
+
for recipe in self.recipes:
|
|
354
|
+
names.extend(recipe.creation.get_dataset_names())
|
|
355
|
+
return names
|
|
356
|
+
|
|
357
|
+
|
|
358
|
+
def extract_dataset_names_from_json_dict(data: dict) -> list[str]:
|
|
359
|
+
"""
|
|
360
|
+
Extract dataset names recursively from a JSON dictionary added with 'from_name'.
|
|
361
|
+
|
|
362
|
+
Even if the same functionality is achieved with `DatasetRecipe.get_dataset_names()`,
|
|
363
|
+
we want to keep this function in 'dipdatalib' to extract dataset names from json dictionaries
|
|
364
|
+
directly.
|
|
365
|
+
"""
|
|
366
|
+
creation_field = data.get("creation")
|
|
367
|
+
if creation_field is None:
|
|
368
|
+
return []
|
|
369
|
+
if creation_field.get("__type__") == "FromName":
|
|
370
|
+
return [creation_field["name"]]
|
|
371
|
+
elif creation_field.get("__type__") == "FromMerge":
|
|
372
|
+
recipe_names = ["recipe0", "recipe1"]
|
|
373
|
+
dataset_name = []
|
|
374
|
+
for recipe_name in recipe_names:
|
|
375
|
+
recipe = creation_field.get(recipe_name)
|
|
376
|
+
if recipe is None:
|
|
377
|
+
continue
|
|
378
|
+
dataset_name.extend(extract_dataset_names_from_json_dict(recipe))
|
|
379
|
+
return dataset_name
|
|
380
|
+
elif creation_field.get("__type__") == "FromMerger":
|
|
381
|
+
dataset_name = []
|
|
382
|
+
for recipe in creation_field.get("recipes", []):
|
|
383
|
+
dataset_name.extend(extract_dataset_names_from_json_dict(recipe))
|
|
384
|
+
return dataset_name
|
|
385
|
+
return []
|
|
@@ -108,6 +108,10 @@ class RecipeCreation(Serializable):
|
|
|
108
108
|
def get_function() -> Callable[..., "HafniaDataset"]:
|
|
109
109
|
pass
|
|
110
110
|
|
|
111
|
+
@abstractmethod
|
|
112
|
+
def get_dataset_names(self) -> List[str]:
|
|
113
|
+
pass
|
|
114
|
+
|
|
111
115
|
def build(self) -> "HafniaDataset":
|
|
112
116
|
from hafnia.dataset.dataset_recipe.dataset_recipe import DatasetRecipe
|
|
113
117
|
|
hafnia/dataset/hafnia_dataset.py
CHANGED
|
@@ -1,6 +1,5 @@
|
|
|
1
1
|
from __future__ import annotations
|
|
2
2
|
|
|
3
|
-
import os
|
|
4
3
|
import shutil
|
|
5
4
|
from dataclasses import dataclass
|
|
6
5
|
from pathlib import Path
|
|
@@ -182,9 +181,8 @@ class HafniaDataset:
|
|
|
182
181
|
table = read_table_from_path(path_folder)
|
|
183
182
|
|
|
184
183
|
# Convert from relative paths to absolute paths
|
|
185
|
-
|
|
186
|
-
|
|
187
|
-
)
|
|
184
|
+
dataset_root = path_folder.absolute().as_posix() + "/"
|
|
185
|
+
table = table.with_columns((dataset_root + pl.col("file_name")).alias("file_name"))
|
|
188
186
|
if check_for_images:
|
|
189
187
|
check_image_paths(table)
|
|
190
188
|
return HafniaDataset(samples=table, info=dataset_info)
|
|
@@ -413,30 +411,18 @@ class HafniaDataset:
|
|
|
413
411
|
|
|
414
412
|
return True
|
|
415
413
|
|
|
416
|
-
def write(self, path_folder: Path,
|
|
414
|
+
def write(self, path_folder: Path, add_version: bool = False) -> None:
|
|
417
415
|
user_logger.info(f"Writing dataset to {path_folder}...")
|
|
418
416
|
if not path_folder.exists():
|
|
419
417
|
path_folder.mkdir(parents=True)
|
|
420
|
-
path_folder_images = path_folder / "data"
|
|
421
|
-
path_folder_images.mkdir(parents=True, exist_ok=True)
|
|
422
418
|
|
|
423
419
|
new_relative_paths = []
|
|
424
420
|
for org_path in tqdm(self.samples["file_name"].to_list(), desc="- Copy images"):
|
|
425
|
-
|
|
426
|
-
|
|
427
|
-
|
|
428
|
-
|
|
429
|
-
filename = dataset_helpers.filename_as_hash_from_path(org_path)
|
|
430
|
-
else:
|
|
431
|
-
filename = Path(org_path).name
|
|
432
|
-
new_path = path_folder_images / filename
|
|
433
|
-
if not new_path.exists():
|
|
434
|
-
shutil.copy2(org_path, new_path)
|
|
435
|
-
|
|
436
|
-
if not new_path.exists():
|
|
437
|
-
raise FileNotFoundError(f"File {new_path} does not exist in the dataset.")
|
|
421
|
+
new_path = dataset_helpers.copy_and_rename_file_to_hash_value(
|
|
422
|
+
path_source=Path(org_path),
|
|
423
|
+
path_dataset_root=path_folder,
|
|
424
|
+
)
|
|
438
425
|
new_relative_paths.append(str(new_path.relative_to(path_folder)))
|
|
439
|
-
|
|
440
426
|
table = self.samples.with_columns(pl.Series(new_relative_paths).alias("file_name"))
|
|
441
427
|
table.write_ndjson(path_folder / FILENAME_ANNOTATIONS_JSONL) # Json for readability
|
|
442
428
|
table.write_parquet(path_folder / FILENAME_ANNOTATIONS_PARQUET) # Parquet for speed
|
hafnia/platform/datasets.py
CHANGED
|
@@ -2,6 +2,7 @@ import os
|
|
|
2
2
|
import shutil
|
|
3
3
|
import subprocess
|
|
4
4
|
import tempfile
|
|
5
|
+
import uuid
|
|
5
6
|
from pathlib import Path
|
|
6
7
|
from typing import Any, Dict, List, Optional
|
|
7
8
|
|
|
@@ -61,7 +62,12 @@ def download_or_get_dataset_path(
|
|
|
61
62
|
dataset_id = get_dataset_id(dataset_name=dataset_name, endpoint=endpoint_dataset, api_key=api_key)
|
|
62
63
|
if dataset_id is None:
|
|
63
64
|
sys_logger.error(f"Dataset '{dataset_name}' not found on the Hafnia platform.")
|
|
64
|
-
|
|
65
|
+
|
|
66
|
+
if utils.is_hafnia_cloud_job():
|
|
67
|
+
credentials_endpoint_suffix = "temporary-credentials-hidden" # Access to hidden datasets
|
|
68
|
+
else:
|
|
69
|
+
credentials_endpoint_suffix = "temporary-credentials" # Access to sample dataset
|
|
70
|
+
access_dataset_endpoint = f"{endpoint_dataset}/{dataset_id}/{credentials_endpoint_suffix}"
|
|
65
71
|
|
|
66
72
|
download_dataset_from_access_endpoint(
|
|
67
73
|
endpoint=access_dataset_endpoint,
|
|
@@ -80,7 +86,7 @@ def download_dataset_from_access_endpoint(
|
|
|
80
86
|
) -> None:
|
|
81
87
|
resource_credentials = get_resource_credentials(endpoint, api_key)
|
|
82
88
|
|
|
83
|
-
local_dataset_paths = [
|
|
89
|
+
local_dataset_paths = [(path_dataset / filename).as_posix() for filename in DATASET_FILENAMES_REQUIRED]
|
|
84
90
|
s3_uri = resource_credentials.s3_uri()
|
|
85
91
|
s3_dataset_files = [f"{s3_uri}/{filename}" for filename in DATASET_FILENAMES_REQUIRED]
|
|
86
92
|
|
|
@@ -94,7 +100,6 @@ def download_dataset_from_access_endpoint(
|
|
|
94
100
|
|
|
95
101
|
if not download_files:
|
|
96
102
|
return
|
|
97
|
-
|
|
98
103
|
dataset = HafniaDataset.from_path(path_dataset, check_for_images=False)
|
|
99
104
|
fast_copy_files_s3(
|
|
100
105
|
src_paths=dataset.samples[ColumnName.REMOTE_PATH].to_list(),
|
|
@@ -124,8 +129,10 @@ def execute_s5cmd_commands(
|
|
|
124
129
|
description: str = "Executing s5cmd commands",
|
|
125
130
|
) -> List[str]:
|
|
126
131
|
append_envs = append_envs or {}
|
|
127
|
-
|
|
128
|
-
|
|
132
|
+
# In Windows default "Temp" directory can not be deleted that is why we need to create a
|
|
133
|
+
# temporary directory.
|
|
134
|
+
with tempfile.TemporaryDirectory() as temp_dir:
|
|
135
|
+
tmp_file_path = Path(temp_dir, f"{uuid.uuid4().hex}.txt")
|
|
129
136
|
tmp_file_path.write_text("\n".join(commands))
|
|
130
137
|
run_cmds = [
|
|
131
138
|
"s5cmd",
|
|
@@ -1,27 +1,26 @@
|
|
|
1
1
|
cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
cli/__main__.py,sha256=
|
|
3
|
-
cli/config.py,sha256
|
|
2
|
+
cli/__main__.py,sha256=WPOiwolX6J5qLBQGv_b64PGYWScrwqbdVh5zs5AbzVk,1436
|
|
3
|
+
cli/config.py,sha256=hkVd1WyrRqLBgJbKWJkXBzRWlvBRr8dt_8f722yZiiM,6063
|
|
4
4
|
cli/consts.py,sha256=sj0MRwbbCT2Yl77FPddck1VWkFxp7QY6I9l1o75j_aE,963
|
|
5
5
|
cli/dataset_cmds.py,sha256=VUMhnHGYPtNNJUK9aobKTx2zpVzLex4gTMmyQXuzCVw,1623
|
|
6
6
|
cli/experiment_cmds.py,sha256=L-k_ZJ4B7I4cA8OvHcheSwXM6nx9aTF9G7eKBzAcOzQ,1961
|
|
7
|
-
cli/profile_cmds.py,sha256
|
|
7
|
+
cli/profile_cmds.py,sha256=qop9hW4EjbTEQ5d28tiIHCaG6iUM9opQcj289qI-tkg,3220
|
|
8
8
|
cli/recipe_cmds.py,sha256=qnMfF-te47HXNkgyA0hm9X3etDQsqMnrVEGDCrzVjZU,1462
|
|
9
9
|
cli/runc_cmds.py,sha256=QqhQe2sd7tK1Bl2aGfIWRyJjpP6F7Tducg7HULrHsZ4,4958
|
|
10
10
|
hafnia/__init__.py,sha256=Zphq-cQoX95Z11zm4lkrU-YiAJxddR7IBfwDkxeHoDE,108
|
|
11
|
-
hafnia/helper_testing.py,sha256=GnaNhXdY81arjCT9M2RUAmvn2-aIzRqlCtbWwGbOIaY,3901
|
|
12
11
|
hafnia/http.py,sha256=HoPB03IL6e-nglTrw1NGT6sDx1T8VNas5HjTT1QZHnU,3035
|
|
13
12
|
hafnia/log.py,sha256=sWF8tz78yBtwZ9ddzm19L1MBSBJ3L4G704IGeT1_OEU,784
|
|
14
13
|
hafnia/torch_helpers.py,sha256=ho65B0WIu_SjbaKPRL4wabDNrnVumWH8QSXVH4r7NAY,11605
|
|
15
14
|
hafnia/utils.py,sha256=aTZaeHldXn4Jx_AR2BYATxtLCRrBKBjjDFmpSZTSvV4,5138
|
|
16
15
|
hafnia/data/__init__.py,sha256=o9QjiGbEcNa6r-qDmwwmxPXf-1UitNl5-WxFNcujqsg,111
|
|
17
16
|
hafnia/data/factory.py,sha256=OY6l6c9UKk6OUDhG4Akb2VgcSaTRLHlbSndAe1HuW2U,813
|
|
18
|
-
hafnia/dataset/dataset_helpers.py,sha256=
|
|
17
|
+
hafnia/dataset/dataset_helpers.py,sha256=x6jub_aLWJn-sWSvXT_0-nwzzPG1xMM9yBMNDx6Nufw,5190
|
|
19
18
|
hafnia/dataset/dataset_names.py,sha256=mp7A_TOqgoqHUEBCPC4ReKNJ93cxwQB451owoCqD6yM,2120
|
|
20
19
|
hafnia/dataset/dataset_upload_helper.py,sha256=D1BGaeEar4McpUvXj4Yy8nk1tr12IEVhP_Ma47OoWmU,21150
|
|
21
|
-
hafnia/dataset/hafnia_dataset.py,sha256=
|
|
22
|
-
hafnia/dataset/dataset_recipe/dataset_recipe.py,sha256=
|
|
20
|
+
hafnia/dataset/hafnia_dataset.py,sha256=6yy13mU9OnJfIoG8R1ZS7mmkNR_VKOD9B4L2KjdS76I,27078
|
|
21
|
+
hafnia/dataset/dataset_recipe/dataset_recipe.py,sha256=3rMMd1xlfQzElxF9P2uNyKqK-GjbCADZgcFDoPviTmU,15796
|
|
23
22
|
hafnia/dataset/dataset_recipe/recipe_transforms.py,sha256=wh1y2XyX0PwOwfuzJ3_17KKng2Rk0zLlgdfSHfS1SyM,1305
|
|
24
|
-
hafnia/dataset/dataset_recipe/recipe_types.py,sha256=
|
|
23
|
+
hafnia/dataset/dataset_recipe/recipe_types.py,sha256=breT8x81FcmiZ82U_D9FBut0F-eWwOeBWBOse9kNAYU,5256
|
|
25
24
|
hafnia/dataset/operations/dataset_stats.py,sha256=tSHPmkXt4WNgjf5-j3jIrsSy1Ajld3619AkUHaesXb4,445
|
|
26
25
|
hafnia/dataset/operations/dataset_transformations.py,sha256=4ibC11upEtRGJgoFLv8lUnglv2xANZVfNdsvI1BMvfM,2960
|
|
27
26
|
hafnia/dataset/operations/table_transformations.py,sha256=kCLbLRdiFSx1JG0IWtaKkhWcMtM7hy8zgm0Ehz0zO_g,7639
|
|
@@ -38,13 +37,13 @@ hafnia/experiment/__init__.py,sha256=OEFE6HqhO5zcTCLZcPcPVjIg7wMFFnvZ1uOtAVhRz7M
|
|
|
38
37
|
hafnia/experiment/hafnia_logger.py,sha256=dnV3VPzJK7DSeUh0g4Hk9w1g-eSXcVqJD9If0h2d2GE,6885
|
|
39
38
|
hafnia/platform/__init__.py,sha256=zJsR6Hy_0iUcC9xL-lBnqR0mLfF4EUr_VXa_XQA7SlA,455
|
|
40
39
|
hafnia/platform/builder.py,sha256=_g8ykQWETz5Y4Np9QU1a6wIzbbJwXCkbiOCA6JcF5Rc,5742
|
|
41
|
-
hafnia/platform/datasets.py,sha256=
|
|
40
|
+
hafnia/platform/datasets.py,sha256=mRv8A0JSMYdBr3_0qqrw21kKSSPMSYUFWyPVNxYqZrA,7344
|
|
42
41
|
hafnia/platform/download.py,sha256=oJzdxSIDTuw1an7maC6I7A5nZvDaZPhUkuAmyRwN9Kc,6843
|
|
43
42
|
hafnia/platform/experiment.py,sha256=-nAfTmn1c8sE6pHDCTNZvWDTopkXndarJAPIGvsnk60,2389
|
|
44
43
|
hafnia/visualizations/colors.py,sha256=003eAJVnBal4abaYIIpsrT7erIOIjTUHHYVJ1Tj1CDc,5226
|
|
45
44
|
hafnia/visualizations/image_visualizations.py,sha256=RuFFj2fJCm9dxl2Lq0MumJHF81ZnX-IsDsTxm8ZFV9A,7313
|
|
46
|
-
hafnia-0.2.
|
|
47
|
-
hafnia-0.2.
|
|
48
|
-
hafnia-0.2.
|
|
49
|
-
hafnia-0.2.
|
|
50
|
-
hafnia-0.2.
|
|
45
|
+
hafnia-0.2.3.dist-info/METADATA,sha256=7ZwSgwrbliqkHYTy11Sg01su1z-aZiWSGs9Y6qHBQ4k,19040
|
|
46
|
+
hafnia-0.2.3.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
47
|
+
hafnia-0.2.3.dist-info/entry_points.txt,sha256=FCJVIQ8GP2VE9I3eeGVF5eLxVDNW_01pOJCpG_CGnMM,45
|
|
48
|
+
hafnia-0.2.3.dist-info/licenses/LICENSE,sha256=wLZw1B7_mod_CO1H8LXqQgfqlWD6QceJR8--LJYRZGE,1078
|
|
49
|
+
hafnia-0.2.3.dist-info/RECORD,,
|
hafnia/helper_testing.py
DELETED
|
@@ -1,108 +0,0 @@
|
|
|
1
|
-
from inspect import getmembers, isfunction, signature
|
|
2
|
-
from pathlib import Path
|
|
3
|
-
from types import FunctionType
|
|
4
|
-
from typing import Any, Callable, Dict, Union, get_origin
|
|
5
|
-
|
|
6
|
-
from hafnia import utils
|
|
7
|
-
from hafnia.dataset.dataset_names import FILENAME_ANNOTATIONS_JSONL, DatasetVariant
|
|
8
|
-
from hafnia.dataset.hafnia_dataset import HafniaDataset, Sample
|
|
9
|
-
|
|
10
|
-
MICRO_DATASETS = {
|
|
11
|
-
"tiny-dataset": utils.PATH_DATASETS / "tiny-dataset",
|
|
12
|
-
"coco-2017": utils.PATH_DATASETS / "coco-2017",
|
|
13
|
-
}
|
|
14
|
-
|
|
15
|
-
|
|
16
|
-
def get_path_workspace() -> Path:
|
|
17
|
-
return Path(__file__).parents[2]
|
|
18
|
-
|
|
19
|
-
|
|
20
|
-
def get_path_expected_images() -> Path:
|
|
21
|
-
return get_path_workspace() / "tests" / "data" / "expected_images"
|
|
22
|
-
|
|
23
|
-
|
|
24
|
-
def get_path_test_data() -> Path:
|
|
25
|
-
return get_path_workspace() / "tests" / "data"
|
|
26
|
-
|
|
27
|
-
|
|
28
|
-
def get_path_micro_hafnia_dataset_no_check() -> Path:
|
|
29
|
-
return get_path_test_data() / "micro_test_datasets"
|
|
30
|
-
|
|
31
|
-
|
|
32
|
-
def get_path_micro_hafnia_dataset(dataset_name: str, force_update=False) -> Path:
|
|
33
|
-
import pytest
|
|
34
|
-
|
|
35
|
-
if dataset_name not in MICRO_DATASETS:
|
|
36
|
-
raise ValueError(f"Dataset name '{dataset_name}' is not recognized. Available options: {list(MICRO_DATASETS)}")
|
|
37
|
-
path_dataset = MICRO_DATASETS[dataset_name]
|
|
38
|
-
|
|
39
|
-
path_test_dataset = get_path_micro_hafnia_dataset_no_check() / dataset_name
|
|
40
|
-
path_test_dataset_annotations = path_test_dataset / FILENAME_ANNOTATIONS_JSONL
|
|
41
|
-
if path_test_dataset_annotations.exists() and not force_update:
|
|
42
|
-
return path_test_dataset
|
|
43
|
-
|
|
44
|
-
hafnia_dataset = HafniaDataset.from_path(path_dataset / DatasetVariant.SAMPLE.value)
|
|
45
|
-
hafnia_dataset = hafnia_dataset.select_samples(n_samples=3, seed=42)
|
|
46
|
-
hafnia_dataset.write(path_test_dataset)
|
|
47
|
-
|
|
48
|
-
if force_update:
|
|
49
|
-
pytest.fail(
|
|
50
|
-
"Sample image and metadata have been updated using 'force_update=True'. Set 'force_update=False' and rerun the test."
|
|
51
|
-
)
|
|
52
|
-
pytest.fail("Missing test sample image. Please rerun the test.")
|
|
53
|
-
return path_test_dataset
|
|
54
|
-
|
|
55
|
-
|
|
56
|
-
def get_sample_micro_hafnia_dataset(dataset_name: str, force_update=False) -> Sample:
|
|
57
|
-
micro_dataset = get_micro_hafnia_dataset(dataset_name=dataset_name, force_update=force_update)
|
|
58
|
-
sample_dict = micro_dataset[0]
|
|
59
|
-
sample = Sample(**sample_dict)
|
|
60
|
-
return sample
|
|
61
|
-
|
|
62
|
-
|
|
63
|
-
def get_micro_hafnia_dataset(dataset_name: str, force_update: bool = False) -> HafniaDataset:
|
|
64
|
-
path_dataset = get_path_micro_hafnia_dataset(dataset_name=dataset_name, force_update=force_update)
|
|
65
|
-
hafnia_dataset = HafniaDataset.from_path(path_dataset)
|
|
66
|
-
return hafnia_dataset
|
|
67
|
-
|
|
68
|
-
|
|
69
|
-
def is_hafnia_configured() -> bool:
|
|
70
|
-
"""
|
|
71
|
-
Check if Hafnia is configured by verifying if the API key is set.
|
|
72
|
-
"""
|
|
73
|
-
from cli.config import Config
|
|
74
|
-
|
|
75
|
-
return Config().is_configured()
|
|
76
|
-
|
|
77
|
-
|
|
78
|
-
def is_typing_type(annotation: Any) -> bool:
|
|
79
|
-
return get_origin(annotation) is not None
|
|
80
|
-
|
|
81
|
-
|
|
82
|
-
def annotation_as_string(annotation: Union[type, str]) -> str:
|
|
83
|
-
"""Convert type annotation to string."""
|
|
84
|
-
if isinstance(annotation, str):
|
|
85
|
-
return annotation.replace("'", "")
|
|
86
|
-
if is_typing_type(annotation): # Is using typing types like List, Dict, etc.
|
|
87
|
-
return str(annotation).replace("typing.", "")
|
|
88
|
-
if hasattr(annotation, "__name__"):
|
|
89
|
-
return annotation.__name__
|
|
90
|
-
return str(annotation)
|
|
91
|
-
|
|
92
|
-
|
|
93
|
-
def get_hafnia_functions_from_module(python_module) -> Dict[str, FunctionType]:
|
|
94
|
-
def dataset_is_first_arg(func: Callable) -> bool:
|
|
95
|
-
"""
|
|
96
|
-
Check if the function has 'HafniaDataset' as the first parameter.
|
|
97
|
-
"""
|
|
98
|
-
func_signature = signature(func)
|
|
99
|
-
params = func_signature.parameters
|
|
100
|
-
if len(params) == 0:
|
|
101
|
-
return False
|
|
102
|
-
first_argument_type = list(params.values())[0]
|
|
103
|
-
|
|
104
|
-
annotation_as_str = annotation_as_string(first_argument_type.annotation)
|
|
105
|
-
return annotation_as_str == "HafniaDataset"
|
|
106
|
-
|
|
107
|
-
functions = {func[0]: func[1] for func in getmembers(python_module, isfunction) if dataset_is_first_arg(func[1])}
|
|
108
|
-
return functions
|
|
File without changes
|
|
File without changes
|
|
File without changes
|