hafnia 0.1.26__py3-none-any.whl → 0.2.0__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli/__main__.py +2 -2
- cli/dataset_cmds.py +60 -0
- cli/runc_cmds.py +1 -1
- hafnia/data/__init__.py +2 -2
- hafnia/data/factory.py +9 -56
- hafnia/dataset/dataset_helpers.py +91 -0
- hafnia/dataset/dataset_names.py +71 -0
- hafnia/dataset/dataset_transformation.py +187 -0
- hafnia/dataset/dataset_upload_helper.py +468 -0
- hafnia/dataset/hafnia_dataset.py +453 -0
- hafnia/dataset/primitives/__init__.py +16 -0
- hafnia/dataset/primitives/bbox.py +137 -0
- hafnia/dataset/primitives/bitmask.py +182 -0
- hafnia/dataset/primitives/classification.py +56 -0
- hafnia/dataset/primitives/point.py +25 -0
- hafnia/dataset/primitives/polygon.py +100 -0
- hafnia/dataset/primitives/primitive.py +44 -0
- hafnia/dataset/primitives/segmentation.py +51 -0
- hafnia/dataset/primitives/utils.py +51 -0
- hafnia/dataset/table_transformations.py +183 -0
- hafnia/experiment/hafnia_logger.py +2 -2
- hafnia/helper_testing.py +63 -0
- hafnia/http.py +5 -3
- hafnia/platform/__init__.py +2 -2
- hafnia/platform/builder.py +25 -19
- hafnia/platform/datasets.py +184 -0
- hafnia/platform/download.py +85 -23
- hafnia/torch_helpers.py +180 -95
- hafnia/utils.py +1 -1
- hafnia/visualizations/colors.py +267 -0
- hafnia/visualizations/image_visualizations.py +202 -0
- {hafnia-0.1.26.dist-info → hafnia-0.2.0.dist-info}/METADATA +212 -99
- hafnia-0.2.0.dist-info/RECORD +46 -0
- cli/data_cmds.py +0 -53
- hafnia-0.1.26.dist-info/RECORD +0 -27
- {hafnia-0.1.26.dist-info → hafnia-0.2.0.dist-info}/WHEEL +0 -0
- {hafnia-0.1.26.dist-info → hafnia-0.2.0.dist-info}/entry_points.txt +0 -0
- {hafnia-0.1.26.dist-info → hafnia-0.2.0.dist-info}/licenses/LICENSE +0 -0
|
@@ -0,0 +1,267 @@
|
|
|
1
|
+
from typing import List, Tuple
|
|
2
|
+
|
|
3
|
+
|
|
4
|
+
def get_n_colors(index: int) -> List[Tuple[int, int, int]]:
|
|
5
|
+
n_colors = len(COLORS)
|
|
6
|
+
colors = [COLORS[index % n_colors] for index in range(index)]
|
|
7
|
+
return colors
|
|
8
|
+
|
|
9
|
+
|
|
10
|
+
COLORS = [
|
|
11
|
+
(210, 24, 32),
|
|
12
|
+
(24, 105, 255),
|
|
13
|
+
(0, 138, 0),
|
|
14
|
+
(243, 109, 255),
|
|
15
|
+
(113, 0, 121),
|
|
16
|
+
(170, 251, 0),
|
|
17
|
+
(0, 190, 194),
|
|
18
|
+
(255, 162, 53),
|
|
19
|
+
(93, 61, 4),
|
|
20
|
+
(8, 0, 138),
|
|
21
|
+
(0, 93, 93),
|
|
22
|
+
(154, 125, 130),
|
|
23
|
+
(162, 174, 255),
|
|
24
|
+
(150, 182, 117),
|
|
25
|
+
(158, 40, 255),
|
|
26
|
+
(77, 0, 20),
|
|
27
|
+
(255, 174, 190),
|
|
28
|
+
(206, 0, 146),
|
|
29
|
+
(0, 255, 182),
|
|
30
|
+
(0, 45, 0),
|
|
31
|
+
(158, 117, 0),
|
|
32
|
+
(61, 53, 65),
|
|
33
|
+
(243, 235, 146),
|
|
34
|
+
(101, 97, 138),
|
|
35
|
+
(138, 61, 77),
|
|
36
|
+
(89, 4, 186),
|
|
37
|
+
(85, 138, 113),
|
|
38
|
+
(178, 190, 194),
|
|
39
|
+
(255, 93, 130),
|
|
40
|
+
(28, 198, 0),
|
|
41
|
+
(146, 247, 255),
|
|
42
|
+
(45, 134, 166),
|
|
43
|
+
(57, 93, 40),
|
|
44
|
+
(235, 206, 255),
|
|
45
|
+
(255, 93, 0),
|
|
46
|
+
(166, 97, 170),
|
|
47
|
+
(134, 0, 0),
|
|
48
|
+
(53, 0, 89),
|
|
49
|
+
(0, 81, 142),
|
|
50
|
+
(158, 73, 16),
|
|
51
|
+
(206, 190, 0),
|
|
52
|
+
(0, 40, 40),
|
|
53
|
+
(0, 178, 255),
|
|
54
|
+
(202, 166, 134),
|
|
55
|
+
(190, 154, 194),
|
|
56
|
+
(45, 32, 12),
|
|
57
|
+
(117, 101, 69),
|
|
58
|
+
(130, 121, 223),
|
|
59
|
+
(0, 194, 138),
|
|
60
|
+
(186, 231, 194),
|
|
61
|
+
(134, 142, 166),
|
|
62
|
+
(202, 113, 89),
|
|
63
|
+
(130, 154, 0),
|
|
64
|
+
(45, 0, 255),
|
|
65
|
+
(210, 4, 247),
|
|
66
|
+
(255, 215, 190),
|
|
67
|
+
(146, 206, 247),
|
|
68
|
+
(186, 93, 125),
|
|
69
|
+
(255, 65, 194),
|
|
70
|
+
(190, 134, 255),
|
|
71
|
+
(146, 142, 101),
|
|
72
|
+
(166, 4, 170),
|
|
73
|
+
(134, 227, 117),
|
|
74
|
+
(73, 0, 61),
|
|
75
|
+
(251, 239, 12),
|
|
76
|
+
(105, 85, 93),
|
|
77
|
+
(89, 49, 45),
|
|
78
|
+
(105, 53, 255),
|
|
79
|
+
(182, 4, 77),
|
|
80
|
+
(93, 109, 113),
|
|
81
|
+
(65, 69, 53),
|
|
82
|
+
(101, 113, 0),
|
|
83
|
+
(121, 0, 73),
|
|
84
|
+
(28, 49, 81),
|
|
85
|
+
(121, 65, 158),
|
|
86
|
+
(255, 146, 113),
|
|
87
|
+
(255, 166, 243),
|
|
88
|
+
(186, 158, 65),
|
|
89
|
+
(130, 170, 154),
|
|
90
|
+
(215, 121, 0),
|
|
91
|
+
(73, 61, 113),
|
|
92
|
+
(81, 162, 85),
|
|
93
|
+
(231, 130, 182),
|
|
94
|
+
(210, 227, 251),
|
|
95
|
+
(0, 73, 49),
|
|
96
|
+
(109, 219, 194),
|
|
97
|
+
(61, 77, 93),
|
|
98
|
+
(97, 53, 85),
|
|
99
|
+
(0, 113, 81),
|
|
100
|
+
(93, 24, 0),
|
|
101
|
+
(154, 93, 81),
|
|
102
|
+
(85, 142, 219),
|
|
103
|
+
(202, 202, 154),
|
|
104
|
+
(53, 24, 32),
|
|
105
|
+
(57, 61, 0),
|
|
106
|
+
(0, 154, 150),
|
|
107
|
+
(235, 16, 109),
|
|
108
|
+
(138, 69, 121),
|
|
109
|
+
(117, 170, 194),
|
|
110
|
+
(202, 146, 154),
|
|
111
|
+
(210, 186, 198),
|
|
112
|
+
(154, 206, 0),
|
|
113
|
+
(69, 109, 170),
|
|
114
|
+
(117, 89, 0),
|
|
115
|
+
(206, 77, 12),
|
|
116
|
+
(0, 223, 251),
|
|
117
|
+
(255, 61, 65),
|
|
118
|
+
(255, 202, 73),
|
|
119
|
+
(45, 49, 146),
|
|
120
|
+
(134, 105, 134),
|
|
121
|
+
(158, 130, 190),
|
|
122
|
+
(206, 174, 255),
|
|
123
|
+
(121, 69, 45),
|
|
124
|
+
(198, 251, 130),
|
|
125
|
+
(93, 117, 73),
|
|
126
|
+
(182, 69, 73),
|
|
127
|
+
(255, 223, 239),
|
|
128
|
+
(162, 0, 113),
|
|
129
|
+
(77, 77, 166),
|
|
130
|
+
(166, 170, 202),
|
|
131
|
+
(113, 28, 40),
|
|
132
|
+
(40, 121, 121),
|
|
133
|
+
(8, 73, 0),
|
|
134
|
+
(0, 105, 134),
|
|
135
|
+
(166, 117, 73),
|
|
136
|
+
(251, 182, 130),
|
|
137
|
+
(85, 24, 125),
|
|
138
|
+
(0, 255, 89),
|
|
139
|
+
(0, 65, 77),
|
|
140
|
+
(109, 142, 146),
|
|
141
|
+
(170, 36, 0),
|
|
142
|
+
(190, 210, 109),
|
|
143
|
+
(138, 97, 186),
|
|
144
|
+
(210, 65, 190),
|
|
145
|
+
(73, 97, 81),
|
|
146
|
+
(206, 243, 239),
|
|
147
|
+
(97, 194, 97),
|
|
148
|
+
(20, 138, 77),
|
|
149
|
+
(0, 255, 231),
|
|
150
|
+
(0, 105, 0),
|
|
151
|
+
(178, 121, 158),
|
|
152
|
+
(170, 178, 158),
|
|
153
|
+
(186, 85, 255),
|
|
154
|
+
(198, 121, 206),
|
|
155
|
+
(32, 49, 32),
|
|
156
|
+
(125, 4, 219),
|
|
157
|
+
(194, 198, 247),
|
|
158
|
+
(138, 198, 206),
|
|
159
|
+
(231, 235, 206),
|
|
160
|
+
(40, 28, 57),
|
|
161
|
+
(158, 255, 174),
|
|
162
|
+
(130, 206, 154),
|
|
163
|
+
(49, 166, 12),
|
|
164
|
+
(0, 162, 117),
|
|
165
|
+
(219, 146, 85),
|
|
166
|
+
(61, 20, 4),
|
|
167
|
+
(255, 138, 154),
|
|
168
|
+
(130, 134, 53),
|
|
169
|
+
(105, 77, 113),
|
|
170
|
+
(182, 97, 0),
|
|
171
|
+
(125, 45, 0),
|
|
172
|
+
(162, 178, 57),
|
|
173
|
+
(49, 4, 125),
|
|
174
|
+
(166, 61, 202),
|
|
175
|
+
(154, 32, 45),
|
|
176
|
+
(4, 223, 134),
|
|
177
|
+
(117, 125, 109),
|
|
178
|
+
(138, 150, 210),
|
|
179
|
+
(8, 162, 202),
|
|
180
|
+
(247, 109, 93),
|
|
181
|
+
(16, 85, 202),
|
|
182
|
+
(219, 182, 101),
|
|
183
|
+
(146, 89, 109),
|
|
184
|
+
(162, 255, 227),
|
|
185
|
+
(89, 85, 40),
|
|
186
|
+
(113, 121, 170),
|
|
187
|
+
(215, 89, 101),
|
|
188
|
+
(73, 32, 81),
|
|
189
|
+
(223, 77, 146),
|
|
190
|
+
(0, 0, 202),
|
|
191
|
+
(93, 101, 210),
|
|
192
|
+
(223, 166, 0),
|
|
193
|
+
(178, 73, 146),
|
|
194
|
+
(182, 138, 117),
|
|
195
|
+
(97, 77, 61),
|
|
196
|
+
(166, 150, 162),
|
|
197
|
+
(85, 28, 53),
|
|
198
|
+
(49, 65, 65),
|
|
199
|
+
(117, 117, 134),
|
|
200
|
+
(146, 158, 162),
|
|
201
|
+
(117, 154, 113),
|
|
202
|
+
(255, 130, 32),
|
|
203
|
+
(134, 85, 255),
|
|
204
|
+
(154, 198, 182),
|
|
205
|
+
(223, 150, 243),
|
|
206
|
+
(202, 223, 49),
|
|
207
|
+
(142, 93, 40),
|
|
208
|
+
(53, 190, 227),
|
|
209
|
+
(113, 166, 255),
|
|
210
|
+
(89, 138, 49),
|
|
211
|
+
(255, 194, 235),
|
|
212
|
+
(170, 61, 105),
|
|
213
|
+
(73, 97, 125),
|
|
214
|
+
(73, 53, 28),
|
|
215
|
+
(69, 178, 158),
|
|
216
|
+
(28, 36, 49),
|
|
217
|
+
(247, 49, 239),
|
|
218
|
+
(117, 0, 166),
|
|
219
|
+
(231, 182, 170),
|
|
220
|
+
(130, 105, 101),
|
|
221
|
+
(227, 162, 202),
|
|
222
|
+
(32, 36, 0),
|
|
223
|
+
(121, 182, 16),
|
|
224
|
+
(158, 142, 255),
|
|
225
|
+
(210, 117, 138),
|
|
226
|
+
(202, 182, 219),
|
|
227
|
+
(174, 154, 223),
|
|
228
|
+
(255, 113, 219),
|
|
229
|
+
(210, 247, 178),
|
|
230
|
+
(198, 215, 206),
|
|
231
|
+
(255, 210, 138),
|
|
232
|
+
(93, 223, 53),
|
|
233
|
+
(93, 121, 146),
|
|
234
|
+
(162, 142, 0),
|
|
235
|
+
(174, 223, 239),
|
|
236
|
+
(113, 77, 194),
|
|
237
|
+
(125, 69, 0),
|
|
238
|
+
(101, 146, 182),
|
|
239
|
+
(93, 121, 255),
|
|
240
|
+
(81, 73, 89),
|
|
241
|
+
(150, 158, 81),
|
|
242
|
+
(206, 105, 174),
|
|
243
|
+
(101, 53, 117),
|
|
244
|
+
(219, 210, 227),
|
|
245
|
+
(182, 174, 117),
|
|
246
|
+
(81, 89, 0),
|
|
247
|
+
(182, 89, 57),
|
|
248
|
+
(85, 4, 235),
|
|
249
|
+
(61, 117, 45),
|
|
250
|
+
(146, 130, 154),
|
|
251
|
+
(130, 36, 105),
|
|
252
|
+
(186, 134, 57),
|
|
253
|
+
(138, 178, 227),
|
|
254
|
+
(109, 178, 130),
|
|
255
|
+
(150, 65, 53),
|
|
256
|
+
(109, 65, 73),
|
|
257
|
+
(138, 117, 61),
|
|
258
|
+
(178, 113, 117),
|
|
259
|
+
(146, 28, 73),
|
|
260
|
+
(223, 109, 49),
|
|
261
|
+
(0, 227, 223),
|
|
262
|
+
(146, 4, 202),
|
|
263
|
+
(49, 40, 89),
|
|
264
|
+
(0, 125, 210),
|
|
265
|
+
(162, 109, 255),
|
|
266
|
+
(130, 89, 146),
|
|
267
|
+
]
|
|
@@ -0,0 +1,202 @@
|
|
|
1
|
+
import shutil
|
|
2
|
+
from pathlib import Path
|
|
3
|
+
from typing import Dict, List, Optional, Tuple, Type, Union
|
|
4
|
+
|
|
5
|
+
import cv2
|
|
6
|
+
import numpy as np
|
|
7
|
+
import numpy.typing as npt
|
|
8
|
+
from PIL import Image
|
|
9
|
+
|
|
10
|
+
from hafnia.dataset.hafnia_dataset import HafniaDataset, Sample
|
|
11
|
+
from hafnia.dataset.primitives import (
|
|
12
|
+
Bbox,
|
|
13
|
+
Bitmask,
|
|
14
|
+
Classification,
|
|
15
|
+
Polygon,
|
|
16
|
+
Segmentation,
|
|
17
|
+
)
|
|
18
|
+
from hafnia.dataset.primitives.primitive import Primitive
|
|
19
|
+
|
|
20
|
+
|
|
21
|
+
def draw_anonymize_by_blurring(
|
|
22
|
+
image: np.ndarray,
|
|
23
|
+
primitives: List[Primitive],
|
|
24
|
+
inplace: bool = False,
|
|
25
|
+
class_names: Union[List[str], str] = "all",
|
|
26
|
+
anonymization_settings: Optional[Dict[Type[Primitive], Dict]] = None,
|
|
27
|
+
) -> np.ndarray:
|
|
28
|
+
if not inplace:
|
|
29
|
+
image = image.copy()
|
|
30
|
+
|
|
31
|
+
anonymization_settings = anonymization_settings or {}
|
|
32
|
+
if isinstance(class_names, str) and class_names == "all":
|
|
33
|
+
primitives = primitives
|
|
34
|
+
elif isinstance(class_names, list):
|
|
35
|
+
primitives = [primitive for primitive in primitives if primitive.class_name in class_names]
|
|
36
|
+
else:
|
|
37
|
+
raise ValueError(f"Invalid class_names type: {type(class_names)}. Expected 'all' or a list of class names.")
|
|
38
|
+
for primitive in primitives:
|
|
39
|
+
settings = anonymization_settings.get(type(primitive), {})
|
|
40
|
+
image = primitive.anonymize_by_blurring(image, inplace=True, **settings)
|
|
41
|
+
return image
|
|
42
|
+
|
|
43
|
+
|
|
44
|
+
def draw_masks(image: np.ndarray, primitives: List[Primitive], inplace: bool = False) -> np.ndarray:
|
|
45
|
+
if not inplace:
|
|
46
|
+
image = image.copy()
|
|
47
|
+
|
|
48
|
+
for primitive in primitives:
|
|
49
|
+
primitive.mask(image, inplace=True)
|
|
50
|
+
return image
|
|
51
|
+
|
|
52
|
+
|
|
53
|
+
def draw_annotations(
|
|
54
|
+
image: np.ndarray,
|
|
55
|
+
primitives: List[Primitive],
|
|
56
|
+
inplace: bool = False,
|
|
57
|
+
draw_settings: Optional[Dict[Type[Primitive], Dict]] = None,
|
|
58
|
+
) -> np.ndarray:
|
|
59
|
+
if not inplace:
|
|
60
|
+
image = image.copy()
|
|
61
|
+
draw_settings = draw_settings or {}
|
|
62
|
+
primitives_order = [Segmentation, Bitmask, Bbox, Polygon, Classification]
|
|
63
|
+
primitives = sorted(primitives, key=lambda x: primitives_order.index(type(x)))
|
|
64
|
+
for primitive in primitives:
|
|
65
|
+
draw_settings_for_primitive = draw_settings.get(type(primitive), {})
|
|
66
|
+
image = primitive.draw(image, **draw_settings_for_primitive)
|
|
67
|
+
return image
|
|
68
|
+
|
|
69
|
+
|
|
70
|
+
def concatenate_below(img0: np.ndarray, below_img: np.ndarray) -> np.ndarray:
|
|
71
|
+
scale_factor = img0.shape[1] / below_img.shape[1]
|
|
72
|
+
new_height = int(below_img.shape[0] * scale_factor)
|
|
73
|
+
text_region_resized = cv2.resize(below_img, (img0.shape[1], new_height))
|
|
74
|
+
if len(img0.shape) == 2:
|
|
75
|
+
img0 = cv2.cvtColor(img0, cv2.COLOR_GRAY2BGR)
|
|
76
|
+
if len(text_region_resized.shape) == 2:
|
|
77
|
+
text_region_resized = cv2.cvtColor(text_region_resized, cv2.COLOR_GRAY2BGR)
|
|
78
|
+
frame_visualized = np.concatenate([img0, text_region_resized], axis=0)
|
|
79
|
+
return frame_visualized
|
|
80
|
+
|
|
81
|
+
|
|
82
|
+
def concatenate_below_resize_by_padding(img0: np.ndarray, below_img: np.ndarray):
|
|
83
|
+
max_width = max(img0.shape[1], below_img.shape[1])
|
|
84
|
+
|
|
85
|
+
if len(img0.shape) == 2:
|
|
86
|
+
img0 = cv2.cvtColor(img0, cv2.COLOR_GRAY2RGB)
|
|
87
|
+
if len(below_img.shape) == 2:
|
|
88
|
+
below_img = cv2.cvtColor(below_img, cv2.COLOR_GRAY2RGB)
|
|
89
|
+
img0_padded = resize_width_by_padding(img0, new_width=max_width)
|
|
90
|
+
below_img_padded = resize_width_by_padding(below_img, new_width=max_width)
|
|
91
|
+
|
|
92
|
+
return np.concatenate([img0_padded, below_img_padded], axis=0)
|
|
93
|
+
|
|
94
|
+
|
|
95
|
+
def resize_width_by_padding(img0: np.ndarray, new_width: int) -> np.ndarray:
|
|
96
|
+
img0_new_shape = list(img0.shape)
|
|
97
|
+
img0_new_shape[1] = new_width
|
|
98
|
+
img0_padded = np.zeros(img0_new_shape, dtype=img0.dtype)
|
|
99
|
+
extra_width = new_width - img0.shape[1]
|
|
100
|
+
left_margin = extra_width // 2
|
|
101
|
+
img0_padded[:, left_margin : left_margin + img0.shape[1]] = img0
|
|
102
|
+
return img0_padded
|
|
103
|
+
|
|
104
|
+
|
|
105
|
+
def append_text_below_frame(frame: np.ndarray, text: str) -> np.ndarray:
|
|
106
|
+
font_size_px = int(frame.shape[0] * 0.1) # 10% of the frame height
|
|
107
|
+
font_size_px = max(font_size_px, 7) # Ensure a minimum font size
|
|
108
|
+
font_size_px = min(font_size_px, 50) # Ensure a maximum font size
|
|
109
|
+
|
|
110
|
+
text_region = create_text_img(text, font_size_px=font_size_px)
|
|
111
|
+
frame_with_text = concatenate_below_resize_by_padding(frame, text_region)
|
|
112
|
+
return frame_with_text
|
|
113
|
+
|
|
114
|
+
|
|
115
|
+
def create_text_img(
|
|
116
|
+
text_strings: Union[List[str], str],
|
|
117
|
+
font_size_px: int,
|
|
118
|
+
text_width: Optional[int] = None,
|
|
119
|
+
color: Tuple[int, int, int] = (255, 255, 255),
|
|
120
|
+
bg_color: Tuple[int, int, int] = (0, 0, 0),
|
|
121
|
+
) -> npt.NDArray[np.uint8]:
|
|
122
|
+
"""Private code borrowed by Peter."""
|
|
123
|
+
font_face = cv2.FONT_HERSHEY_SIMPLEX
|
|
124
|
+
thickness = 2
|
|
125
|
+
if font_size_px < 15:
|
|
126
|
+
thickness = 1
|
|
127
|
+
line_type = cv2.LINE_AA
|
|
128
|
+
if isinstance(text_strings, str):
|
|
129
|
+
text_strings = [text_strings]
|
|
130
|
+
font_scale = cv2.getFontScaleFromHeight(fontFace=font_face, pixelHeight=font_size_px, thickness=thickness)
|
|
131
|
+
|
|
132
|
+
text_w_max = 0
|
|
133
|
+
for text in text_strings:
|
|
134
|
+
(text_w, text_h), baseline = cv2.getTextSize(
|
|
135
|
+
text=text, fontFace=font_face, fontScale=font_scale, thickness=thickness
|
|
136
|
+
)
|
|
137
|
+
text_w_max = max(text_w_max, text_w)
|
|
138
|
+
|
|
139
|
+
text_width = text_width or text_w_max + baseline * 2
|
|
140
|
+
text_height = text_h + baseline * 2
|
|
141
|
+
|
|
142
|
+
y_pos = text_h + baseline
|
|
143
|
+
text_imgs = []
|
|
144
|
+
for text in text_strings:
|
|
145
|
+
shape_color_image = (text_height, text_width, 3)
|
|
146
|
+
img = np.full(shape_color_image, bg_color, dtype=np.uint8)
|
|
147
|
+
text_img = cv2.putText(
|
|
148
|
+
img=img,
|
|
149
|
+
text=text,
|
|
150
|
+
org=(baseline, y_pos),
|
|
151
|
+
fontFace=font_face,
|
|
152
|
+
fontScale=font_scale,
|
|
153
|
+
color=color,
|
|
154
|
+
thickness=thickness,
|
|
155
|
+
lineType=line_type,
|
|
156
|
+
)
|
|
157
|
+
text_imgs.append(text_img)
|
|
158
|
+
img_text = np.vstack(text_imgs)
|
|
159
|
+
return img_text
|
|
160
|
+
|
|
161
|
+
|
|
162
|
+
def concatenate_right(img0: np.ndarray, below_img: np.ndarray) -> np.ndarray:
|
|
163
|
+
scale_factor = img0.shape[0] / below_img.shape[0]
|
|
164
|
+
new_width = int(below_img.shape[1] * scale_factor)
|
|
165
|
+
text_region_resized = cv2.resize(below_img, (new_width, img0.shape[0]))
|
|
166
|
+
|
|
167
|
+
frame_visualized = np.concatenate([img0, text_region_resized], axis=1)
|
|
168
|
+
return frame_visualized
|
|
169
|
+
|
|
170
|
+
|
|
171
|
+
def save_dataset_sample_set_visualizations(
|
|
172
|
+
path_dataset: Path,
|
|
173
|
+
path_output_folder: Path,
|
|
174
|
+
max_samples: int = 10,
|
|
175
|
+
draw_settings: Optional[Dict[Type[Primitive], Dict]] = None,
|
|
176
|
+
anonymize_settings: Optional[Dict[Type[Primitive], Dict]] = None,
|
|
177
|
+
) -> List[Path]:
|
|
178
|
+
dataset = HafniaDataset.read_from_path(path_dataset)
|
|
179
|
+
shutil.rmtree(path_output_folder, ignore_errors=True)
|
|
180
|
+
path_output_folder.mkdir(parents=True)
|
|
181
|
+
|
|
182
|
+
draw_settings = draw_settings or {}
|
|
183
|
+
|
|
184
|
+
paths = []
|
|
185
|
+
dataset_shuffled = dataset.shuffle(seed=42)
|
|
186
|
+
for sample_dict in dataset_shuffled:
|
|
187
|
+
sample = Sample(**sample_dict)
|
|
188
|
+
image = sample.read_image()
|
|
189
|
+
annotations = sample.get_annotations()
|
|
190
|
+
|
|
191
|
+
if anonymize_settings:
|
|
192
|
+
image = draw_anonymize_by_blurring(image, annotations, anonymization_settings=anonymize_settings)
|
|
193
|
+
image = draw_annotations(image, annotations, draw_settings=draw_settings)
|
|
194
|
+
|
|
195
|
+
pil_image = Image.fromarray(image)
|
|
196
|
+
path_image = path_output_folder / Path(sample.file_name).name
|
|
197
|
+
pil_image.save(path_image)
|
|
198
|
+
paths.append(path_image)
|
|
199
|
+
|
|
200
|
+
if len(paths) >= max_samples:
|
|
201
|
+
return paths # Return early if we have enough samples
|
|
202
|
+
return paths
|