hafnia 0.1.24__py3-none-any.whl → 0.1.26__py3-none-any.whl
This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
- cli/__main__.py +6 -10
- cli/config.py +20 -27
- cli/consts.py +4 -1
- cli/data_cmds.py +5 -6
- cli/experiment_cmds.py +3 -43
- cli/profile_cmds.py +16 -2
- cli/recipe_cmds.py +45 -0
- cli/runc_cmds.py +113 -37
- hafnia/data/factory.py +13 -32
- hafnia/experiment/hafnia_logger.py +11 -7
- hafnia/http.py +2 -2
- hafnia/log.py +15 -24
- hafnia/platform/__init__.py +0 -2
- hafnia/platform/builder.py +104 -144
- hafnia/platform/download.py +8 -8
- hafnia/platform/experiment.py +31 -25
- hafnia/utils.py +100 -46
- hafnia-0.1.26.dist-info/METADATA +363 -0
- hafnia-0.1.26.dist-info/RECORD +27 -0
- {hafnia-0.1.24.dist-info → hafnia-0.1.26.dist-info}/licenses/LICENSE +1 -1
- hafnia/platform/api.py +0 -12
- hafnia/platform/executor.py +0 -111
- hafnia-0.1.24.dist-info/METADATA +0 -197
- hafnia-0.1.24.dist-info/RECORD +0 -28
- {hafnia-0.1.24.dist-info → hafnia-0.1.26.dist-info}/WHEEL +0 -0
- {hafnia-0.1.24.dist-info → hafnia-0.1.26.dist-info}/entry_points.txt +0 -0
hafnia/platform/executor.py
DELETED
|
@@ -1,111 +0,0 @@
|
|
|
1
|
-
import os
|
|
2
|
-
import subprocess
|
|
3
|
-
import sys
|
|
4
|
-
from dataclasses import dataclass
|
|
5
|
-
from pathlib import Path
|
|
6
|
-
from typing import Dict
|
|
7
|
-
|
|
8
|
-
from hafnia.log import logger
|
|
9
|
-
|
|
10
|
-
|
|
11
|
-
@dataclass
|
|
12
|
-
class PythonModule:
|
|
13
|
-
"""Dataclass to store Python module details."""
|
|
14
|
-
|
|
15
|
-
module_name: str
|
|
16
|
-
runner_path: str
|
|
17
|
-
|
|
18
|
-
|
|
19
|
-
def handle_mount(source: str) -> None:
|
|
20
|
-
"""
|
|
21
|
-
Mounts the Hafnia environment by adding source directories to PYTHONPATH.
|
|
22
|
-
|
|
23
|
-
Args:
|
|
24
|
-
source (str): Path to the root directory containing 'lib' and 'scripts' subdirectories
|
|
25
|
-
|
|
26
|
-
Raises:
|
|
27
|
-
FileNotFoundError: If the required directory structure is not found
|
|
28
|
-
"""
|
|
29
|
-
source_path = Path(source)
|
|
30
|
-
lib_dir = source_path / "lib"
|
|
31
|
-
scripts_dir = source_path / "scripts"
|
|
32
|
-
|
|
33
|
-
if not lib_dir.exists() and not scripts_dir.exists():
|
|
34
|
-
logger.error(f"Filestructure is not supported. Expected 'lib' and 'scripts' directories in {source_path}.")
|
|
35
|
-
exit(1)
|
|
36
|
-
|
|
37
|
-
sys.path.extend([lib_dir.as_posix(), scripts_dir.as_posix()])
|
|
38
|
-
python_path = os.getenv("PYTHONPATH", "")
|
|
39
|
-
os.environ["PYTHONPATH"] = f"{python_path}:{lib_dir.as_posix()}:{scripts_dir.as_posix()}"
|
|
40
|
-
logger.info(f"Mounted codebase from {source_path}")
|
|
41
|
-
|
|
42
|
-
|
|
43
|
-
def collect_python_modules(directory: Path) -> Dict[str, PythonModule]:
|
|
44
|
-
"""
|
|
45
|
-
Collects Python modules from a directory and its subdirectories.
|
|
46
|
-
|
|
47
|
-
This function dynamically imports Python modules found in the specified directory,
|
|
48
|
-
excluding files that start with '_' or '.'. It's used to discover available tasks
|
|
49
|
-
in the Hafnia environment.
|
|
50
|
-
|
|
51
|
-
Args:
|
|
52
|
-
directory (Path): The directory to search for Python modules
|
|
53
|
-
|
|
54
|
-
Returns:
|
|
55
|
-
Dict[str, Dict[str, str]]: A dictionary mapping task names to module details, where each detail contains:
|
|
56
|
-
- module_name (str): The full module name
|
|
57
|
-
- runner_path (str): The absolute path to the module file
|
|
58
|
-
"""
|
|
59
|
-
from importlib.util import module_from_spec, spec_from_file_location
|
|
60
|
-
|
|
61
|
-
modules = {}
|
|
62
|
-
for fname in directory.rglob("*.py"):
|
|
63
|
-
if fname.name.startswith("-"):
|
|
64
|
-
continue
|
|
65
|
-
|
|
66
|
-
task_name = fname.stem
|
|
67
|
-
module_name = f"{directory.name}.{task_name}"
|
|
68
|
-
|
|
69
|
-
spec = spec_from_file_location(module_name, fname)
|
|
70
|
-
if spec is None:
|
|
71
|
-
logger.warning(f"Was not able to load {module_name} from {fname}")
|
|
72
|
-
continue
|
|
73
|
-
if spec.loader is None:
|
|
74
|
-
logger.warning(f"Loader is None for {module_name} from {fname}")
|
|
75
|
-
continue
|
|
76
|
-
module = module_from_spec(spec)
|
|
77
|
-
spec.loader.exec_module(module)
|
|
78
|
-
|
|
79
|
-
modules[task_name] = PythonModule(module_name, str(fname.resolve()))
|
|
80
|
-
|
|
81
|
-
return modules
|
|
82
|
-
|
|
83
|
-
|
|
84
|
-
def handle_launch(task: str) -> None:
|
|
85
|
-
"""
|
|
86
|
-
Launch and execute a specified Hafnia task.
|
|
87
|
-
|
|
88
|
-
This function verifies the Hafnia environment status, locates the task script,
|
|
89
|
-
and executes it in a subprocess with output streaming.
|
|
90
|
-
|
|
91
|
-
Args:
|
|
92
|
-
task (str): Name of the task to execute
|
|
93
|
-
|
|
94
|
-
Raises:
|
|
95
|
-
ValueError: If the task is not found or scripts directory is not in PYTHONPATH
|
|
96
|
-
"""
|
|
97
|
-
recipe_dir = os.getenv("RECIPE_DIR", None)
|
|
98
|
-
if recipe_dir is None:
|
|
99
|
-
raise ValueError("RECIPE_DIR environment variable not set.")
|
|
100
|
-
handle_mount(recipe_dir)
|
|
101
|
-
scripts_dir = [p for p in sys.path if "scripts" in p][0]
|
|
102
|
-
scripts = collect_python_modules(Path(scripts_dir))
|
|
103
|
-
if task not in scripts:
|
|
104
|
-
available_tasks = ", ".join(sorted(scripts.keys()))
|
|
105
|
-
logger.error(f"Task '{task}' not found. Available tasks: {available_tasks}")
|
|
106
|
-
exit(1)
|
|
107
|
-
try:
|
|
108
|
-
subprocess.check_call(["python", scripts[task].runner_path], stdout=sys.stdout, stderr=sys.stdout)
|
|
109
|
-
except subprocess.CalledProcessError as e:
|
|
110
|
-
logger.error(f"Error executing task: {str(e)}")
|
|
111
|
-
exit(1)
|
hafnia-0.1.24.dist-info/METADATA
DELETED
|
@@ -1,197 +0,0 @@
|
|
|
1
|
-
Metadata-Version: 2.4
|
|
2
|
-
Name: hafnia
|
|
3
|
-
Version: 0.1.24
|
|
4
|
-
Summary: Python tools for communication with Hafnia platform.
|
|
5
|
-
Author-email: Ivan Sahumbaiev <ivsa@milestone.dk>
|
|
6
|
-
License-File: LICENSE
|
|
7
|
-
Requires-Python: >=3.10
|
|
8
|
-
Requires-Dist: boto3>=1.35.91
|
|
9
|
-
Requires-Dist: click>=8.1.8
|
|
10
|
-
Requires-Dist: datasets>=3.2.0
|
|
11
|
-
Requires-Dist: flatten-dict>=0.4.2
|
|
12
|
-
Requires-Dist: pillow>=11.1.0
|
|
13
|
-
Requires-Dist: pyarrow>=18.1.0
|
|
14
|
-
Requires-Dist: pydantic>=2.10.4
|
|
15
|
-
Requires-Dist: rich>=13.9.4
|
|
16
|
-
Requires-Dist: tqdm>=4.67.1
|
|
17
|
-
Provides-Extra: torch
|
|
18
|
-
Requires-Dist: flatten-dict>=0.4.2; extra == 'torch'
|
|
19
|
-
Requires-Dist: torch>=2.6.0; extra == 'torch'
|
|
20
|
-
Requires-Dist: torchvision>=0.21.0; extra == 'torch'
|
|
21
|
-
Description-Content-Type: text/markdown
|
|
22
|
-
|
|
23
|
-
# Hafnia
|
|
24
|
-
|
|
25
|
-
The `hafnia` python package is a collection of tools to create and run model training recipes on
|
|
26
|
-
the [Hafnia Platform](https://hafnia.milestonesys.com/).
|
|
27
|
-
|
|
28
|
-
The package includes the following interfaces:
|
|
29
|
-
|
|
30
|
-
- `cli`: A Command Line Interface (CLI) to 1) configure/connect to Hafnia's [Training-aaS](https://hafnia.readme.io/docs/training-as-a-service) and 2) create and
|
|
31
|
-
launch recipe scripts.
|
|
32
|
-
- `hafnia`: A python package with helper functions to load and interact with sample datasets and an experiment
|
|
33
|
-
tracker (`HafniaLogger`).
|
|
34
|
-
|
|
35
|
-
|
|
36
|
-
## The Concept: Training as a Service (Training-aaS)
|
|
37
|
-
`Training-aaS` is the concept of training models on the Hafnia platform on large
|
|
38
|
-
and *hidden* datasets. Hidden datasets refers to datasets that can be used for
|
|
39
|
-
training, but are not available for download or direct access.
|
|
40
|
-
|
|
41
|
-
This is a key feature of the Hafnia platform, as a hidden dataset ensures data
|
|
42
|
-
privacy, and allow models to be trained compliantly and ethically by third parties (you).
|
|
43
|
-
|
|
44
|
-
The `script2model` approach is a Training-aaS concept, where you package your custom training
|
|
45
|
-
script as a *training recipe* and use the recipe to train models on the hidden datasets.
|
|
46
|
-
|
|
47
|
-
To support local development of a training recipe, we have introduced a **sample dataset**
|
|
48
|
-
for each dataset available in the Hafnia [data library](https://hafnia.milestonesys.com/training-aas/datasets). The sample dataset is a small
|
|
49
|
-
and anonymized subset of the full dataset and available for download.
|
|
50
|
-
|
|
51
|
-
With the sample dataset, you can seamlessly switch between local development and Training-aaS.
|
|
52
|
-
Locally, you can create, validate and debug your training recipe. The recipe is then
|
|
53
|
-
launched with Training-aaS, where the recipe runs on the full dataset and can be scaled to run on
|
|
54
|
-
multiple GPUs and instances if needed.
|
|
55
|
-
|
|
56
|
-
## Getting started: Configuration
|
|
57
|
-
To get started with Hafnia:
|
|
58
|
-
|
|
59
|
-
1. Install `hafnia` with your favorite python package manager. With pip do this:
|
|
60
|
-
|
|
61
|
-
`pip install hafnia`
|
|
62
|
-
1. Sign in to the [Hafnia Platform](https://hafnia.milestonesys.com/).
|
|
63
|
-
1. Create an API KEY for Training aaS. For more instructions, follow this
|
|
64
|
-
[guide](https://hafnia.readme.io/docs/create-an-api-key).
|
|
65
|
-
Copy the key and save it for later use.
|
|
66
|
-
1. From terminal, configure your machine to access Hafnia:
|
|
67
|
-
|
|
68
|
-
```
|
|
69
|
-
# Start configuration with
|
|
70
|
-
hafnia configure
|
|
71
|
-
|
|
72
|
-
# You are then prompted:
|
|
73
|
-
Profile Name [default]: # Press [Enter] or select an optional name
|
|
74
|
-
Hafnia API Key: # Pass your HAFNIA API key
|
|
75
|
-
Hafnia Platform URL [https://api.mdi.milestonesys.com]: # Press [Enter]
|
|
76
|
-
```
|
|
77
|
-
1. Download `mnist` from terminal to verify that your configuration is working.
|
|
78
|
-
|
|
79
|
-
```bash
|
|
80
|
-
hafnia data download mnist --force
|
|
81
|
-
```
|
|
82
|
-
|
|
83
|
-
## Getting started: Loading datasets samples
|
|
84
|
-
With Hafnia configured on your local machine, it is now possible to download
|
|
85
|
-
and explore the dataset sample with a python script:
|
|
86
|
-
|
|
87
|
-
```python
|
|
88
|
-
from hafnia.data import load_dataset
|
|
89
|
-
|
|
90
|
-
dataset_splits = load_dataset("mnist")
|
|
91
|
-
print(dataset_splits)
|
|
92
|
-
print(dataset_splits["train"])
|
|
93
|
-
```
|
|
94
|
-
The returned sample dataset is a [hugging face dataset](https://huggingface.co/docs/datasets/index)
|
|
95
|
-
and contains train, validation and test splits.
|
|
96
|
-
|
|
97
|
-
An important feature of `load_dataset` is that it will return the full dataset
|
|
98
|
-
when loaded on the Hafnia platform.
|
|
99
|
-
This enables seamlessly switching between running/validating a training script
|
|
100
|
-
locally (on the sample dataset) and running full model trainings with Training-aaS (on the full dataset).
|
|
101
|
-
without changing code or configurations for the training script.
|
|
102
|
-
|
|
103
|
-
Available datasets with corresponding sample datasets can be found in [data library](https://hafnia.milestonesys.com/training-aas/datasets) including metadata and description for each dataset.
|
|
104
|
-
|
|
105
|
-
|
|
106
|
-
## Getting started: Experiment Tracking with HafniaLogger
|
|
107
|
-
The `HafniaLogger` is an important part of the recipe script and enables you to track, log and
|
|
108
|
-
reproduce your experiments.
|
|
109
|
-
|
|
110
|
-
When integrated into your training script, the `HafniaLogger` is responsible for collecting:
|
|
111
|
-
|
|
112
|
-
- **Trained Model**: The model trained during the experiment
|
|
113
|
-
- **Model Checkpoints**: Intermediate model states saved during training
|
|
114
|
-
- **Experiment Configurations**: Hyperparameters and other settings used in your experiment
|
|
115
|
-
- **Training/Evaluation Metrics**: Performance data such as loss values, accuracy, and custom metrics
|
|
116
|
-
|
|
117
|
-
### Basic Implementation Example
|
|
118
|
-
|
|
119
|
-
Here's how to integrate the `HafniaLogger` into your training script:
|
|
120
|
-
|
|
121
|
-
```python
|
|
122
|
-
from hafnia.experiment import HafniaLogger
|
|
123
|
-
|
|
124
|
-
batch_size = 128
|
|
125
|
-
learning_rate = 0.001
|
|
126
|
-
|
|
127
|
-
# Initialize Hafnia logger
|
|
128
|
-
logger = HafniaLogger()
|
|
129
|
-
|
|
130
|
-
# Log experiment parameters
|
|
131
|
-
logger.log_configuration({"batch_size": 128, "learning_rate": 0.001})
|
|
132
|
-
|
|
133
|
-
# Store checkpoints in this path
|
|
134
|
-
ckpt_dir = logger.path_model_checkpoints()
|
|
135
|
-
|
|
136
|
-
# Store the trained model in this path
|
|
137
|
-
model_dir = logger.path_model()
|
|
138
|
-
|
|
139
|
-
# Log scalar and metric values during training and validation
|
|
140
|
-
logger.log_scalar("train/loss", value=0.1, step=100)
|
|
141
|
-
logger.log_metric("train/accuracy", value=0.98, step=100)
|
|
142
|
-
|
|
143
|
-
logger.log_scalar("validation/loss", value=0.1, step=100)
|
|
144
|
-
logger.log_metric("validation/accuracy", value=0.95, step=100)
|
|
145
|
-
```
|
|
146
|
-
|
|
147
|
-
Similar to `load_dataset`, the tracker behaves differently when running locally or in the cloud.
|
|
148
|
-
Locally, experiment data is stored in a local folder `.data/experiments/{DATE_TIME}`.
|
|
149
|
-
|
|
150
|
-
In the cloud, the experiment data will be available in the Hafnia platform under
|
|
151
|
-
[experiments](https://hafnia.milestonesys.com/training-aas/experiments).
|
|
152
|
-
|
|
153
|
-
## Example: Torch Dataloader
|
|
154
|
-
Commonly for `torch`-based training scripts, a dataset is used in combination
|
|
155
|
-
with a dataloader that performs data augmentations and batching of the dataset as torch tensors.
|
|
156
|
-
|
|
157
|
-
To support this, we have provided a torch dataloader example script
|
|
158
|
-
[example_torchvision_dataloader.py](./examples/example_torchvision_dataloader.py).
|
|
159
|
-
|
|
160
|
-
The script demonstrates how to make a dataloader with data augmentation (`torchvision.transforms.v2`)
|
|
161
|
-
and a helper function for visualizing image and labels.
|
|
162
|
-
|
|
163
|
-
The dataloader and visualization function supports computer vision tasks
|
|
164
|
-
and datasets available in the data library.
|
|
165
|
-
|
|
166
|
-
## Example: Training-aaS
|
|
167
|
-
By combining logging and dataset loading, we can now construct our model training recipe.
|
|
168
|
-
|
|
169
|
-
To demonstrate this, we have provided a recipe project that serves as a template for creating and structuring training recipes
|
|
170
|
-
[recipe-classification](https://github.com/Data-insight-Platform/recipe-classification)
|
|
171
|
-
|
|
172
|
-
The project also contains additional information on how to structure your training recipe, use the `HafniaLogger`, the `load_dataset` function and different approach for launching
|
|
173
|
-
the training recipe on the Hafnia platform.
|
|
174
|
-
|
|
175
|
-
## Detailed Documentation
|
|
176
|
-
For more information, go to our [documentation page](https://hafnia.readme.io/docs/welcome-to-hafnia)
|
|
177
|
-
or in below markdown pages.
|
|
178
|
-
|
|
179
|
-
- [CLI](docs/cli.md) - Detailed guide for the Hafnia command-line interface
|
|
180
|
-
- [Script2Model Documentation](docs/s2m.md) - Detailed guide for script2model
|
|
181
|
-
- [Release lifecycle](docs/release.md) - Details about package release lifecycle.
|
|
182
|
-
|
|
183
|
-
## Development
|
|
184
|
-
For development, we are using an uv based virtual python environment.
|
|
185
|
-
|
|
186
|
-
Install uv
|
|
187
|
-
|
|
188
|
-
curl -LsSf https://astral.sh/uv/install.sh | sh
|
|
189
|
-
|
|
190
|
-
|
|
191
|
-
Install python dependencies including developer (`--dev`) and optional dependencies (`--all-extras`).
|
|
192
|
-
|
|
193
|
-
uv sync --all-extras --dev
|
|
194
|
-
|
|
195
|
-
Run tests:
|
|
196
|
-
|
|
197
|
-
uv run pytest tests
|
hafnia-0.1.24.dist-info/RECORD
DELETED
|
@@ -1,28 +0,0 @@
|
|
|
1
|
-
cli/__init__.py,sha256=47DEQpj8HBSa-_TImW-5JCeuQeRkm5NMpJWZG3hSuFU,0
|
|
2
|
-
cli/__main__.py,sha256=h1tOAK15us_dkoMd6Yd4SesVPisojTxOXiYxpLZnatw,1736
|
|
3
|
-
cli/config.py,sha256=Js_dCn39l7hLhA3ovHorOyVqj-LCLzUg_figSy4jNjs,5279
|
|
4
|
-
cli/consts.py,sha256=nd9fPTypqCJYJoOp9QifNgj7-c91J-T0dTv83c33g50,892
|
|
5
|
-
cli/data_cmds.py,sha256=FYZPaeTs6WQnTf9b4a56w3SXQ1VAOMF5s8eUDHeNtd4,1538
|
|
6
|
-
cli/experiment_cmds.py,sha256=d9M8008Z0Y49KIITy73qd5ViPehgMymDVAgsvZhwye0,3099
|
|
7
|
-
cli/profile_cmds.py,sha256=Rg-5wLHSWlZhNPUZBO7LdyJS-Y-SgI6qKLoAac2gSdk,2534
|
|
8
|
-
cli/runc_cmds.py,sha256=fNgPNURXmO4nfLyuorcpqWEeNNuTVsRBHxcIA9FCPts,2197
|
|
9
|
-
hafnia/__init__.py,sha256=Zphq-cQoX95Z11zm4lkrU-YiAJxddR7IBfwDkxeHoDE,108
|
|
10
|
-
hafnia/http.py,sha256=rID6Krn9wRGXwsJYvpffsFlt5cwxFgkcihYppqtdT-8,2974
|
|
11
|
-
hafnia/log.py,sha256=ii--Q6IThsWOluRp_Br9WGhwBtKChU80BXk5pK_NU5A,819
|
|
12
|
-
hafnia/torch_helpers.py,sha256=P_Jl4IwqUebKVCOXNe6iTorJZA3S-3d92HV274UHIko,7456
|
|
13
|
-
hafnia/utils.py,sha256=WWWXZPolzncQmSb4onArT1lJyISV0D22eEejrHWePoc,2425
|
|
14
|
-
hafnia/data/__init__.py,sha256=Pntmo_1fst8OhyrHB60jQ8mhJJ4hL38tdjLvt0YXEJo,73
|
|
15
|
-
hafnia/data/factory.py,sha256=61oGQsm1naG_6Nd_UY2teOki8Oiu2F-gT-nGocmqAcg,2992
|
|
16
|
-
hafnia/experiment/__init__.py,sha256=OEFE6HqhO5zcTCLZcPcPVjIg7wMFFnvZ1uOtAVhRz7M,85
|
|
17
|
-
hafnia/experiment/hafnia_logger.py,sha256=bkSfioEaBXthUEGBjMbQaSefU30b_Gu809VcmWy_wyg,6566
|
|
18
|
-
hafnia/platform/__init__.py,sha256=Oz1abs40hEKspLg6mVIokdtsp1tZJF9Pndv8uSMOgtQ,522
|
|
19
|
-
hafnia/platform/api.py,sha256=aJvlQGjzqm-D3WYb2xTEYX60YoJoWN_kyYdlkvqt_MI,382
|
|
20
|
-
hafnia/platform/builder.py,sha256=VqcbOPxC7HqGAqFMb6ewThBZYLEV5RBgQrVuMd2dbLY,6622
|
|
21
|
-
hafnia/platform/download.py,sha256=AWnlSYj9FD7GvZ_-9Sw5jrcxi3RyBSSUVph8U9T9ZbQ,4711
|
|
22
|
-
hafnia/platform/executor.py,sha256=HA8IF2ZTZ6ZiRWNjVdIdWKiUa5i8Yoz06mIUBDwzVDk,3759
|
|
23
|
-
hafnia/platform/experiment.py,sha256=951ppXdrp075pW2xGFOM0oiGYGE1I53tP9azQjjIUe8,2305
|
|
24
|
-
hafnia-0.1.24.dist-info/METADATA,sha256=85f5fVCG57auPMtzbF6T0o05smjq20XvZP-6jqNqEYg,8124
|
|
25
|
-
hafnia-0.1.24.dist-info/WHEEL,sha256=qtCwoSJWgHk21S1Kb4ihdzI2rlJ1ZKaIurTj_ngOhyQ,87
|
|
26
|
-
hafnia-0.1.24.dist-info/entry_points.txt,sha256=FCJVIQ8GP2VE9I3eeGVF5eLxVDNW_01pOJCpG_CGnMM,45
|
|
27
|
-
hafnia-0.1.24.dist-info/licenses/LICENSE,sha256=DqQ3NOAy7Efwppv0IAVXEm3Za2SI_1OuDfG20ab8eQw,1078
|
|
28
|
-
hafnia-0.1.24.dist-info/RECORD,,
|
|
File without changes
|
|
File without changes
|