h2ogpte 1.6.55rc1__py3-none-any.whl → 1.7.0rc2__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (41) hide show
  1. h2ogpte/__init__.py +1 -1
  2. h2ogpte/h2ogpte.py +213 -20
  3. h2ogpte/h2ogpte_async.py +213 -20
  4. h2ogpte/rest_async/__init__.py +3 -2
  5. h2ogpte/rest_async/api/agents_api.py +25 -25
  6. h2ogpte/rest_async/api/chat_api.py +1077 -21
  7. h2ogpte/rest_async/api/collections_api.py +281 -0
  8. h2ogpte/rest_async/api/models_api.py +35 -67
  9. h2ogpte/rest_async/api_client.py +1 -1
  10. h2ogpte/rest_async/configuration.py +1 -1
  11. h2ogpte/rest_async/models/__init__.py +2 -1
  12. h2ogpte/rest_async/models/chat_completion_request.py +6 -2
  13. h2ogpte/rest_async/models/chat_settings.py +6 -2
  14. h2ogpte/rest_async/models/chat_settings_tags.py +140 -0
  15. h2ogpte/rest_async/models/extractor.py +26 -2
  16. h2ogpte/rest_async/models/extractor_create_request.py +29 -5
  17. h2ogpte/rest_async/models/ingest_from_confluence_body.py +4 -2
  18. h2ogpte/rest_async/models/{create_topic_model_job_request.py → tag_filter.py} +11 -9
  19. h2ogpte/rest_sync/__init__.py +3 -2
  20. h2ogpte/rest_sync/api/agents_api.py +25 -25
  21. h2ogpte/rest_sync/api/chat_api.py +1077 -21
  22. h2ogpte/rest_sync/api/collections_api.py +281 -0
  23. h2ogpte/rest_sync/api/models_api.py +35 -67
  24. h2ogpte/rest_sync/api_client.py +1 -1
  25. h2ogpte/rest_sync/configuration.py +1 -1
  26. h2ogpte/rest_sync/models/__init__.py +2 -1
  27. h2ogpte/rest_sync/models/chat_completion_request.py +6 -2
  28. h2ogpte/rest_sync/models/chat_settings.py +6 -2
  29. h2ogpte/rest_sync/models/chat_settings_tags.py +140 -0
  30. h2ogpte/rest_sync/models/extractor.py +26 -2
  31. h2ogpte/rest_sync/models/extractor_create_request.py +29 -5
  32. h2ogpte/rest_sync/models/ingest_from_confluence_body.py +4 -2
  33. h2ogpte/rest_sync/models/{create_topic_model_job_request.py → tag_filter.py} +11 -9
  34. h2ogpte/session.py +10 -5
  35. h2ogpte/session_async.py +10 -2
  36. h2ogpte/types.py +28 -1
  37. {h2ogpte-1.6.55rc1.dist-info → h2ogpte-1.7.0rc2.dist-info}/METADATA +1 -1
  38. {h2ogpte-1.6.55rc1.dist-info → h2ogpte-1.7.0rc2.dist-info}/RECORD +41 -39
  39. {h2ogpte-1.6.55rc1.dist-info → h2ogpte-1.7.0rc2.dist-info}/WHEEL +0 -0
  40. {h2ogpte-1.6.55rc1.dist-info → h2ogpte-1.7.0rc2.dist-info}/entry_points.txt +0 -0
  41. {h2ogpte-1.6.55rc1.dist-info → h2ogpte-1.7.0rc2.dist-info}/top_level.txt +0 -0
@@ -19,6 +19,7 @@ import json
19
19
 
20
20
  from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr, field_validator
21
21
  from typing import Any, ClassVar, Dict, List, Optional
22
+ from h2ogpte.rest_sync.models.chat_settings_tags import ChatSettingsTags
22
23
  from typing import Optional, Set
23
24
  from typing_extensions import Self
24
25
 
@@ -37,7 +38,7 @@ class ChatCompletionRequest(BaseModel):
37
38
  self_reflection_config: Optional[Dict[str, Any]] = Field(default=None, description="A map with self reflection settings: * `llm_reflection` **(type=string, example=gpt-4-0613)** * `prompt_reflection` **(type=string, example=\\\"\\\"\\\"Prompt:\\\\\\\\n%s\\\\\\\\n\\\"\\\"\\\"\\\\\\\\n\\\\\\\\n\\\"\\\"\\\")** * `system_prompt_reflection` **(type=string)** * `llm_args_reflection` **(type=string, example={})** ")
38
39
  rag_config: Optional[Dict[str, Any]] = Field(default=None, description="A map with arguments to control RAG (retrieval-augmented-generation) types.: * `rag_type` **(type=enum[auto, llm_only, rag, hyde1, hyde2, rag+, all_data])** RAG type options: * `auto` - Automatically select the best rag_type. * `llm_only` LLM Only - Answer the query without any supporting document contexts. Requires 1 LLM call. * `rag` RAG (Retrieval Augmented Generation) - Use supporting document contexts to answer the query. Requires 1 LLM call. * `hyde1` LLM Only + RAG composite - HyDE RAG (Hypothetical Document Embedding). Use 'LLM Only' response to find relevant contexts from a collection for generating a response. Requires 2 LLM calls. * `hyde2` HyDE + RAG composite - Use the 'HyDE RAG' response to find relevant contexts from a collection for generating a response. Requires 3 LLM calls. * `rag+` Summary RAG - Like RAG, but uses more context and recursive summarization to overcome LLM context limits. Keeps all retrieved chunks, puts them in order, adds neighboring chunks, then uses the summary API to get the answer. Can require several LLM calls. * `all_data` All Data RAG - Like Summary RAG, but includes all document chunks. Uses recursive summarization to overcome LLM context limits. Can require several LLM calls. * `hyde_no_rag_llm_prompt_extension` **(type=string, example=\\\\\\\\nKeep the answer brief, and list the 5 most relevant key words at the end.)** - Add this prompt to every user's prompt, when generating answers to be used for subsequent retrieval during HyDE. Only used when rag_type is `hyde1` or `hyde2`. * `num_neighbor_chunks_to_include` **(type=integer, default=1)** - A number of neighboring chunks to include for every retrieved relevant chunk. It helps to keep surrounding context together. Only enabled for rag_type `rag+`. * `meta_data_to_include` **(type=map)** - A map with flags that indicate whether each piece of document metadata is to be included as part of the context for a chat with a collection. * `name` **(type: boolean, default=True)** * `text` **(type: boolean, default=True)** * `page` **(type: boolean, default=True)** * `captions` **(type: boolean, default=True)** * `uri` **(type: boolean, default=False)** * `connector` **(type: boolean, default=False)** * `original_mtime` **(type: boolean, default=False)** * `age` **(type: boolean, default=False)** * `score` **(type: boolean, default=False)** * `rag_max_chunks` **(type=integer, default=-1)** - Maximum number of document chunks to retrieve for RAG. Actual number depends on rag_type and admin configuration. Set to >0 values to enable. Can be combined with rag_min_chunk_score. * `rag_min_chunk_score` **(type=double, default=0.0)** - Minimum score of document chunks to retrieve for RAG. Set to >0 values to enable. Can be combined with rag_max_chunks. ")
39
40
  include_chat_history: Optional[StrictStr] = Field(default=None, description="Whether to include chat history. Includes previous questions and answers for the current chat session for each new chat request. Disable if require deterministic answers for a given question.")
40
- tags: Optional[List[StrictStr]] = Field(default=None, description="A list of tags from which to pull the context for RAG.")
41
+ tags: Optional[ChatSettingsTags] = None
41
42
  __properties: ClassVar[List[str]] = ["message", "system_prompt", "pre_prompt_query", "prompt_query", "image_batch_final_prompt", "image_batch_image_prompt", "llm", "llm_args", "self_reflection_config", "rag_config", "include_chat_history", "tags"]
42
43
 
43
44
  @field_validator('include_chat_history')
@@ -89,6 +90,9 @@ class ChatCompletionRequest(BaseModel):
89
90
  exclude=excluded_fields,
90
91
  exclude_none=True,
91
92
  )
93
+ # override the default output from pydantic by calling `to_dict()` of tags
94
+ if self.tags:
95
+ _dict['tags'] = self.tags.to_dict()
92
96
  return _dict
93
97
 
94
98
  @classmethod
@@ -112,7 +116,7 @@ class ChatCompletionRequest(BaseModel):
112
116
  "self_reflection_config": obj.get("self_reflection_config"),
113
117
  "rag_config": obj.get("rag_config"),
114
118
  "include_chat_history": obj.get("include_chat_history"),
115
- "tags": obj.get("tags"),
119
+ "tags": ChatSettingsTags.from_dict(obj["tags"]) if obj.get("tags") is not None else None,
116
120
  })
117
121
  return _obj
118
122
 
@@ -19,6 +19,7 @@ import json
19
19
 
20
20
  from pydantic import BaseModel, ConfigDict, Field, StrictStr, field_validator
21
21
  from typing import Any, ClassVar, Dict, List, Optional
22
+ from h2ogpte.rest_sync.models.chat_settings_tags import ChatSettingsTags
22
23
  from typing import Optional, Set
23
24
  from typing_extensions import Self
24
25
 
@@ -31,7 +32,7 @@ class ChatSettings(BaseModel):
31
32
  self_reflection_config: Optional[Dict[str, Any]] = Field(default=None, description="A map with self reflection settings: * `llm_reflection` **(type=string, example=gpt-4-0613)** * `prompt_reflection` **(type=string, example=\\\"\\\"\\\"Prompt:\\\\\\\\n%s\\\\\\\\n\\\"\\\"\\\"\\\\\\\\n\\\\\\\\n\\\"\\\"\\\")** * `system_prompt_reflection` **(type=string)** * `llm_args_reflection` **(type=string, example={})** ")
32
33
  rag_config: Optional[Dict[str, Any]] = Field(default=None, description="A map with arguments to control RAG (retrieval-augmented-generation) types.: * `rag_type` **(type=enum[auto, llm_only, rag, hyde1, hyde2, rag+, all_data])** RAG type options: * `auto` - Automatically select the best rag_type. * `llm_only` LLM Only - Answer the query without any supporting document contexts. Requires 1 LLM call. * `rag` RAG (Retrieval Augmented Generation) - Use supporting document contexts to answer the query. Requires 1 LLM call. * `hyde1` LLM Only + RAG composite - HyDE RAG (Hypothetical Document Embedding). Use 'LLM Only' response to find relevant contexts from a collection for generating a response. Requires 2 LLM calls. * `hyde2` HyDE + RAG composite - Use the 'HyDE RAG' response to find relevant contexts from a collection for generating a response. Requires 3 LLM calls. * `rag+` Summary RAG - Like RAG, but uses more context and recursive summarization to overcome LLM context limits. Keeps all retrieved chunks, puts them in order, adds neighboring chunks, then uses the summary API to get the answer. Can require several LLM calls. * `all_data` All Data RAG - Like Summary RAG, but includes all document chunks. Uses recursive summarization to overcome LLM context limits. Can require several LLM calls. * `hyde_no_rag_llm_prompt_extension` **(type=string, example=\\\\\\\\nKeep the answer brief, and list the 5 most relevant key words at the end.)** - Add this prompt to every user's prompt, when generating answers to be used for subsequent retrieval during HyDE. Only used when rag_type is `hyde1` or `hyde2`. * `num_neighbor_chunks_to_include` **(type=integer, default=1)** - A number of neighboring chunks to include for every retrieved relevant chunk. It helps to keep surrounding context together. Only enabled for rag_type `rag+`. * `meta_data_to_include` **(type=map)** - A map with flags that indicate whether each piece of document metadata is to be included as part of the context for a chat with a collection. * `name` **(type: boolean, default=True)** * `text` **(type: boolean, default=True)** * `page` **(type: boolean, default=True)** * `captions` **(type: boolean, default=True)** * `uri` **(type: boolean, default=False)** * `connector` **(type: boolean, default=False)** * `original_mtime` **(type: boolean, default=False)** * `age` **(type: boolean, default=False)** * `score` **(type: boolean, default=False)** * `rag_max_chunks` **(type=integer, default=-1)** - Maximum number of document chunks to retrieve for RAG. Actual number depends on rag_type and admin configuration. Set to >0 values to enable. Can be combined with rag_min_chunk_score. * `rag_min_chunk_score` **(type=double, default=0.0)** - Minimum score of document chunks to retrieve for RAG. Set to >0 values to enable. Can be combined with rag_max_chunks. ")
33
34
  include_chat_history: Optional[StrictStr] = Field(default=None, description="Whether to include chat history. Includes previous questions and answers for the current chat session for each new chat request. Disable if require deterministic answers for a given question.")
34
- tags: Optional[List[StrictStr]] = Field(default=None, description="A list of tags from which to pull the context for RAG.")
35
+ tags: Optional[ChatSettingsTags] = None
35
36
  __properties: ClassVar[List[str]] = ["llm", "llm_args", "self_reflection_config", "rag_config", "include_chat_history", "tags"]
36
37
 
37
38
  @field_validator('include_chat_history')
@@ -83,6 +84,9 @@ class ChatSettings(BaseModel):
83
84
  exclude=excluded_fields,
84
85
  exclude_none=True,
85
86
  )
87
+ # override the default output from pydantic by calling `to_dict()` of tags
88
+ if self.tags:
89
+ _dict['tags'] = self.tags.to_dict()
86
90
  return _dict
87
91
 
88
92
  @classmethod
@@ -100,7 +104,7 @@ class ChatSettings(BaseModel):
100
104
  "self_reflection_config": obj.get("self_reflection_config"),
101
105
  "rag_config": obj.get("rag_config"),
102
106
  "include_chat_history": obj.get("include_chat_history"),
103
- "tags": obj.get("tags")
107
+ "tags": ChatSettingsTags.from_dict(obj["tags"]) if obj.get("tags") is not None else None
104
108
  })
105
109
  return _obj
106
110
 
@@ -0,0 +1,140 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import json
17
+ import pprint
18
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr, ValidationError, field_validator
19
+ from typing import Any, List, Optional
20
+ from h2ogpte.rest_sync.models.tag_filter import TagFilter
21
+ from pydantic import StrictStr, Field
22
+ from typing import Union, List, Set, Optional, Dict
23
+ from typing_extensions import Literal, Self
24
+
25
+ CHATSETTINGSTAGS_ONE_OF_SCHEMAS = ["List[str]", "TagFilter"]
26
+
27
+ class ChatSettingsTags(BaseModel):
28
+ """
29
+ Filter documents by tags for RAG context. Supports two formats: - Array format (backward compatible): [\"red\", \"blue\"] includes documents with 'red' OR 'blue' tags - Object format (with exclusions): {\"include\": [\"color\"], \"exclude\": [\"red\", \"blue\"]}
30
+ """
31
+ # data type: List[str]
32
+ oneof_schema_1_validator: Optional[List[StrictStr]] = None
33
+ # data type: TagFilter
34
+ oneof_schema_2_validator: Optional[TagFilter] = None
35
+ actual_instance: Optional[Union[List[str], TagFilter]] = None
36
+ one_of_schemas: Set[str] = { "List[str]", "TagFilter" }
37
+
38
+ model_config = ConfigDict(
39
+ validate_assignment=True,
40
+ protected_namespaces=(),
41
+ )
42
+
43
+
44
+ def __init__(self, *args, **kwargs) -> None:
45
+ if args:
46
+ if len(args) > 1:
47
+ raise ValueError("If a position argument is used, only 1 is allowed to set `actual_instance`")
48
+ if kwargs:
49
+ raise ValueError("If a position argument is used, keyword arguments cannot be used.")
50
+ super().__init__(actual_instance=args[0])
51
+ else:
52
+ super().__init__(**kwargs)
53
+
54
+ @field_validator('actual_instance')
55
+ def actual_instance_must_validate_oneof(cls, v):
56
+ instance = ChatSettingsTags.model_construct()
57
+ error_messages = []
58
+ match = 0
59
+ # validate data type: List[str]
60
+ try:
61
+ instance.oneof_schema_1_validator = v
62
+ match += 1
63
+ except (ValidationError, ValueError) as e:
64
+ error_messages.append(str(e))
65
+ # validate data type: TagFilter
66
+ if not isinstance(v, TagFilter):
67
+ error_messages.append(f"Error! Input type `{type(v)}` is not `TagFilter`")
68
+ else:
69
+ match += 1
70
+ if match > 1:
71
+ # more than 1 match
72
+ raise ValueError("Multiple matches found when setting `actual_instance` in ChatSettingsTags with oneOf schemas: List[str], TagFilter. Details: " + ", ".join(error_messages))
73
+ elif match == 0:
74
+ # no match
75
+ raise ValueError("No match found when setting `actual_instance` in ChatSettingsTags with oneOf schemas: List[str], TagFilter. Details: " + ", ".join(error_messages))
76
+ else:
77
+ return v
78
+
79
+ @classmethod
80
+ def from_dict(cls, obj: Union[str, Dict[str, Any]]) -> Self:
81
+ return cls.from_json(json.dumps(obj))
82
+
83
+ @classmethod
84
+ def from_json(cls, json_str: str) -> Self:
85
+ """Returns the object represented by the json string"""
86
+ instance = cls.model_construct()
87
+ error_messages = []
88
+ match = 0
89
+
90
+ # deserialize data into List[str]
91
+ try:
92
+ # validation
93
+ instance.oneof_schema_1_validator = json.loads(json_str)
94
+ # assign value to actual_instance
95
+ instance.actual_instance = instance.oneof_schema_1_validator
96
+ match += 1
97
+ except (ValidationError, ValueError) as e:
98
+ error_messages.append(str(e))
99
+ # deserialize data into TagFilter
100
+ try:
101
+ instance.actual_instance = TagFilter.from_json(json_str)
102
+ match += 1
103
+ except (ValidationError, ValueError) as e:
104
+ error_messages.append(str(e))
105
+
106
+ if match > 1:
107
+ # more than 1 match
108
+ raise ValueError("Multiple matches found when deserializing the JSON string into ChatSettingsTags with oneOf schemas: List[str], TagFilter. Details: " + ", ".join(error_messages))
109
+ elif match == 0:
110
+ # no match
111
+ raise ValueError("No match found when deserializing the JSON string into ChatSettingsTags with oneOf schemas: List[str], TagFilter. Details: " + ", ".join(error_messages))
112
+ else:
113
+ return instance
114
+
115
+ def to_json(self) -> str:
116
+ """Returns the JSON representation of the actual instance"""
117
+ if self.actual_instance is None:
118
+ return "null"
119
+
120
+ if hasattr(self.actual_instance, "to_json") and callable(self.actual_instance.to_json):
121
+ return self.actual_instance.to_json()
122
+ else:
123
+ return json.dumps(self.actual_instance)
124
+
125
+ def to_dict(self) -> Optional[Union[Dict[str, Any], List[str], TagFilter]]:
126
+ """Returns the dict representation of the actual instance"""
127
+ if self.actual_instance is None:
128
+ return None
129
+
130
+ if hasattr(self.actual_instance, "to_dict") and callable(self.actual_instance.to_dict):
131
+ return self.actual_instance.to_dict()
132
+ else:
133
+ # primitive type
134
+ return self.actual_instance
135
+
136
+ def to_str(self) -> str:
137
+ """Returns the string representation of the actual instance"""
138
+ return pprint.pformat(self.model_dump())
139
+
140
+
@@ -18,8 +18,9 @@ import re # noqa: F401
18
18
  import json
19
19
 
20
20
  from datetime import datetime
21
- from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
+ from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, StrictStr
22
22
  from typing import Any, ClassVar, Dict, List, Optional
23
+ from h2ogpte.rest_sync.models.guardrails_settings import GuardrailsSettings
23
24
  from typing import Optional, Set
24
25
  from typing_extensions import Self
25
26
 
@@ -31,10 +32,20 @@ class Extractor(BaseModel):
31
32
  description: StrictStr = Field(description="What this extractor does")
32
33
  llm: Optional[StrictStr] = Field(default=None, description="(Optional) Identifier or version of the language model the extractor uses")
33
34
  var_schema: Optional[StrictStr] = Field(default=None, description="(Optional) JSONSchema (or other spec) that the extractor outputs", alias="schema")
35
+ prompt: Optional[StrictStr] = Field(default=None, description="(Optional) Prompt text for the extractor")
36
+ pre_prompt_summary: Optional[StrictStr] = Field(default=None, description="(Optional) Pre-prompt summary text for the extractor")
37
+ keep_intermediate_results: Optional[StrictBool] = Field(default=None, description="(Optional) Flag indicating whether to keep intermediate results during extraction")
38
+ system_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) System prompt text for the extractor")
39
+ max_num_chunks: Optional[StrictInt] = Field(default=None, description="(Optional) Maximum number of chunks to process")
40
+ vision: Optional[StrictStr] = Field(default=None, description="(Optional) Vision mode setting")
41
+ vision_llm: Optional[StrictStr] = Field(default=None, description="(Optional) Vision LLM model identifier")
42
+ image_batch_image_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) Image batch processing prompt")
43
+ image_batch_final_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) Final prompt for image batch processing")
44
+ guardrails_settings: Optional[GuardrailsSettings] = None
34
45
  id: StrictStr = Field(description="Unique identifier of the extractor")
35
46
  is_public: StrictBool = Field(description="Flag indicating if the extractor is public")
36
47
  created_at: datetime = Field(description="When the extractor definition was created")
37
- __properties: ClassVar[List[str]] = ["name", "description", "llm", "schema", "id", "is_public", "created_at"]
48
+ __properties: ClassVar[List[str]] = ["name", "description", "llm", "schema", "prompt", "pre_prompt_summary", "keep_intermediate_results", "system_prompt", "max_num_chunks", "vision", "vision_llm", "image_batch_image_prompt", "image_batch_final_prompt", "guardrails_settings", "id", "is_public", "created_at"]
38
49
 
39
50
  model_config = ConfigDict(
40
51
  populate_by_name=True,
@@ -75,6 +86,9 @@ class Extractor(BaseModel):
75
86
  exclude=excluded_fields,
76
87
  exclude_none=True,
77
88
  )
89
+ # override the default output from pydantic by calling `to_dict()` of guardrails_settings
90
+ if self.guardrails_settings:
91
+ _dict['guardrails_settings'] = self.guardrails_settings.to_dict()
78
92
  return _dict
79
93
 
80
94
  @classmethod
@@ -91,6 +105,16 @@ class Extractor(BaseModel):
91
105
  "description": obj.get("description"),
92
106
  "llm": obj.get("llm"),
93
107
  "schema": obj.get("schema"),
108
+ "prompt": obj.get("prompt"),
109
+ "pre_prompt_summary": obj.get("pre_prompt_summary"),
110
+ "keep_intermediate_results": obj.get("keep_intermediate_results"),
111
+ "system_prompt": obj.get("system_prompt"),
112
+ "max_num_chunks": obj.get("max_num_chunks"),
113
+ "vision": obj.get("vision"),
114
+ "vision_llm": obj.get("vision_llm"),
115
+ "image_batch_image_prompt": obj.get("image_batch_image_prompt"),
116
+ "image_batch_final_prompt": obj.get("image_batch_final_prompt"),
117
+ "guardrails_settings": GuardrailsSettings.from_dict(obj["guardrails_settings"]) if obj.get("guardrails_settings") is not None else None,
94
118
  "id": obj.get("id"),
95
119
  "is_public": obj.get("is_public"),
96
120
  "created_at": obj.get("created_at")
@@ -17,8 +17,9 @@ import pprint
17
17
  import re # noqa: F401
18
18
  import json
19
19
 
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
- from typing import Any, ClassVar, Dict, List
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictInt, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
+ from h2ogpte.rest_sync.models.guardrails_settings import GuardrailsSettings
22
23
  from typing import Optional, Set
23
24
  from typing_extensions import Self
24
25
 
@@ -29,8 +30,18 @@ class ExtractorCreateRequest(BaseModel):
29
30
  name: StrictStr = Field(description="Human-readable name")
30
31
  description: StrictStr = Field(description="What this extractor does")
31
32
  llm: StrictStr = Field(description="Identifier or version of the language model the extractor uses")
32
- var_schema: StrictStr = Field(description="JSONSchema (or other spec) that the extractor outputs", alias="schema")
33
- __properties: ClassVar[List[str]] = ["name", "description", "llm", "schema"]
33
+ var_schema: StrictStr = Field(description="JSONSchema (or other spec) that the extractor outputs. When schema is valid and not empty, the output will be always returned as JSON object.", alias="schema")
34
+ prompt: Optional[StrictStr] = Field(default=None, description="Custom prompt text for the extractor. If empty, default prompt will be used. If combined with schema, prompt can customize the output, but cannot change its format as it will always be JSON object.")
35
+ pre_prompt_summary: Optional[StrictStr] = Field(default=None, description="(Optional) Pre-prompt summary text for the extractor")
36
+ keep_intermediate_results: Optional[StrictBool] = Field(default=None, description="(Optional) Flag indicating whether to keep intermediate results during extraction")
37
+ system_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) System prompt text for the extractor")
38
+ max_num_chunks: Optional[StrictInt] = Field(default=None, description="(Optional) Maximum number of chunks to process")
39
+ vision: Optional[StrictStr] = Field(default=None, description="(Optional) Vision mode setting")
40
+ vision_llm: Optional[StrictStr] = Field(default=None, description="(Optional) Vision LLM model identifier")
41
+ image_batch_image_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) Image batch processing prompt")
42
+ image_batch_final_prompt: Optional[StrictStr] = Field(default=None, description="(Optional) Final prompt for image batch processing")
43
+ guardrails_settings: Optional[GuardrailsSettings] = None
44
+ __properties: ClassVar[List[str]] = ["name", "description", "llm", "schema", "prompt", "pre_prompt_summary", "keep_intermediate_results", "system_prompt", "max_num_chunks", "vision", "vision_llm", "image_batch_image_prompt", "image_batch_final_prompt", "guardrails_settings"]
34
45
 
35
46
  model_config = ConfigDict(
36
47
  populate_by_name=True,
@@ -71,6 +82,9 @@ class ExtractorCreateRequest(BaseModel):
71
82
  exclude=excluded_fields,
72
83
  exclude_none=True,
73
84
  )
85
+ # override the default output from pydantic by calling `to_dict()` of guardrails_settings
86
+ if self.guardrails_settings:
87
+ _dict['guardrails_settings'] = self.guardrails_settings.to_dict()
74
88
  return _dict
75
89
 
76
90
  @classmethod
@@ -86,7 +100,17 @@ class ExtractorCreateRequest(BaseModel):
86
100
  "name": obj.get("name"),
87
101
  "description": obj.get("description"),
88
102
  "llm": obj.get("llm"),
89
- "schema": obj.get("schema")
103
+ "schema": obj.get("schema"),
104
+ "prompt": obj.get("prompt"),
105
+ "pre_prompt_summary": obj.get("pre_prompt_summary"),
106
+ "keep_intermediate_results": obj.get("keep_intermediate_results"),
107
+ "system_prompt": obj.get("system_prompt"),
108
+ "max_num_chunks": obj.get("max_num_chunks"),
109
+ "vision": obj.get("vision"),
110
+ "vision_llm": obj.get("vision_llm"),
111
+ "image_batch_image_prompt": obj.get("image_batch_image_prompt"),
112
+ "image_batch_final_prompt": obj.get("image_batch_final_prompt"),
113
+ "guardrails_settings": GuardrailsSettings.from_dict(obj["guardrails_settings"]) if obj.get("guardrails_settings") is not None else None
90
114
  })
91
115
  return _obj
92
116
 
@@ -17,7 +17,7 @@ import pprint
17
17
  import re # noqa: F401
18
18
  import json
19
19
 
20
- from pydantic import BaseModel, ConfigDict, Field, StrictStr
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictBool, StrictStr
21
21
  from typing import Any, ClassVar, Dict, List, Optional
22
22
  from h2ogpte.rest_sync.models.confluence_credentials import ConfluenceCredentials
23
23
  from typing import Optional, Set
@@ -29,9 +29,10 @@ class IngestFromConfluenceBody(BaseModel):
29
29
  """ # noqa: E501
30
30
  base_url: StrictStr = Field(description="Base url of the confluence instance.")
31
31
  page_ids: List[StrictStr] = Field(description="Ids of pages to be ingested.")
32
+ include_attachments: Optional[StrictBool] = Field(default=False, description="A flag indicating whether to also ingest attachments with the page.")
32
33
  credentials: ConfluenceCredentials
33
34
  metadata: Optional[Dict[str, Any]] = Field(default=None, description="Metadata for the documents.")
34
- __properties: ClassVar[List[str]] = ["base_url", "page_ids", "credentials", "metadata"]
35
+ __properties: ClassVar[List[str]] = ["base_url", "page_ids", "include_attachments", "credentials", "metadata"]
35
36
 
36
37
  model_config = ConfigDict(
37
38
  populate_by_name=True,
@@ -89,6 +90,7 @@ class IngestFromConfluenceBody(BaseModel):
89
90
  _obj = cls.model_validate({
90
91
  "base_url": obj.get("base_url"),
91
92
  "page_ids": obj.get("page_ids"),
93
+ "include_attachments": obj.get("include_attachments") if obj.get("include_attachments") is not None else False,
92
94
  "credentials": ConfluenceCredentials.from_dict(obj["credentials"]) if obj.get("credentials") is not None else None,
93
95
  "metadata": obj.get("metadata")
94
96
  })
@@ -17,17 +17,18 @@ import pprint
17
17
  import re # noqa: F401
18
18
  import json
19
19
 
20
- from pydantic import BaseModel, ConfigDict, StrictStr
21
- from typing import Any, ClassVar, Dict, List
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
22
  from typing import Optional, Set
23
23
  from typing_extensions import Self
24
24
 
25
- class CreateTopicModelJobRequest(BaseModel):
25
+ class TagFilter(BaseModel):
26
26
  """
27
- CreateTopicModelJobRequest
27
+ Filter for document tags supporting inclusion and exclusion. Note: The exclude list takes priority over the include list. If a document has a tag that appears in both lists, the document will be excluded. Examples: - Include only documents with 'red' OR 'blue' tags: {\"include\": [\"red\", \"blue\"]} - Exclude documents with 'red' OR 'blue' tags: {\"exclude\": [\"red\", \"blue\"]} - Include documents with 'color' tag BUT exclude 'red' and 'blue': {\"include\": [\"color\"], \"exclude\": [\"red\", \"blue\"]}
28
28
  """ # noqa: E501
29
- collection_id: StrictStr
30
- __properties: ClassVar[List[str]] = ["collection_id"]
29
+ include: Optional[List[StrictStr]] = Field(default=None, description="Include documents with ANY of these tags (OR operation).")
30
+ exclude: Optional[List[StrictStr]] = Field(default=None, description="Exclude documents with ANY of these tags (OR operation). Takes priority over include.")
31
+ __properties: ClassVar[List[str]] = ["include", "exclude"]
31
32
 
32
33
  model_config = ConfigDict(
33
34
  populate_by_name=True,
@@ -47,7 +48,7 @@ class CreateTopicModelJobRequest(BaseModel):
47
48
 
48
49
  @classmethod
49
50
  def from_json(cls, json_str: str) -> Optional[Self]:
50
- """Create an instance of CreateTopicModelJobRequest from a JSON string"""
51
+ """Create an instance of TagFilter from a JSON string"""
51
52
  return cls.from_dict(json.loads(json_str))
52
53
 
53
54
  def to_dict(self) -> Dict[str, Any]:
@@ -72,7 +73,7 @@ class CreateTopicModelJobRequest(BaseModel):
72
73
 
73
74
  @classmethod
74
75
  def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
- """Create an instance of CreateTopicModelJobRequest from a dict"""
76
+ """Create an instance of TagFilter from a dict"""
76
77
  if obj is None:
77
78
  return None
78
79
 
@@ -80,7 +81,8 @@ class CreateTopicModelJobRequest(BaseModel):
80
81
  return cls.model_validate(obj)
81
82
 
82
83
  _obj = cls.model_validate({
83
- "collection_id": obj.get("collection_id")
84
+ "include": obj.get("include"),
85
+ "exclude": obj.get("exclude")
84
86
  })
85
87
  return _obj
86
88
 
h2ogpte/session.py CHANGED
@@ -29,6 +29,7 @@ from h2ogpte.types import (
29
29
  ChatResponse,
30
30
  PartialChatMessage,
31
31
  SessionError,
32
+ TagFilter,
32
33
  )
33
34
  from h2ogpte.errors import (
34
35
  UnauthorizedError,
@@ -194,7 +195,7 @@ class Session:
194
195
  self_reflection_config: Optional[Dict[str, Any]] = None,
195
196
  rag_config: Optional[Dict[str, Any]] = None,
196
197
  include_chat_history: Optional[Union[bool, str]] = "auto",
197
- tags: Optional[List[str]] = None,
198
+ tags: Optional[Union[List[str], TagFilter]] = None,
198
199
  metadata_filter: Optional[Dict[str, Any]] = None,
199
200
  timeout: Optional[float] = None,
200
201
  retries: int = 3,
@@ -328,6 +329,11 @@ class Session:
328
329
  Requires 1 LLM or Agent call.
329
330
  :code:`"agent_only"` Agent Only - Answer the query with only original files passed to agent.
330
331
  Requires 1 Agent call.
332
+ :code:`"agentic_rag"` Agentic RAG - Agent with RAG tool that retrieves and answers from collection.
333
+ Requires 1 Agent call with RAG tool execution.
334
+ :code:`"rlm_rag"` RLM RAG - Agent programmatically analyzes documents using Python code
335
+ execution and sub-LLM calls. Best for complex multi-hop reasoning over large documents.
336
+ Requires 1 Agent call.
331
337
  :code:`"rag"` RAG (Retrieval Augmented Generation) - Use supporting document contexts
332
338
  to answer the query. Requires 1 LLM or Agent call.
333
339
  :code:`"hyde1"` LLM Only + RAG composite - HyDE RAG (Hypothetical Document Embedding).
@@ -342,9 +348,6 @@ class Session:
342
348
  :code:`"all_data"` All Data RAG - Like Summary RAG, but includes all document
343
349
  chunks. Uses recursive summarization to overcome LLM context limits.
344
350
  Can require several LLM calls.
345
- :code:`"all_data"` All Data RAG - Like Summary RAG, but includes all document
346
- chunks. Uses recursive summarization to overcome LLM context limits.
347
- Can require several LLM calls.
348
351
  hyde_no_rag_llm_prompt_extension: str
349
352
  Add this prompt to every user's prompt, when generating answers to be used
350
353
  for subsequent retrieval during HyDE. Only used when rag_type is "hyde1" or "hyde2".
@@ -382,7 +385,9 @@ class Session:
382
385
  answers for a given question.
383
386
  Choices are: ["on","off","auto",True,False]
384
387
  tags:
385
- A list of tags from which to pull the context for RAG.
388
+ Filter documents by tags for RAG. Can be:
389
+ - List format: ["red", "blue"] includes documents with these tags
390
+ - TagFilter object: TagFilter(include=["red"], exclude=["blue"])
386
391
  metadata_filter:
387
392
  A dictionary to filter documents by metadata, from which to pull the context for RAG.
388
393
  timeout:
h2ogpte/session_async.py CHANGED
@@ -30,6 +30,7 @@ from h2ogpte.types import (
30
30
  ChatResponse,
31
31
  SessionError,
32
32
  PartialChatMessage,
33
+ TagFilter,
33
34
  )
34
35
  from h2ogpte.errors import (
35
36
  UnauthorizedError,
@@ -108,7 +109,7 @@ class SessionAsync:
108
109
  self_reflection_config: Optional[Dict[str, Any]] = None,
109
110
  rag_config: Optional[Dict[str, Any]] = None,
110
111
  include_chat_history: Optional[Union[bool, str]] = "auto",
111
- tags: Optional[List[str]] = None,
112
+ tags: Optional[Union[List[str], TagFilter]] = None,
112
113
  metadata_filter: Optional[Dict[str, Any]] = None,
113
114
  timeout: Optional[float] = None,
114
115
  retries: int = 3,
@@ -239,6 +240,11 @@ class SessionAsync:
239
240
  Requires 1 LLM or Agent call.
240
241
  :code:`"agent_only"` Agent Only - Answer the query with only original files passed to agent.
241
242
  Requires 1 Agent call.
243
+ :code:`"agentic_rag"` Agentic RAG - Agent with RAG tool that retrieves and answers from collection.
244
+ Requires 1 Agent call with RAG tool execution.
245
+ :code:`"rlm_rag"` RLM RAG - Agent programmatically analyzes documents using Python code
246
+ execution and sub-LLM calls. Best for complex multi-hop reasoning over large documents.
247
+ Requires 1 Agent call.
242
248
  :code:`"rag"` RAG (Retrieval Augmented Generation) - Use supporting document contexts
243
249
  to answer the query. Requires 1 LLM or Agent call.
244
250
  :code:`"hyde1"` LLM Only + RAG composite - HyDE RAG (Hypothetical Document Embedding).
@@ -290,7 +296,9 @@ class SessionAsync:
290
296
  answers for a given question.
291
297
  Choices are: ["on","off","auto",True,False]
292
298
  tags:
293
- A list of tags from which to pull the context for RAG.
299
+ Filter documents by tags for RAG. Can be:
300
+ - List format: ["red", "blue"] includes documents with these tags
301
+ - TagFilter object: TagFilter(include=["red"], exclude=["blue"])
294
302
  metadata_filter:
295
303
  A dictionary to filter documents by metadata, from which to pull the context for RAG.
296
304
  timeout:
h2ogpte/types.py CHANGED
@@ -259,9 +259,11 @@ class CollectionInfo(BaseModel):
259
259
  id: str
260
260
  name: str
261
261
  description: str
262
+ embedding_model: str
262
263
  document_count: int
263
264
  document_size: int
264
265
  updated_at: datetime
266
+ created_at: datetime
265
267
  user_count: int
266
268
  is_public: bool
267
269
  username: str
@@ -306,6 +308,16 @@ class Extractor(BaseModel):
306
308
  llm: Optional[str] = None
307
309
  # can't use name schema as it conflicts with BaseModel's internals
308
310
  extractor_schema: Optional[Dict[str, Any]] = None
311
+ prompt: Optional[str] = None
312
+ pre_prompt_summary: Optional[str] = None
313
+ keep_intermediate_results: Optional[bool] = None
314
+ system_prompt: Optional[str] = None
315
+ max_num_chunks: Optional[int] = None
316
+ vision: Optional[str] = None
317
+ vision_llm: Optional[str] = None
318
+ image_batch_image_prompt: Optional[str] = None
319
+ image_batch_final_prompt: Optional[str] = None
320
+ guardrails_settings: Optional[Dict[str, Any]] = None
309
321
  is_public: bool
310
322
 
311
323
 
@@ -593,6 +605,21 @@ class APIKey(BaseModel):
593
605
  is_global_key: bool
594
606
 
595
607
 
608
+ @dataclass
609
+ class TagFilter:
610
+ """
611
+ Filter for document tags supporting inclusion and exclusion.
612
+
613
+ Examples:
614
+ TagFilter(include=['red', 'blue'])
615
+ TagFilter(exclude=['red', 'blue'])
616
+ TagFilter(include=['color'], exclude=['red', 'blue'])
617
+ """
618
+
619
+ include: Optional[List[str]] = None
620
+ exclude: Optional[List[str]] = None
621
+
622
+
596
623
  @dataclass
597
624
  class ChatRequest:
598
625
  t: str # cq
@@ -610,7 +637,7 @@ class ChatRequest:
610
637
  self_reflection_config: Optional[str]
611
638
  rag_config: Optional[str]
612
639
  include_chat_history: Optional[Union[bool, str]] = False
613
- tags: Optional[List[str]] = None
640
+ tags: Optional[Union[List[str], "TagFilter"]] = None
614
641
  metadata_filter: Optional[str] = None
615
642
  image_batch_image_prompt: Optional[str] = None
616
643
  image_batch_final_prompt: Optional[str] = None
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.4
2
2
  Name: h2ogpte
3
- Version: 1.6.55rc1
3
+ Version: 1.7.0rc2
4
4
  Summary: Client library for Enterprise h2oGPTe
5
5
  Author-email: "H2O.ai, Inc." <support@h2o.ai>
6
6
  Project-URL: Source, https://github.com/h2oai/h2ogpte