h2ogpte 1.6.38rc3__py3-none-any.whl → 1.6.40rc1__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
Files changed (35) hide show
  1. h2ogpte/__init__.py +1 -1
  2. h2ogpte/h2ogpte.py +122 -0
  3. h2ogpte/h2ogpte_async.py +123 -0
  4. h2ogpte/rest_async/__init__.py +8 -1
  5. h2ogpte/rest_async/api/agents_api.py +1181 -22
  6. h2ogpte/rest_async/api/permissions_api.py +550 -2
  7. h2ogpte/rest_async/api_client.py +1 -1
  8. h2ogpte/rest_async/configuration.py +1 -1
  9. h2ogpte/rest_async/models/__init__.py +7 -0
  10. h2ogpte/rest_async/models/add_custom_agent_tool201_response_inner.py +87 -0
  11. h2ogpte/rest_async/models/confirm_user_deletion_request.py +87 -0
  12. h2ogpte/rest_async/models/create_agent_tool_request.py +103 -0
  13. h2ogpte/rest_async/models/list_custom_agent_tools200_response_inner.py +95 -0
  14. h2ogpte/rest_async/models/prompt_template.py +3 -1
  15. h2ogpte/rest_async/models/update_custom_agent_tool200_response.py +87 -0
  16. h2ogpte/rest_async/models/update_custom_agent_tool_request.py +87 -0
  17. h2ogpte/rest_async/models/user_deletion_request.py +87 -0
  18. h2ogpte/rest_sync/__init__.py +8 -1
  19. h2ogpte/rest_sync/api/agents_api.py +1181 -22
  20. h2ogpte/rest_sync/api/permissions_api.py +550 -2
  21. h2ogpte/rest_sync/api_client.py +1 -1
  22. h2ogpte/rest_sync/configuration.py +1 -1
  23. h2ogpte/rest_sync/models/__init__.py +7 -0
  24. h2ogpte/rest_sync/models/add_custom_agent_tool201_response_inner.py +87 -0
  25. h2ogpte/rest_sync/models/confirm_user_deletion_request.py +87 -0
  26. h2ogpte/rest_sync/models/create_agent_tool_request.py +103 -0
  27. h2ogpte/rest_sync/models/list_custom_agent_tools200_response_inner.py +95 -0
  28. h2ogpte/rest_sync/models/prompt_template.py +3 -1
  29. h2ogpte/rest_sync/models/update_custom_agent_tool200_response.py +87 -0
  30. h2ogpte/rest_sync/models/update_custom_agent_tool_request.py +87 -0
  31. h2ogpte/rest_sync/models/user_deletion_request.py +87 -0
  32. {h2ogpte-1.6.38rc3.dist-info → h2ogpte-1.6.40rc1.dist-info}/METADATA +1 -1
  33. {h2ogpte-1.6.38rc3.dist-info → h2ogpte-1.6.40rc1.dist-info}/RECORD +35 -21
  34. {h2ogpte-1.6.38rc3.dist-info → h2ogpte-1.6.40rc1.dist-info}/WHEEL +0 -0
  35. {h2ogpte-1.6.38rc3.dist-info → h2ogpte-1.6.40rc1.dist-info}/top_level.txt +0 -0
@@ -0,0 +1,87 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class AddCustomAgentTool201ResponseInner(BaseModel):
26
+ """
27
+ AddCustomAgentTool201ResponseInner
28
+ """ # noqa: E501
29
+ agent_custom_tool_id: Optional[StrictStr] = Field(default=None, description="The ID of the created custom agent tool")
30
+ __properties: ClassVar[List[str]] = ["agent_custom_tool_id"]
31
+
32
+ model_config = ConfigDict(
33
+ populate_by_name=True,
34
+ validate_assignment=True,
35
+ protected_namespaces=(),
36
+ )
37
+
38
+
39
+ def to_str(self) -> str:
40
+ """Returns the string representation of the model using alias"""
41
+ return pprint.pformat(self.model_dump(by_alias=True))
42
+
43
+ def to_json(self) -> str:
44
+ """Returns the JSON representation of the model using alias"""
45
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
+ return json.dumps(self.to_dict())
47
+
48
+ @classmethod
49
+ def from_json(cls, json_str: str) -> Optional[Self]:
50
+ """Create an instance of AddCustomAgentTool201ResponseInner from a JSON string"""
51
+ return cls.from_dict(json.loads(json_str))
52
+
53
+ def to_dict(self) -> Dict[str, Any]:
54
+ """Return the dictionary representation of the model using alias.
55
+
56
+ This has the following differences from calling pydantic's
57
+ `self.model_dump(by_alias=True)`:
58
+
59
+ * `None` is only added to the output dict for nullable fields that
60
+ were set at model initialization. Other fields with value `None`
61
+ are ignored.
62
+ """
63
+ excluded_fields: Set[str] = set([
64
+ ])
65
+
66
+ _dict = self.model_dump(
67
+ by_alias=True,
68
+ exclude=excluded_fields,
69
+ exclude_none=True,
70
+ )
71
+ return _dict
72
+
73
+ @classmethod
74
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
+ """Create an instance of AddCustomAgentTool201ResponseInner from a dict"""
76
+ if obj is None:
77
+ return None
78
+
79
+ if not isinstance(obj, dict):
80
+ return cls.model_validate(obj)
81
+
82
+ _obj = cls.model_validate({
83
+ "agent_custom_tool_id": obj.get("agent_custom_tool_id")
84
+ })
85
+ return _obj
86
+
87
+
@@ -0,0 +1,87 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
+ from typing import Any, ClassVar, Dict, List
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class ConfirmUserDeletionRequest(BaseModel):
26
+ """
27
+ ConfirmUserDeletionRequest
28
+ """ # noqa: E501
29
+ delete_id: StrictStr = Field(description="The delete ID returned from the initial deletion request.")
30
+ __properties: ClassVar[List[str]] = ["delete_id"]
31
+
32
+ model_config = ConfigDict(
33
+ populate_by_name=True,
34
+ validate_assignment=True,
35
+ protected_namespaces=(),
36
+ )
37
+
38
+
39
+ def to_str(self) -> str:
40
+ """Returns the string representation of the model using alias"""
41
+ return pprint.pformat(self.model_dump(by_alias=True))
42
+
43
+ def to_json(self) -> str:
44
+ """Returns the JSON representation of the model using alias"""
45
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
+ return json.dumps(self.to_dict())
47
+
48
+ @classmethod
49
+ def from_json(cls, json_str: str) -> Optional[Self]:
50
+ """Create an instance of ConfirmUserDeletionRequest from a JSON string"""
51
+ return cls.from_dict(json.loads(json_str))
52
+
53
+ def to_dict(self) -> Dict[str, Any]:
54
+ """Return the dictionary representation of the model using alias.
55
+
56
+ This has the following differences from calling pydantic's
57
+ `self.model_dump(by_alias=True)`:
58
+
59
+ * `None` is only added to the output dict for nullable fields that
60
+ were set at model initialization. Other fields with value `None`
61
+ are ignored.
62
+ """
63
+ excluded_fields: Set[str] = set([
64
+ ])
65
+
66
+ _dict = self.model_dump(
67
+ by_alias=True,
68
+ exclude=excluded_fields,
69
+ exclude_none=True,
70
+ )
71
+ return _dict
72
+
73
+ @classmethod
74
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
+ """Create an instance of ConfirmUserDeletionRequest from a dict"""
76
+ if obj is None:
77
+ return None
78
+
79
+ if not isinstance(obj, dict):
80
+ return cls.model_validate(obj)
81
+
82
+ _obj = cls.model_validate({
83
+ "delete_id": obj.get("delete_id")
84
+ })
85
+ return _obj
86
+
87
+
@@ -0,0 +1,103 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class CreateAgentToolRequest(BaseModel):
26
+ """
27
+ CreateAgentToolRequest
28
+ """ # noqa: E501
29
+ tool_type: StrictStr
30
+ tool_args: Dict[str, Any]
31
+ custom_tool_path: Optional[StrictStr] = None
32
+ filename: Optional[StrictStr] = None
33
+ __properties: ClassVar[List[str]] = ["tool_type", "tool_args", "custom_tool_path", "filename"]
34
+
35
+ model_config = ConfigDict(
36
+ populate_by_name=True,
37
+ validate_assignment=True,
38
+ protected_namespaces=(),
39
+ )
40
+
41
+
42
+ def to_str(self) -> str:
43
+ """Returns the string representation of the model using alias"""
44
+ return pprint.pformat(self.model_dump(by_alias=True))
45
+
46
+ def to_json(self) -> str:
47
+ """Returns the JSON representation of the model using alias"""
48
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
49
+ return json.dumps(self.to_dict())
50
+
51
+ @classmethod
52
+ def from_json(cls, json_str: str) -> Optional[Self]:
53
+ """Create an instance of CreateAgentToolRequest from a JSON string"""
54
+ return cls.from_dict(json.loads(json_str))
55
+
56
+ def to_dict(self) -> Dict[str, Any]:
57
+ """Return the dictionary representation of the model using alias.
58
+
59
+ This has the following differences from calling pydantic's
60
+ `self.model_dump(by_alias=True)`:
61
+
62
+ * `None` is only added to the output dict for nullable fields that
63
+ were set at model initialization. Other fields with value `None`
64
+ are ignored.
65
+ """
66
+ excluded_fields: Set[str] = set([
67
+ ])
68
+
69
+ _dict = self.model_dump(
70
+ by_alias=True,
71
+ exclude=excluded_fields,
72
+ exclude_none=True,
73
+ )
74
+ # set to None if custom_tool_path (nullable) is None
75
+ # and model_fields_set contains the field
76
+ if self.custom_tool_path is None and "custom_tool_path" in self.model_fields_set:
77
+ _dict['custom_tool_path'] = None
78
+
79
+ # set to None if filename (nullable) is None
80
+ # and model_fields_set contains the field
81
+ if self.filename is None and "filename" in self.model_fields_set:
82
+ _dict['filename'] = None
83
+
84
+ return _dict
85
+
86
+ @classmethod
87
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
88
+ """Create an instance of CreateAgentToolRequest from a dict"""
89
+ if obj is None:
90
+ return None
91
+
92
+ if not isinstance(obj, dict):
93
+ return cls.model_validate(obj)
94
+
95
+ _obj = cls.model_validate({
96
+ "tool_type": obj.get("tool_type"),
97
+ "tool_args": obj.get("tool_args"),
98
+ "custom_tool_path": obj.get("custom_tool_path"),
99
+ "filename": obj.get("filename")
100
+ })
101
+ return _obj
102
+
103
+
@@ -0,0 +1,95 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class ListCustomAgentTools200ResponseInner(BaseModel):
26
+ """
27
+ ListCustomAgentTools200ResponseInner
28
+ """ # noqa: E501
29
+ id: Optional[StrictStr] = Field(default=None, description="The ID of the custom agent tool")
30
+ tool_name: Optional[StrictStr] = Field(default=None, description="The name of the tool")
31
+ tool_type: Optional[StrictStr] = Field(default=None, description="The type of the tool")
32
+ tool_args: Optional[Dict[str, Any]] = Field(default=None, description="The tool arguments")
33
+ owner_email: Optional[StrictStr] = Field(default=None, description="The owner's email")
34
+ __properties: ClassVar[List[str]] = ["id", "tool_name", "tool_type", "tool_args", "owner_email"]
35
+
36
+ model_config = ConfigDict(
37
+ populate_by_name=True,
38
+ validate_assignment=True,
39
+ protected_namespaces=(),
40
+ )
41
+
42
+
43
+ def to_str(self) -> str:
44
+ """Returns the string representation of the model using alias"""
45
+ return pprint.pformat(self.model_dump(by_alias=True))
46
+
47
+ def to_json(self) -> str:
48
+ """Returns the JSON representation of the model using alias"""
49
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
50
+ return json.dumps(self.to_dict())
51
+
52
+ @classmethod
53
+ def from_json(cls, json_str: str) -> Optional[Self]:
54
+ """Create an instance of ListCustomAgentTools200ResponseInner from a JSON string"""
55
+ return cls.from_dict(json.loads(json_str))
56
+
57
+ def to_dict(self) -> Dict[str, Any]:
58
+ """Return the dictionary representation of the model using alias.
59
+
60
+ This has the following differences from calling pydantic's
61
+ `self.model_dump(by_alias=True)`:
62
+
63
+ * `None` is only added to the output dict for nullable fields that
64
+ were set at model initialization. Other fields with value `None`
65
+ are ignored.
66
+ """
67
+ excluded_fields: Set[str] = set([
68
+ ])
69
+
70
+ _dict = self.model_dump(
71
+ by_alias=True,
72
+ exclude=excluded_fields,
73
+ exclude_none=True,
74
+ )
75
+ return _dict
76
+
77
+ @classmethod
78
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
79
+ """Create an instance of ListCustomAgentTools200ResponseInner from a dict"""
80
+ if obj is None:
81
+ return None
82
+
83
+ if not isinstance(obj, dict):
84
+ return cls.model_validate(obj)
85
+
86
+ _obj = cls.model_validate({
87
+ "id": obj.get("id"),
88
+ "tool_name": obj.get("tool_name"),
89
+ "tool_type": obj.get("tool_type"),
90
+ "tool_args": obj.get("tool_args"),
91
+ "owner_email": obj.get("owner_email")
92
+ })
93
+ return _obj
94
+
95
+
@@ -50,12 +50,13 @@ class PromptTemplate(BaseModel):
50
50
  user_count: Optional[StrictInt] = Field(default=None, description="The number of users who have access to the prompt template.")
51
51
  group_count: Optional[StrictInt] = Field(default=None, description="The number of groups who have access to the prompt template.")
52
52
  username: Optional[StrictStr] = Field(default=None, description="Name of the user owning the prompt template.")
53
+ user_id: Optional[StrictStr] = Field(default=None, description="The unique identifier of the user owning the prompt template.")
53
54
  created_at: Optional[datetime] = Field(default=None, description="The moment when the prompt template was created.")
54
55
  updated_at: Optional[datetime] = Field(default=None, description="The Last time when the prompt template was modified.")
55
56
  is_public: StrictBool = Field(description="Whether the prompt template is public or private (only applies to custom templates).")
56
57
  visible: Optional[StrictBool] = Field(default=None, description="A flag identifying if a default prompt template is visible to system users.")
57
58
  is_system_default: Optional[StrictBool] = Field(default=None, description="A flag identifying if a default prompt template is the system default.")
58
- __properties: ClassVar[List[str]] = ["name", "description", "lang", "system_prompt", "pre_prompt_query", "prompt_query", "hyde_no_rag_llm_prompt_extension", "pre_prompt_summary", "prompt_summary", "system_prompt_reflection", "prompt_reflection", "auto_gen_description_prompt", "auto_gen_document_summary_pre_prompt_summary", "auto_gen_document_summary_prompt_summary", "auto_gen_document_sample_questions_prompt", "default_sample_questions", "image_batch_image_prompt", "image_batch_final_prompt", "id", "is_default", "user_count", "group_count", "username", "created_at", "updated_at", "is_public", "visible", "is_system_default"]
59
+ __properties: ClassVar[List[str]] = ["name", "description", "lang", "system_prompt", "pre_prompt_query", "prompt_query", "hyde_no_rag_llm_prompt_extension", "pre_prompt_summary", "prompt_summary", "system_prompt_reflection", "prompt_reflection", "auto_gen_description_prompt", "auto_gen_document_summary_pre_prompt_summary", "auto_gen_document_summary_prompt_summary", "auto_gen_document_sample_questions_prompt", "default_sample_questions", "image_batch_image_prompt", "image_batch_final_prompt", "id", "is_default", "user_count", "group_count", "username", "user_id", "created_at", "updated_at", "is_public", "visible", "is_system_default"]
59
60
 
60
61
  model_config = ConfigDict(
61
62
  populate_by_name=True,
@@ -131,6 +132,7 @@ class PromptTemplate(BaseModel):
131
132
  "user_count": obj.get("user_count"),
132
133
  "group_count": obj.get("group_count"),
133
134
  "username": obj.get("username"),
135
+ "user_id": obj.get("user_id"),
134
136
  "created_at": obj.get("created_at"),
135
137
  "updated_at": obj.get("updated_at"),
136
138
  "is_public": obj.get("is_public"),
@@ -0,0 +1,87 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, Field, StrictStr
21
+ from typing import Any, ClassVar, Dict, List, Optional
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class UpdateCustomAgentTool200Response(BaseModel):
26
+ """
27
+ UpdateCustomAgentTool200Response
28
+ """ # noqa: E501
29
+ agent_custom_tool_id: Optional[StrictStr] = Field(default=None, description="The ID of the updated custom agent tool")
30
+ __properties: ClassVar[List[str]] = ["agent_custom_tool_id"]
31
+
32
+ model_config = ConfigDict(
33
+ populate_by_name=True,
34
+ validate_assignment=True,
35
+ protected_namespaces=(),
36
+ )
37
+
38
+
39
+ def to_str(self) -> str:
40
+ """Returns the string representation of the model using alias"""
41
+ return pprint.pformat(self.model_dump(by_alias=True))
42
+
43
+ def to_json(self) -> str:
44
+ """Returns the JSON representation of the model using alias"""
45
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
+ return json.dumps(self.to_dict())
47
+
48
+ @classmethod
49
+ def from_json(cls, json_str: str) -> Optional[Self]:
50
+ """Create an instance of UpdateCustomAgentTool200Response from a JSON string"""
51
+ return cls.from_dict(json.loads(json_str))
52
+
53
+ def to_dict(self) -> Dict[str, Any]:
54
+ """Return the dictionary representation of the model using alias.
55
+
56
+ This has the following differences from calling pydantic's
57
+ `self.model_dump(by_alias=True)`:
58
+
59
+ * `None` is only added to the output dict for nullable fields that
60
+ were set at model initialization. Other fields with value `None`
61
+ are ignored.
62
+ """
63
+ excluded_fields: Set[str] = set([
64
+ ])
65
+
66
+ _dict = self.model_dump(
67
+ by_alias=True,
68
+ exclude=excluded_fields,
69
+ exclude_none=True,
70
+ )
71
+ return _dict
72
+
73
+ @classmethod
74
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
+ """Create an instance of UpdateCustomAgentTool200Response from a dict"""
76
+ if obj is None:
77
+ return None
78
+
79
+ if not isinstance(obj, dict):
80
+ return cls.model_validate(obj)
81
+
82
+ _obj = cls.model_validate({
83
+ "agent_custom_tool_id": obj.get("agent_custom_tool_id")
84
+ })
85
+ return _obj
86
+
87
+
@@ -0,0 +1,87 @@
1
+ # coding: utf-8
2
+
3
+ """
4
+ h2oGPTe REST API
5
+
6
+ # Overview Users can easily interact with the h2oGPTe API through its REST API, allowing HTTP requests from any programming language. ## Authorization: Getting an API key Sign up/in at Enterprise h2oGPTe and generate one of the following two types of API keys: - **Global API key**: If a Collection is not specified when creating a new API Key, that key is considered to be a global API Key. Use global API Keys to grant full user impersonation and system-wide access to all of your work. Anyone with access to one of your global API Keys can create, delete, or interact with any of your past, current, and future Collections, Documents, Chats, and settings. - **Collection-specific API key**: Use Collection-specific API Keys to grant external access to only Chat with a specified Collection and make related API calls to it. Collection-specific API keys do not allow other API calls, such as creation, deletion, or access to other Collections or Chats. Access Enterprise h2oGPTe through your [H2O Generative AI](https://genai.h2o.ai/appstore) app store account, available with a freemium tier. ## Authorization: Using an API key All h2oGPTe REST API requests must include an API Key in the \"Authorization\" HTTP header, formatted as follows: ``` Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX ``` ```sh curl -X 'POST' \\ 'https://h2ogpte.genai.h2o.ai/api/v1/collections' \\ -H 'accept: application/json' \\ -H 'Content-Type: application/json' \\ -H 'Authorization: Bearer sk-XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' \\ -d '{ \"name\": \"The name of my Collection\", \"description\": \"The description of my Collection\", \"embedding_model\": \"BAAI/bge-large-en-v1.5\" }' ``` ## Interactive h2oGPTe API testing This page only showcases the h2oGPTe REST API; you can test it directly in the [Swagger UI](https://h2ogpte.genai.h2o.ai/swagger-ui/). Ensure that you are logged into your Enterprise h2oGPTe account.
7
+
8
+ The version of the OpenAPI document: v1.0.0
9
+ Generated by OpenAPI Generator (https://openapi-generator.tech)
10
+
11
+ Do not edit the class manually.
12
+ """ # noqa: E501
13
+
14
+
15
+ from __future__ import annotations
16
+ import pprint
17
+ import re # noqa: F401
18
+ import json
19
+
20
+ from pydantic import BaseModel, ConfigDict, Field
21
+ from typing import Any, ClassVar, Dict, List
22
+ from typing import Optional, Set
23
+ from typing_extensions import Self
24
+
25
+ class UpdateCustomAgentToolRequest(BaseModel):
26
+ """
27
+ UpdateCustomAgentToolRequest
28
+ """ # noqa: E501
29
+ tool_args: Dict[str, Any] = Field(description="The new arguments for the custom agent tool")
30
+ __properties: ClassVar[List[str]] = ["tool_args"]
31
+
32
+ model_config = ConfigDict(
33
+ populate_by_name=True,
34
+ validate_assignment=True,
35
+ protected_namespaces=(),
36
+ )
37
+
38
+
39
+ def to_str(self) -> str:
40
+ """Returns the string representation of the model using alias"""
41
+ return pprint.pformat(self.model_dump(by_alias=True))
42
+
43
+ def to_json(self) -> str:
44
+ """Returns the JSON representation of the model using alias"""
45
+ # TODO: pydantic v2: use .model_dump_json(by_alias=True, exclude_unset=True) instead
46
+ return json.dumps(self.to_dict())
47
+
48
+ @classmethod
49
+ def from_json(cls, json_str: str) -> Optional[Self]:
50
+ """Create an instance of UpdateCustomAgentToolRequest from a JSON string"""
51
+ return cls.from_dict(json.loads(json_str))
52
+
53
+ def to_dict(self) -> Dict[str, Any]:
54
+ """Return the dictionary representation of the model using alias.
55
+
56
+ This has the following differences from calling pydantic's
57
+ `self.model_dump(by_alias=True)`:
58
+
59
+ * `None` is only added to the output dict for nullable fields that
60
+ were set at model initialization. Other fields with value `None`
61
+ are ignored.
62
+ """
63
+ excluded_fields: Set[str] = set([
64
+ ])
65
+
66
+ _dict = self.model_dump(
67
+ by_alias=True,
68
+ exclude=excluded_fields,
69
+ exclude_none=True,
70
+ )
71
+ return _dict
72
+
73
+ @classmethod
74
+ def from_dict(cls, obj: Optional[Dict[str, Any]]) -> Optional[Self]:
75
+ """Create an instance of UpdateCustomAgentToolRequest from a dict"""
76
+ if obj is None:
77
+ return None
78
+
79
+ if not isinstance(obj, dict):
80
+ return cls.model_validate(obj)
81
+
82
+ _obj = cls.model_validate({
83
+ "tool_args": obj.get("tool_args")
84
+ })
85
+ return _obj
86
+
87
+