gym-examples 3.0.81__py3-none-any.whl → 3.0.83__py3-none-any.whl

This diff represents the content of publicly available package versions that have been released to one of the supported registries. The information contained in this diff is provided for informational purposes only and reflects changes between package versions as they appear in their respective public registries.
gym_examples/__init__.py CHANGED
@@ -6,4 +6,4 @@ register(
6
6
  max_episode_steps=50,
7
7
  )
8
8
 
9
- __version__ = "3.0.81"
9
+ __version__ = "3.0.83"
@@ -10,7 +10,7 @@ import torch.nn as nn
10
10
  import torch.nn.functional as F
11
11
 
12
12
  # Define the network parameters for the final reward function
13
- input_dim = 4 # length of the individual rewards vector
13
+ input_dim = 7 # length of the individual rewards vector
14
14
  output_dim = 1 # final reward
15
15
 
16
16
  Eelec = 50e-9 # energy consumption per bit in joules
@@ -65,8 +65,7 @@ class WSNRoutingEnv(gym.Env):
65
65
  self.reset()
66
66
 
67
67
 
68
- def reset(self):
69
-
68
+ def reset(self):
70
69
  self.sensor_positions = np.random.rand(self.n_sensors, 2) * (upper_bound - lower_bound) + lower_bound
71
70
  self.distance_to_base = np.linalg.norm(self.sensor_positions - base_station_position, axis=1)
72
71
  self.remaining_energy = np.ones(self.n_sensors) * initial_energy
@@ -308,9 +307,13 @@ class WSNRoutingEnv(gym.Env):
308
307
  reward_packet_delivery_ratio = self.compute_reward_packet_delivery_ratio()
309
308
 
310
309
  rewards_performance = np.array([reward_latency, reward_network_throughput, reward_packet_delivery_ratio])
311
-
312
- # return np.concatenate((rewards_energy, rewards_performance))
313
- return rewards_energy
310
+ if self.episode_count == 455:
311
+ print(f"Sensor: {i}")
312
+ print(f"Episode: {self.episode_count}")
313
+ print(f"Rewards energy: {rewards_energy}")
314
+ print(f"Rewards performance: {rewards_performance}")
315
+ return np.concatenate((rewards_energy, rewards_performance))
316
+ # return rewards_energy
314
317
 
315
318
  def network_reward_dispersion_remaining_energy(self):
316
319
  '''
@@ -1,6 +1,6 @@
1
1
  Metadata-Version: 2.1
2
2
  Name: gym-examples
3
- Version: 3.0.81
3
+ Version: 3.0.83
4
4
  Summary: A custom environment for multi-agent reinforcement learning focused on WSN routing.
5
5
  Home-page: https://github.com/gedji/CODES.git
6
6
  Author: Georges Djimefo
@@ -0,0 +1,7 @@
1
+ gym_examples/__init__.py,sha256=QDtvnXb2Mx55f1nDFtydZEG4rBrtql9NsdptzX8iERo,193
2
+ gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
+ gym_examples/envs/wsn_env.py,sha256=kvQViM19DyTdlmkIAUs_WL2UWIk46EiEV5LrWPCekUA,20630
4
+ gym_examples-3.0.83.dist-info/METADATA,sha256=YEoAiSUMbHaInr_ZMK0Nb6XLEByt9O9RfVefbAv1rJs,411
5
+ gym_examples-3.0.83.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
+ gym_examples-3.0.83.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
+ gym_examples-3.0.83.dist-info/RECORD,,
@@ -1,7 +0,0 @@
1
- gym_examples/__init__.py,sha256=-tNBdDGkUAe9gRz0t2fK_jAloQqZCns0wnEGIXGdB_s,193
2
- gym_examples/envs/__init__.py,sha256=lgMe4pyOuUTgTBUddM0iwMlETsYTwFShny6ifm8PGM8,53
3
- gym_examples/envs/wsn_env.py,sha256=onqDtWhDb4uXQtcpWZFILFujrH-AbVZXluV-pgYi3nA,20385
4
- gym_examples-3.0.81.dist-info/METADATA,sha256=Id-4MFw_RH7WUdIcUlhbAsjDQMX05OIilQgWzKJ1h00,411
5
- gym_examples-3.0.81.dist-info/WHEEL,sha256=2wepM1nk4DS4eFpYrW1TTqPcoGNfHhhO_i5m4cOimbo,92
6
- gym_examples-3.0.81.dist-info/top_level.txt,sha256=rJRksoAF32M6lTLBEwYzRdo4PgtejceaNnnZ3HeY_Rk,13
7
- gym_examples-3.0.81.dist-info/RECORD,,